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Theoretical aspects of robust SVM optimization in
Banach spaces and Nash equilibrium interpretation

Mohammed Sbihi · Nicolas Couellan

Abstract There are many real life applications where data can not be effec-
tively represented in Hilbert spaces and/or where the data points are uncer-
tain. In this context, we address the issue of binary classification in Banach
spaces in presence of uncertainty. We show that a number of results from
classical support vector machines theory can be appropriately generalized to
their robust counterpart in Banach spaces. These include the representer the-
orem, strong duality for the associated optimization problem as well as their
geometrical interpretation. Furthermore, we propose a game theoretical inter-
pretation of the class separation problem when the underlying space is reflexive
and smooth. The proposed Nash equilibrium formulation draws connections
and emphasizes the interplay between class separation in machine learning and
game theory in the general setting of Banach spaces.

Keywords Support vector machines · Robust optimization · Nash equilib-
rium · Duality Mapping

1 Introduction

In data science and more specifically in machine learning, the standard as-
sumption is to consider the training data to lie in a Hilbert space. However,
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in some applications where objects are complex such as images, signals, tra-
jectories in robotics or aeronautic, such data representation may turn out to
be restrictive or even inefficient. For example, in [1], the authors have shown
that Wasserstein-GAN learning achieves better results when considering Lq

space embeddings (with q = 10) rather than the L2 space. It might be inter-
esting to consider more general representation spaces that better capture and
preserve the topological properties of the training samples [14]. More general
ambient spaces such as Fréchet spaces have also been considered in [5]. How-
ever, as some notion of norm or distance is often required in machine learning
methods, Banach spaces are often a better general choice for data embedding.
For instance, Banach spaces may be used to model images in a very general
manner [1]. Continuous image models that do not rely on the concept of pixel
discretization can be regarded as living in the space of measurable functions
over the unit square. The use of a specific norm defines a choice of distances
between images that can account for specific image features, like the position
of edges with Sobolev norms.

In machine learning, Support Vector machines (SVM) [24,31] have been
widely used for data classification. Their success is due to sound theoretical
foundations and good generalization properties. They address the classification
problem by finding the hyperplane that achieves maximum sample margin
which leads to minimizing the norm of the classifier parameters. A few studies
have demonstrated that classical SVM binary classification formulation may
be derived also in non-Euclidean spaces. For example, in [15] a semi-inner-
product is considered to formulate a binary classification problem in Banach
spaces. In [28], the author also proposed a non-Euclidean setting. General
kernels methods in Banach spaces were also investigated in [27,30].

In SVM, it is also common to consider that data is not subject to noise.
Data uncertainties are usually not taken into account in classification mod-
els, although they occur most of the time. In order to design models that are
immune to noise, robust formulations of SVM models have been proposed in
the past. Worst case robust optimization formulations [6] have been studied
in [13,22], and alternative chance constraint approaches were investigated in
[21,26]. In this study, we generalize ideas from the worst case robust method
in the context of data lying in a Banach space. The idea is to consider un-
known bounded additive noise perturbations of input samples and formulate
a robust counterpart training optimization problem when considering worst
case scenarios.

Considering data and uncertainties that lie in general Banach spaces, we
first propose a theoretical framework that generalizes from an optimization
point of view the concept of robust SVM in such spaces. To do so, extending
results from robust optimization duality [4], an optimistic dual counterpart
problem is derived and robust strong duality is shown to hold under some
linearity properties with respect to the uncertainties. The application of these
results to the case of robust SVM nicely lead to a representer theorem in
Banach spaces. Unlike [15] where a supporting semi-inner product is used in
the non Euclidean setting in place of the inner-product, we propose to use
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the duality product and show that the representer theorem still holds in this
case. Additionally, an uncertain hard margin separation problem and its ro-
bust counterpart in Banach spaces are formulated. Furthermore a geometrical
perspective of the problem is proposed.

Next, using the geometrical interpretation of the duality analysis proposed
before, we formulate the problem of data separation in Banach spaces into the
general problem of separating two convex sets representing a class of points.
We further show that it can be formulated as a Nash equilibrium problem [16]
in a Banach space. Each convex set is seen as a player whose utility is to push
the separating plane as far as possible from its points. The proposed interpre-
tation generalizes prior work on supervised classification and Nash-equilibria
[12]. This section draws connections and emphasizes the interplay between
class separation in machine learning and game theory in the very general set-
ting of Banach spaces.

Our main contributions could be summarized as:

– We propose an extension of the robust SVM formulation when data lie in
a Banach space and are subject to unknown bounded uncertainties. Our
formulation uses the duality product as opposed to the semi-inner product
proposed in prior work.

– We extend results from robust optimization duality and propose an op-
timistic dual counterpart problem and show robust strong duality under
linearity properties with respect to the uncertainties.

– We state and prove a representer theorem for the solution of the robust
SVM problem in Banach spaces. This result extends nicely the strong result
from classical SVM theory.

– From the geometrical interpretation of the duality results we have derived,
we propose a novel formulation of the class separation problem as a Nash-
equilibrium problem in Banach spaces. This result emphasizes the relation-
ship between class separation in machine learning and game theory.

The article is organized as follows. Section 2 deals with the robust formu-
lation of the SVM training problem in Banach spaces. Robust optimization
duality results are recalled and extended in Section 3. The representer the-
orem in then stated and proved in Section 4. Section 5 establishes a robust
strong duality result and gives its geometrical interpretation. Section 6 de-
scribes a game theoretical interpretation of the class separation problem in
Banach spaces. Section 7 provides also numerical experiments to illustrate
the relationship between the game theoretic formulations and the SVM sep-
aration problem. Section 8 terminates with an extension to the non linearly
separable case. Section 9 concludes the article.

2 Robust SVM optimization in Banach spaces

Let X be a Banach space and X∗ be its dual, that is, the space of all real con-
tinuous linear functionals on X. We recall that X∗ is a Banach space endowed
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with dual norm defined by

∥f∥ = sup
∥x∥≤1

|f(x)|, ∀f ∈ X∗.

There is a natural duality between X and X∗ determined by the bilinear
functional ⟨·, ·⟩ : X ×X∗ → R defined by

⟨x, f⟩ = f(x);∀x ∈ X, f ∈ X∗.

We first recall the standard SVM methodology [24] to find the maximum
margin separating hyperplane between two classes of data points.

Let xi ∈ X be a collection of input training vectors for i = 1, . . . ,m and
yi ∈ {−1, 1} be their corresponding labels. If the data are linearly separable,
then there exists a linear functional w ∈ X∗ and an offset b ∈ R such that
yi(⟨xi, w⟩+ b) > 0 for all i = 1, . . . ,m. By rescaling w and b, we may assume
without loss of generality that the points closest to the hyperplane H(w, b) :=
{x ∈ X|⟨x,w⟩+ b = 0} satisfy |⟨xi, w⟩+ b| = 1. Thus H may be placed in the
canonical form yi(⟨xi, w⟩ + b) ≥ 1, for all i = 1, . . . ,m. With this form, the
margin of the hyperplane is ∥w∥−1 (see (21)). We obtain the SVM problem

(SVM)
min
w∈X∗

1
2∥w∥

2

s.t. yi(⟨xi, w⟩+ b) ≥ 1, i = 1, . . . ,m.

The classifier is then given by f(x) = sign(⟨x,w⟩+ b). It is worth mentioning
that unlike the formulation given in [15], we use the duality product instead of
a semi-inner-product. Considering now instead a set of noisy training vectors
{x̃i ∈ X, i = 1, . . . ,m} where x̃i = xi + δi for all i = 1, . . . ,m and δi is
a random perturbation. This can be captured by the following (noisy SVM)
problem

(N-SVM)
min
w∈X∗

1
2∥w∥

2

s.t. yi(⟨xi + δi, w⟩+ b) ≥ 1, i = 1, . . . ,m.

Observe that the problem involves the random variable δi and can not
be solved as such. Extra knowledge on the perturbations is needed to trans-
form it into a deterministic and numerically solvable problem. In general the
perturbation δi is known to reside in some uncertainty set ∆i ⊂ X. For in-
stance, [13] considers, when X = Rn, the uncertainty set as ∥Σ1/2δi∥p ≤ γi,
i = 1, . . . ,m, where is Σ is some positive definite matrix and p ≥ 1. Various
choices of Σi and p will lead to various types of uncertainties such as for exam-
ple box-shaped uncertainty (∥δi∥∞ ≤ γi), spherical uncertainty (∥δi∥2 ≤ γi),
or ellipsoidal uncertainty (δTi Σ

−1δi ≤ γ2
i ). To design a robust model, one has

to satisfy the inequality constraint in Problem (N-SVM) for every realizations
of δi. This can be done by ensuring the constraint in the worst case scenario
for δi, leading to the following robust counterpart optimization problem:

(R-SVM)
min
w∈X∗

1
2∥w∥

2

s.t. min
xi∈Ki

yi(⟨xi, w⟩+ b) ≥ 1, i = 1, . . . ,m,
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with Ki = xi +∆i and with an abuse of notation x̃i is denoted by xi.
As previously announced, the aim of this paper is to generalize some known

results [8,12,15] from classical SVM to their robust counterpart in Banach
spaces. The following section prepares the ground by recalling some facts about
robust optimization and by generalizing a robust strong duality result [4] to a
Banachic framework tailored to robust SVM related problems.

3 A robust optimization detour

We state and adapt in this section some results from robust optimization to our
context. Consider a general uncertain optimization problem on some Banach
space B

(P) inf
x∈B

{f(x) : gi(x, ui) ≤ 0, i = 1, . . . ,m} ,

where f : B → R is a lower-semicontinuous convex function and gi : B ×Ui →
R, i = 1, . . . ,m, gi(·, ui) is convex continuous, gi(x, ·) is upper-semicontinuous
and ui is the uncertain parameter which is only known to reside in certain
convex compact uncertainty set Ui. Robust optimization, which has emerged
as a powerful deterministic approach for studying mathematical programming
under uncertainty [4,6,18] associates with the uncertain program (P) its robust
counterpart,

(R-P) inf
x∈B

{
f(x) : sup

ui∈Ui

gi(x, ui) ≤ 0, i = 1, . . . ,m

}
,

where the uncertain constraints are enforced for every possible value of the
parameters within their prescribed uncertainty sets Ui. The functions Gi :
B ∋ x 7→ supui∈Ui

gi(x, ui), i = 1, . . . ,m are convex and continuous as point-
wise maxima of convex continuous functions. It is known [3, Theorem 3.9] that
under the following Slater condition:

There exists a point x0 ∈ B such that Gi(x0) < 0, i = 1, . . . ,m, (1)

a point x ∈ B is an optimal solution for (R-P) if and only if there exists λ ∈ Rm
+

such that

Gi(x) ≤ 0, i = 1, . . . ,m, (2)

0 ∈ ∂f(x) +

m∑
i=1

λi∂Gi(x), (3)

λiGi(x) = 0, i = 1, . . . ,m. (4)

where for a convex function h : B → R, ∂h(x) denotes the Fenchel subdiffer-
ential defined by

∂h(x) = {x∗ ∈ B∗ : h(y) ≥ h(x) + ⟨y − x, x∗⟩, ∀y ∈ B}.

The following preparatory result refines further the conditions (2)–(4) un-
der linearity assumption with respect to the uncertainties.
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Proposition 1 Suppose that Ui is a weakly convex subset of some Banach
space C and gi(x, ·) ∈ C∗ for all x ∈ B. Under assumption (1), a point x ∈ B is
a minimizer to (R-P) if and only if there exist λ ∈ Rm

+ and u ∈ U :=
∏m

i=1 Ui

such that

sup
ui∈Ui

gi(x, ui) ≤ 0, i = 1, . . . ,m, (5)

0 ∈ ∂f(x) +

m∑
i=1

λi∂xgi(x, ui), (6)

λigi(x, ui) = 0 i = 1, . . . ,m. (7)

Proof Let us first show that

∂Gi(x) =
⋃

ui∈Ui(x)

∂xgi(x, ui) (8)

where Ui(x) = argmaxui∈Ui
gi(x, ui). It is known [17] that

∂Gi(x) = co

 ⋃
ui∈Ui(x)

∂xgi(x, ui)


where co indicates the closure of the convex hull with respect to weak∗ topol-
ogy σ(B∗, B), so proving (8) amounts to prove that ∪xi∈Ui(x)∂xgi(x, ui) is
convex and weakly* closed. Observe that Ui(x) is convex and a closed sub-
set of Ui, hence by the linearity of gi with respect to ui, it follows that⋃

ui∈Ui(x)
∂xgi(x, ui) is convex. So to prove that its weak* closedness, it suffices

to prove its sequential weak* closedness. To this end, let sn ∈ ∂xgi(x, u
n
i ), with

un
i ∈ Ui(x), converging to some s ∈ B∗. As Ui(x) is weakly compact, (sn)n ad-

mits a convergent sub-sequence, still denoted by (sn)n, converging to some ui ∈
Ui(x). By letting n to +∞ in the inequality gi(y, u

n
i ) ≥ gi(x, u

n
i )+⟨sn, y−x⟩ we

get gi(y, ui) ≥ gi(x, ui)+⟨s, y−x⟩, which shows that s ∈
⋃

ui∈Ui(x)
∂xgi(x, ui).

Let us now consider a point (x, λ, u) satisfying (5)–(7). First note that
(2) is not else but (5). For indices i such that λi = 0 it is clear that (4) is
satisfied. If λi > 0, then by (7) gi(x, ui) = 0 which combined with (5) yields
0 = gi(x, ui) = supui∈Ui

gi(x, ui) = Gi(x), so (4) is satisfied. Moreover, by (8)

∂xgi(x, ui) ⊂ Gi(x). Summing over i gives 0 ∈ ∂f(x) +
∑m

i=1 λi∂xgi(x, ui) ⊂
∂f(x) +

∑m
i=1 λi∂Gi(x). Consequently, (x, λ) satisfy (2)–(4). Let now (x, λ)

verifying (2)–(4). For such λ, by (3) there exists v ∈ ∂f(x), vi ∈ ∂Gi(x) such
that 0 = v+

∑m
i=1 λivi. Using (8), for each i, there exists ui ∈ Ui(x) such that

vi ∈ ∂gi(x, ui). Finally, we can readily check that the resulting triplet (x, λ, u)
satisfies (5)–(7). ⊓⊔

Remark 1 Proposition 1 is still valid if we replace the linearity assumption of
gi(x, ·) with respect to ui by (8).
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The dual of (R-P) is given by

sup
λ∈Rm

+

inf
x∈B

{
f(x) +

m∑
i=1

λiGi(x)

}
which by recalling the definition of Gi becomes

(DR-P) sup
λ∈Rm

+

inf
x∈B

sup
ui∈Ui

{
f(x) +

m∑
i=1

λigi(x, ui)

}
.

On the other hand, the uncertain dual of (P) is given by

(D-P) sup
λ∈Rm

+

inf
x∈B

{
f(x) +

m∑
i=1

λigi(x, ui)

}
.

The optimistic counterpart of (D-P) is

(OD-P) sup
u∈U,λ∈Rm

+

inf
x∈B

{
f(x) +

m∑
i=1

λigi(x, ui)

}
.

By construction, inf (R-P) ≥ sup (DR-P) ≥ sup (OD-P). The authors in
[4] have established, in the case of B = Rn, that robust strong duality (i.e.
inf (R-P) = max (OD-P)) holds between the problems under the Slater con-
dition whenever each gi(x, ·), i = 1, . . . ,m is a concave function with respect
to ui. In other words, optimizing under the worst case scenario in the primal
is the same as optimizing under the best case scenario in the dual (”primal
worst equals dual best”). We will establish an analogue result in Banach spaces
under some linearity properties with respect to the uncertainties.

By noticing that (R-P) is equivalent to

inf
x∈B

sup
u∈U,λ∈Rm

+

{
f(x) +

m∑
i=1

λigi(x, ui)

}
,

(R-P) and (OD-P) can be viewed as dual to each other with u playing the
role of an abstract Lagrange multiplier [29, p. 460]. So establishing the strong
duality amounts to search the existence of a saddle point of the uncertain
lagrangian

L : B × (Rm
+ × U) ∋ (x;λ, u) 7→ f(x) +

m∑
i=1

λigi(x, ui)

with respect to B × (Rm
+ × U), that is a point (x;λ, u) ∈ B × (Rm

+ × U) such
that:

L(x;λ, u) ≤ L(x;λ, u) ≤ L(x;λ, u), ∀(x;λ, u) ∈ B × (Rm
+ × U). (9)

In the sequel we say that (x;λ, u) is a solution for the robust primal-
optimistic dual (R-P) − (OD-P) pair if x is a solution for (R-P) and (λ, u)
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is a solution for (OD-P). By [29, Theorem 49.B] (x;λ, u) is a solution for
the robust primal-optimistic dual pair (R-P)− (OD-P) if and only if (x;λ, u)
satisfy (9) and in that case the robust strong duality holds, that is min (R-P) =
max (OD-P).

In the following proposition we link the existence of a saddle point to
optimality KKT-like conditions (5)–(7).

Proposition 2 Under the assumptions of Proposition 1, a point (x;λ, u) is
a saddle point of L with respect to B × (Rm

+ × U) if and only if it satisfies
(5)–(7).

Proof Suppose that (x, λ, u) satisfy (9) then by [29, Theorem 49.B] x is a
solution (R-P) and (λ, u) is a solution to (OD-P) so (5) is satisfied. From
the right hand of (9), x is a minimizer of L(·, λ, u) and consequently 0 ∈
∂xL(x, λ, u) = ∂f(x) +

∑m
i=1 λi∂xgi(x, ui), that is (6) is satisfied. It remains

to show (7). Consider the no trivial case where λj > 0. Again from the left-

hand side of (9) and by choosing λ such that λj =
λj

2 and zero otherwise,

we get
λj

2 gj(x, uj) ≥ 0 which combined with supuj∈U gj(x, uj) ≤ 0 leads to

gi(x, uj) = 0. Hence (7) is satisfied. Consider now a point (x, λ, u) satisfying
(5)–(7). From (6) there exist d ∈ ∂f(x), di ∈ ∂xgi(x, ui) for i = 1, . . . ,m such
that

d+

m∑
i=1

λidi = 0.

Moreover, we have for all x ∈ X

f(x)− f(x) ≥ ⟨x− x, d⟩,
g(x, ui)− g(x, ui) ≥ ⟨x− x, di⟩, i = 1, . . . ,m.

Multiplying by λi (≥ 0) appropriately and summing up all these inequalities,

f(x) +

m∑
i=1

λig(x, ui)− (f(x) +

m∑
i=1

λig(x, ui)) ≥ ⟨x− x, d+

m∑
i=1

λidi⟩ = 0

that is, L(x;λ, u) ≤ L(x;λ, u) for all x ∈ B. On the other hand, for any u ∈ U
and λ ∈ Rm

+ . By (5) then (7)

f(x) +

m∑
i=1

λigi(x, uj) ≤ f(x) = f(x) +

m∑
i=1

λigi(x, uj)

that is, L(x;λ, u) ≤ L(x;λ, u) for all (λ, u) ∈ Rm
+ × U . ⊓⊔
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4 An uncertain representer theorem

In the absence of uncertainty i.e. Ki reduced to a single element xi i =
1, . . . ,m, it is shown in [15] that, although posed in an infinite-dimensional
space, the optimal solution depends only on the metric relations between the
data points. In other words, the problem should not depend on the ambient
space in which the data are embedded (such property is known as the Repre-
senter Theorem in Hilbert space setting). We shall prove a similar uncertain
Representer Theorem in the sense that the optimal solution depends on some
realisation of the uncertainty.

We introduce the following notation

– I+ = {i : yi = +1}, I− = {i : yi = −1} and I = I− ∪ I+,
– K =

∏m
i=1 Ki,

– K◦ = co

(⋃
i∈I◦

Ki

)
, ◦ ∈ {+,−} (co(A) refers to convex hull of A)

Note that K◦ is given by

K◦ =

{∑
i∈I◦

αixi : xi ∈ Ki, 0 ≤ αi ≤ 1, i ∈ I◦ and
∑
i∈I◦

αi = 1

}

and it is weakly compact as soon as each Ki is weakly compact [2, Lemma
5.14]. Moreover we need to introduce the (normalized) duality mapping [10,
Definition 4.1] M : X → 2X

∗
defined by

M(x) = {x∗ ∈ X∗; ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}. (10)

The duality mapping serves as a replacement for the isomorphism H to H∗ in
the Hilbert case. It is worth noting that ∂( 12∥ · ∥

2)(x) = M(x).
We are now able to state the following uncertain Representer Theorem for

(R-SVM).

Theorem 1 If the uncertainty sets Ki, i = 1, . . . ,m, are convex and weakly
compact and

K+ ∩K− = ∅, (11)

then (R-SVM) admits at least one solution. If X∗ is strictly convex then w is
unique. Moreover, (w, b) is a minimizer to (R-SVM) if and only if there exist
λ ∈ Rm

+ and x ∈ K such that

max
xi∈K

(1− yi(⟨xi, w⟩+ b)) ≤ 0 i = 1, . . . ,m, (12)

w ∈ M(

m∑
i=1

yiλixi), (13)

n∑
i=1

yiλi = 0, (14)

λi(1− yi(⟨xi, w⟩+ b)) = 0 i = 1, . . . ,m. (15)
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Note that X∗ is strictly convex iff for all w1, w2 ∈ X∗, w1 ̸= w2, ∥w1∥ =
∥w2∥ = 1, one has ∥λw1 + (1 − λ)w2∥ < 1, ∀λ ∈]0, 1[. In terms of supporting
hyperplanes, this property may be expressed as: distinct boundary points of the
closed unit ball have distinct supporting hyperplanes. This property is equiva-
lent to say that X is smooth [3, Theorem 1.101], that is if for every x ̸= 0 there
exists a unique x∗ such that ∥x∗∥ = 1 and ⟨x, x∗⟩ = ∥x∥ or in other words
there is exactly one supporting hyperplane through each boundary point of
the closed unit ball.

Proof Given another Banach space F , we will use in the proof the fact that
(X×F )∗ is homeomorphic to X∗×F ∗ via the linear application l : X∗×F ∗ ∋
(h, k) 7→ h × k ∈ (X × F )∗, where (h × k)(x, y) = h(x) + k(y) and X × F is
endowed with the product norm ∥(x, y)∥ = ∥x∥X + ∥y∥F . Let us define the
functions f , gi andGi by f(w, b) = 1

2∥w∥
2 and gi(w, b, xi) = 1−yi(⟨x,w⟩X∗+b)

and G(w, b) = supxi∈Ki
gi(w, b, xi). Let us first show that (11) implies that the

Slater condition is satisfied and at the same time the feasible set is not empty.
Since K− and K+ are weakly compact and disjoint, by [19] they can be strictly
separated. More precisely there exists w ∈ X∗ such that infx∈K+

⟨x,w⟩ >
supx∈K−

⟨x,w⟩. Let α, β such that infx∈K+
⟨x,w⟩ > α > β > supx∈K−

⟨x,w⟩.
Set w0 = 2w

α−β and b0 = −α+β
α−β then gi(w0, b0) < 0, i = 1, . . . ,m. The objective

function f is weakly* lower-semicontinuous and coercive on X∗. The feasible
set ∩i∈I ∩xi∈Ki {(w, b) ∈ X∗ × R : gi(w, b, xi) ≤ 0} is weakly* closed because
g(·, ·, xi) is weakly* continuous. This guarantees the existence of a solution [10,
Corollary 1.8.]. The feasible set is convex and the objective function (12∥ · ∥

2)
is convex so the set of the minimizers is convex. Given two minimisers w1 and
w2, we have ∥w1∥ = ∥w2∥ = ∥w1+w2

2 ∥. When X∗ is strictly convex this is
possible only if w1 = w2, which ensures the uniqueness of w.

We have ∂w,bgi(w, b, xi) = {(−yixi,−yi)} and ∂f(w, b) = {(s, 0) : s ∈
M(w)}. Applying Proposition 1 and remarking that

∑m
i=1 yiλixi ∈ M(w) is

equivalent to w ∈ M(
∑m

i=1 yiλixi) ends the proof. ⊓⊔

In the Lp case, 1 < p < +∞, the duality mapping is single-valued [10, Corol-
lary 4.10] and we obtain the following corollary as in [15].

Corollary 1 In the particular case of X = Lp(Ω), 1 < p < +∞, the (R-SVM)

separating hyperplane admits the expansion w =
|∑p

i=1 λixi|p−1
sign(

∑p
i=1 λixi)

∥
∑p

i=1 λixi∥p−2
∈

Lq(Ω) (with 1
p + 1

q = 1 and equality in Lq sense).

5 Duality and geometry in Robust SVM classifiers

It is shown in [8] that (SVM) is equivalent to following C-Margin formulation:

(CM)

min
w∈X∗

1
2∥w∥

2 − (α− β)

s.t. ⟨xi, w⟩ ≥ α, i ∈ I+,
⟨xi, w⟩ ≤ β, i ∈ I−.
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whose dual is the problem of finding the closest points in the convex hull of
each class. To (CM) we associate the robust version

(R-CM)

min
w∈X∗

1
2∥w∥

2 − (α− β)

s.t. min
xi∈Ki

⟨xi, w⟩ ≥ α, i ∈ I+,

max
xi∈Ki

⟨xi, w⟩ ≤ β, i ∈ I−.

Like (R-SVM), the problem (R-CM) admits the following Representer The-
orem, the proof of which is identical to Theorem 1 and therefore omitted.

Theorem 2 If the uncertainty sets Ki, i = 1, . . . ,m, are convex and weakly
compact and K+ ∩K− = ∅, then (R-CM) admits at least one solution. More-
over, (w,α, β) is a minimizer to (R-CM) if and only if there exists λ ∈ Rm

+

and x ∈ K such that

max
xi∈Ki

(α− ⟨xi, w⟩) ≤ 0, i ∈ I+,

max
xi∈Ki

(⟨xi, w⟩ − β) ≤ 0, i ∈ I−,

w ∈ M(

m∑
i=1

yiλixi),∑
i∈I◦

λi = 1, ◦ ∈ {+,−},

λi(α− ⟨xi, w⟩) = 0, i ∈ I+,

λi(β − ⟨xi, w⟩) = 0, i ∈ I−.

We now extend the duality relationship between (SVM) and (CM) and the
resulting geometrical interpretation [8] to their robust counterparts. Define
the uncertain Lagrangian L1 on X∗ × R× Rm

+ ×K by

L1(w, b;λ, x) =
1

2
∥w∥2 +

m∑
i=1

λi(1− yi(⟨xi, w⟩+ b))

=
1

2
∥w∥2 −

〈
m∑
i=1

λiyixi, w

〉
+

m∑
i=1

λi − b

m∑
i=1

λiyi.

Let us now take a closer look at (OD-SVM)

sup
(λ,x)∈Rm

+ ×K

inf
(w,b)∈X∗×R

L1(w, b;λ, x). (16)

Taking the subdifferential of L1 with respect to w and b yields

∂wL1(w, b, λ, x) = M(w) + {−
m∑
i=1

λiyixi}, (17)

∂bL1(w, b, λ, x) = −
m∑
i=1

λiyi. (18)
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Letting 0 belong to the subdifferentials (17) and (18) to zero gives

m∑
i=1

λiyixi ∈ M(w), (19)

m∑
i=1

λiyi = 0. (20)

Substituting (19) and (20) in (16) subject to the relevant constraints yields
the dual (OD-SVM) stated as follows

(OD-SVM)
sup

(λ,x)∈Rm
+ ×K

∑m
i=1 λi − 1

2 ∥
∑m

i=1 λiyixi∥
2

s.t.
∑m

i=1 λiyi = 0.

By the same arguments and considering L2 on X∗ ×R×R×Rm
+ ×K defined

by

L2(w,α, β;λ, x) =
1

2
∥w∥2−(α−β)+

∑
i∈I+

λi(α−⟨xi, w⟩)−
∑
i∈I−

λi(β−⟨xi, w⟩),

we get

(OD-CM)
sup

(λ,x)∈Rm
+ ×K

− 1
2 ∥
∑m

i=1 λiyixi∥
2

s.t.
∑

i∈I◦
λi = 1, ◦ ∈ {+,−}

which is not else but the problem of minimizing the (squared) distance between
the two convex hulls K+ and K−.

The following theorem states that (R-SVM) and (R-CM) are equivalent.

Theorem 3 Assume that the uncertainty sets Ki, i = 1, . . . ,m, are convex
and weakly compact and K+ ∩K− = ∅, then

1. If (w, b;λ, x) is a solution to the pair (R-SVM)− (OD-SVM), then(
2w∑m
i=1 λi

,
2(1− b)∑m

i=1 λi

,
2(−1− b)∑m

i=1 λi

;
2λ∑m
i=1 λi

, x

)

is a solution to the pair (R-CM)− (OD-CM).
2. If (w,α, β;λ, x) is a solution to the pair (R-CM)− (OD-CM) then(

2w

α− β
,−α+ β

α− β
;

2λ

α− β
, x

)
is a solution to the pair (R-SVM)− (OD-SVM).
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Proof We use Proposition 2 to link the saddles points of L1 and L2. Let us
first observe that under the assumptions of the theorem,

∑m
i=1 λi ̸= 0 and

α − β ̸= 0. Suppose that (w,α, β;λ, x) is a saddle point of L2, then for all
(w,α, β;λ, x) ∈ X × R× R× Rm

+ ×K we have

1

2
∥w∥2 − (α− β) +

∑
i∈I+

λi(α− ⟨xi, w⟩)−
∑
i∈I−

λi(β − ⟨xi, w⟩)

≤ 1

2
∥w∥2 − (α− β) +

∑
i∈I+

λi(α− ⟨xi, w⟩)−
∑
i∈I−

λi(β − ⟨xi, w⟩)

≤ 1

2
∥w∥2 − (α− β) +

∑
i∈I+

λi(α− ⟨xi, w⟩)−
∑
i∈I−

λi(β − ⟨xi, w⟩).

In particular, by choosing (α−β
2 )w, α−β

2 (1− b),−α−β
2 (1+ b) and α−β

2 λ instead
of w, α, β and λ respectively we get that for all (w, b;λ, x) ∈ X ×R×Rm

+ ×K

1

2
∥w∥2 − (α− β) +

∑
i∈I+

λi

(
α− β

2

)
(α− ⟨xi, w⟩)

−
∑
i∈I−

λi

(
α− β

2

)
(β − ⟨xi, w⟩)

≤ 1

2
∥w∥2 − (α− β) +

∑
i∈I+

λi(α− ⟨xi, w⟩)−
∑
i∈I−

λi(β − ⟨xi, w⟩)

≤ 1

2

∥∥∥∥(α− β

2

)
w

∥∥∥∥2 − (α− β
)

+
∑
i∈I+

λi

(
α− β

2

)
(1− b− ⟨xi, w⟩) +

∑
i∈I−

λi

(
α− β

2

)
(1 + b+ ⟨xi, w⟩).

Dividing by (α−β
2 )2 yields

1

2

∥∥∥∥( 2w

α− β

)∥∥∥∥2 + ∑
i∈I+

λi

(
2α

α− β
−
〈
xi,

2w

α− β

〉)

−
∑
i∈I−

λi

(
2β

α− β
−
〈
xi,

2w

α− β

〉)

≤ 1

2

∥∥∥∥( 2w

α− β

)∥∥∥∥2 + ∑
i∈I+

2λi

α− β

(
2α

α− β
−
〈
xi,

2w

α− β

〉)

−
∑
i∈I−

2λi

α− β

(
2β

α− β
−
〈
xi,

2w

α− β

〉)
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≤ 1

2
∥w∥2 +

∑
i∈I+

2λi

α− β
(1− b− ⟨xi, w⟩) +

∑
i∈I−

2λi

α− β
(1 + b+ ⟨xi, w⟩) .

By remarking that 2α
α−β

= 1 + α+β

α−β
and 2β

α−β
= −1 + α+β

α−β
it follows

L1

(
2w

α− β
,−α+ β

α− β
;λ, x

)
≤ L1

(
2w

α− β
,−α+ β

α− β
;

2λ

α− β
, x

)
≤ L1

(
w, b;

2λ

α− β
, x

)
which means that the point

(
2w
α−β

,−α+β

α−β
; 2λ
α−β

, x
)

is a saddle point of L1.

Conversely, consider a saddle point (w, b;λ, x) of L1, that is for all (w, b;λ, x) ∈
X × R× Rm

+ ×K

L1(w, b;λ, x) ≤ L1(w, b;λ, x) ≤ L1(w, b;λ, x).

Like before by choosing
∑m

i=1 λi

2 w,
∑m

i=1 λi

2 (α − β) and
∑m

i=1 λi

2 λ instead of w,

b and λ and then dividing by (
∑m

i=1 λi

2 )2 we obtain

L2

(
2w∑m
i=1 λi

,
2(1− b)∑m

i=1 λi

,
2(−1− b)∑m

i=1 λi

;λ, x

)

≤ L2

(
2w∑m
i=1 λi

,
2(1− b)∑m

i=1 λi

,
2(−1− b)∑m

i=1 λi

;
2λ∑m
i=1 λi

, x

)

≤ L2

(
w,α, β;

2λ∑m
i=1 λi

, x

)

which means that the point
(

2w∑m
i=1 λi

, 2(1−b)∑m
i=1 λi

, 2(−1−b)∑m
i=1 λi

; 2λ∑m
i=1 λi

, x
)
is a saddle

point of L2. ⊓⊔

6 Game theoretical interpretation

Based on geometrical properties of class separation in the dual space, a non-
cooperative game formulation is given for SVM in [12]. In this section we
formulate the problem (OD-CM) as a Nash equilibrium problem for a two-
player game. In this game, each player chooses one point from its set and gets
a payoff given by the distance between its associated set and an hyperplane
defined through the duality mapping that is located at the middle of the
segment joining the points chosen by the two players. One may find an interest
in such formulation in applications where data privacy is crucial. Indeed, as
each player only has knowledge of its own data points, separation can be
carried out in a distributed manner where data privacy is preserved.

Given two sets A,B ⊂ X we denote the distance between A and B by
dist(A,B) = infx∈A,y∈B ∥x−y∥. When A = {x}, we use the simplified notation
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dist(x,B). The distance from a point to an hyperplane is given by [15, Lemma
1]

dist(x0, {x ∈ X : ⟨x,w⟩ − c = 0}) = |⟨x0, w⟩ − c|
∥w∥

. (21)

Moreover, the set of nearest points in A to x ∈ X \ A is denoted PA(x) =
argminy∈A∥x − y∥. Suppose that X is smooth which imply that the duality
mapping M is single-valued [10, Corollary 4.5].

Consider the following two players game. The player i picks a point xi in
the convex set Ci, i ∈ {1, 2}. In the context above, C1 (respectively C2) could
represent K+ (respectively K−). Then the unique point w of M(x1 − x2) is
used to define the hyperplane H(x1, x2) := {x ∈ X : ⟨w, x⟩ = ⟨w, x1+x2

2 ⟩}.
This hyperplane is halfway between x1 and x2. Indeed

dist(x1, H(x1, x2)) =

∣∣⟨w, x1⟩ − ⟨w, x1+x2

2 ⟩
∣∣

∥w∥

=
|⟨w, x1 − x2⟩|

2∥w∥

=
∥x1 − x2∥

2
.

Similarly, d(x2, H(x1, x2)) =
∥x1−x2∥

2 . The payoff is defined by

vi(x1, x2) := dist(H(x1, x2), Ci), i ∈ {1, 2}.

If X is a Hilbert space then the hyperplane is defined by

H(x1, x2) = {x ∈ X : ⟨x1 − x2, x− x1 + x2

2
⟩ = 0}.

This game, denoted by G, can be interpreted as if each player was trying
to ”push” the hyperplane further to himself. The payoff function vi measures
how far the hyperplane is to the player.

A point (x1, x2) is called a Nash Equilibrium (NE) for this game iff

x1 ∈ argmaxx1∈C1
v1(x1, x2) and x1 ∈ argmaxx2∈C2

v1(x1, x2).

We state the main result of this section.

Theorem 4 Let C1 and C2 be two closed convex sets in a reflexive and smooth
Banach space X. If C1 ∩ C2 = ∅, then (x1, x2) is (NE) for G iff ∥x1 − x2∥ =
dist(C1, C2). Moreover, in the that case the payoffs for both players are equal
to 1

2∥x1 − x2∥.

The following lemmas will be used in the proof of Theorem 4.

Lemma 1 1. Let w ̸= 0 be an element from X∗ and H the hyperplane H =
{x : ⟨x,w⟩ = c}. Then for each pair of points x1, x2 ∈ X strictly separated
by H, we have

∥x1 − x2∥ ≥ dist(x1, H) + dist(x2, H).
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2. Let C ⊂ X be a closed convex set and x0 ∈ X. Suppose that there exists
x⋆ ∈ PC(x0) such that M(x0 − x⋆) = {w⋆} then

⟨x− x⋆, w⋆⟩ ≤ 0, ∀x ∈ C. (22)

Proof Since x1 and x2 are strictly separated, one of them is located in the
positive half-space while the other one is located in the negative half-space.
Suppose for example that ⟨x1, w⟩ < c and ⟨x2, w⟩ > c. By (21),

dist(x1, H) + dist(x2, H) =
−⟨x1, w⟩+ c

∥w∥
+

⟨x2, w⟩ − c

∥w∥

=
−⟨x2 − x1, w⟩

∥w∥

≤ ∥x2 − x1∥∥w∥
∥w∥

.

To prove the second item, let x ∈ C and θ ∈ [0, 1] then by the convexity of C,
θx+ (1− θ)x⋆ ∈ C. We have

0 ≥ 1

2
∥x0 − x⋆∥2 −

1

2
∥x0 − (θx+ (1− θ)x⋆)) ∥2

=
1

2
∥x0 − x⋆∥2 −

1

2
∥x0 − x⋆ − θ(x− x⋆)∥2

≥ ⟨θ(x− x⋆), wθ⟩

where wθ ∈ M(x0 − x⋆ − θ(x − x⋆)). By dividing by θ and letting θ to 0, we
obtain the desired inequality since the duality mapping M is norm to weak*
upper-semicontinuous [10, Theorem 4.12]. ⊓⊔

Lemma 2 Let C1, C2 two closed convex sets of X.

1. Let x1 ∈ C1 and x2 ∈ C2 such that M(x2 − x1) = {w⋆}, then

∥x1 − x2∥ = dist(C1, C2) ⇐⇒ x1 ∈ PC1(x2) and x2 ∈ PC2(x1).

Moreover, in that case

dist(H,C1) = dist(H,C2) =
1

2
∥x1 − x2∥,

where H is the hyperplane defined by {x ∈ X : ⟨w⋆, x⟩ = ⟨w⋆,
x1+x2

2 ⟩}.

Proof The direct sense is obvious. Consider the reverse one. Since M(x1−x2)
is reduced to the single element −w⋆, by Lemma 1 we have

⟨y1 − x1, w⋆⟩ ≤ 0, ∀y1 ∈ C1, (23)

⟨y2 − x2,−w⋆⟩ ≤ 0, ∀y2 ∈ C2. (24)

By Lemma 1 again, for all y1 ∈ C1, y2 ∈ C2 we have

∥y1 − y2∥ ≥ dist(y1, H) + dist(y2, H). (25)
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Moreover, we have

dist(y1, H)− 1

2
∥x1 − x2∥ =

⟨y1 − x1+x2

2 , w⋆⟩
∥w⋆∥

− ⟨x1 − x2, w⋆⟩
2∥w⋆∥

≥ ⟨y1 − x1, w⋆⟩
∥w⋆∥

≥ 0 (by (23)) (26)

and in the same manner we obtain

dist(y2, H)− 1

2
∥x1 − x2∥ ≥ 0. (27)

Summing (25),(26) and (27) we get ∥y1− y2∥ ≥ ∥x1−x2∥ for all y1 ∈ C1, y2 ∈
C2 which proves that dist(C1, C2) = ∥x1 − x2∥.
By (26) (respectively (27)), we have dist(H,C1) ≥ 1

2∥x1 − x2∥ (respectively
dist(H,C2) ≥ 1

2∥x1−x2∥) and the equality is achieved by x1 (respectively x2)
since dist(H,x1) =

1
2∥x1 − x2∥ (respectively dist(H,x2) =

1
2∥x1 − x2∥). ⊓⊔

Proof (of Theorem 4) Suppose that (x1, x2) is a (NE). Let x1 ∈ PC1(x2) and
x2 ∈ PC2

(x1), their existence is ensured by the reflexivity of X [7]. By Lemma
1 we have

∥x2 − x1∥ ≥ dist(x2, H(x1, x2)) + dist(x1, H(x1, x2))

≥ 1

2
∥x2 − x1∥+ dist(C1, H(x1, x2))

≥ 1

2
∥x2 − x1∥+ dist(C1, H(x1, x2)) (28)

≥ 1

2
∥x2 − x1∥+

1

2
∥x2 − x1∥. (29)

The inequality (28) comes from the fact that (x1, x2) is a (NE) while (29)
from Lemma 1 applied with two convex sets C1 and {x2}. We obtain from (29)
∥x2−x1∥ ≤ ∥x2−x1∥ which means that x1 ∈ PC1

(x2). Proceeding by the same
way we obtain x2 ∈ PC2

(x1), that is by Lemma 2 ∥x1 − x2∥ = dist(C1, C2).
Conversely, let(x1, x2) such that ∥x1 − x2∥ = dist(C1, C2) and suppose by
contradiction that (x1, x2) is not (NE). Then there exist x2 ∈ C2 (or x1 ∈ C1)
such that

dist(H(x1, x2), C2) > dist(H(x1, x2), C2) =
1

2
∥x1 − x2∥. (30)

By Lemma 1 we have

∥x1 − x2∥ ≥ dist(x1, H(x1, x2)) + dist(x2, H(x1, x2))

=
1

2
∥x1 − x2∥+ dist(x2, H(x1, x2))

≥ 1

2
∥x1 − x2∥+ dist(C2, H(x1, x2))

>
1

2
∥x1 − x2∥+

1

2
∥x1 − x2∥ (by (30)).
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that is, ∥x1 − x2∥ > ∥x1 − x2∥. This contradicts the fact that x1 and x2 are
the nearest neighbours. ⊓⊔

Remark 2 Observe that the developments above apply for any convex sets C1

and C2. The sets may not only be convex hulls of data points (K+ and K−)
but may arise from other contexts.

Algorithmic issues

In this part, we propose a numerical algorithm to solve the robust data sep-
aration problem based on previous results. The principle is based on the al-
ternating projection method [11,9] to find the minimum distance between the
two convex hulls corresponding to the classes. The algorithm can be stated
as follows: staring from any x0

1 ∈ C1 (or equivalently x0
2 ∈ C2), compute the

sequences:
xn
2 = PC2

(xn
1 ) and xn+1

1 = PC1
(xn

2 ). (31)

Finding the projection PCi
(x) corresponds to solving a quadratic optimiza-

tion problem. For the finite dimensional case, when the data uncertainty sets
are polytopes, this problem is linearly constrained where as in the case of
ellipsoidal uncertainties, the problem is quadratically constrained.

It is known that Algorithm (31) converges and moreover the convergence
is finite when C1 and C2 are polytopes [9, Proposition 17].

In the following lemma, we show that computing PCi
(xn

j ) at each iteration
n corresponds to finding the best response for player i when the strategy of
player j is fixed to xn

j .

Lemma 3 If player j chooses the strategy x̄j, the best response strategy for
the other player i is given by the projection of x̄j onto Ci.

Proof Without loss of generality assume that i = 2. Suppose for the sake of
contradiction that PC2

(x̄1), noted x̄2, is not a best response strategy for player
2. Then there exists x2 ∈ C2 such that

dist(H(x1, x2), C2) > dist(H(x1, x2), C2) =
1

2
∥x̄1 − x̄2∥. (32)

Since x̄1 and x̄2 are separated by the hyperplane H(x1, x2), by Lemma 1 we
have

∥x̄1 − x̄2∥ ≥ dist(x̄1, H(x̄1, x2)) + dist(x̄2, H(x̄1, x2))

=
1

2
∥x̄1 − x2∥+ dist(x̄2, H(x̄1, x2))

≥ 1

2
∥x̄1 − x2∥+ dist(C2, H(x̄1, x2))

>
1

2
∥x̄1 − x2∥+

1

2
∥x̄1 − x̄2∥ (by (32)).

So, ∥x1 − x2∥ > ∥x1 − x2∥ which contradicts the fact that x̄2 ∈ PC2
(x̄1). ⊓⊔
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The lemma 3 combined with Theorem 4 ensures that Algorithm (31) con-
verges towards the Nash equilibrium of the game G.

7 Numerical experiments

In this section, we provide some experiments to illustrate numerically the
relationship between the search for a Nash equilibrium in the game defined
above and the optimal separation using SVM.

The experiments are conducted on 2D samples in order to facilitate the
visualization of data. For simplicity, we also considered that the data samples
are not subject to uncertainty. This can be done without loss of generality in
the illustrations that are provided. Indeed, in the following, when uncertainties
are considered, the convex hulls are enlarged by the uncertainty radius at the
boundary of the convex hull. New convex hull simplices have to be considered
but insights and illustrations discussed below are similar.
In the experiments, m takes the values of 100, 1000 and 10000. Using Python

[23], for each value of m, the convex hull of the two clusters C1 and C2 are
computed using the ConvexHull method of the scipy.spatial [25] package.
The optimal separation given by the Nash equilibrium in Theorem 4 is then
computed and shown on the second row of Figure 1. In parallel, the optimal
separation found by the SVM method is found using the SVC method of the
scikit-learn [20] package. The optimal separation hyperplane is shown on
the third row of Figure 1. One can clearly see that the hyperplane computed
through the game theoretic method and the SVM method are identical. This
confirms and illustrates the duality between the game theoretic and the SVM
formulation of the data separation problem. Figure 1 also provides in the first
row, an intermediate situation in which the utiliy of each player (distance to
the hyperplane) is computed but not optimal. The Nash equilibrium is not
reached and it can be seen clearly that the optimal separating hyperplane has
not been found.

8 Extension to the non separable case

Let us now suppose that K− and K+ are non-linearly separable. A linear
robust soft margin SVM training can be formulated by using slack variables
which measure the degree of misclassification of the observations leading to
the following relaxed version

(R-SVM(C))
min

(w,b,ξ)∈X∗×R×Rm
+

1
2∥w∥

2 + C
∑m

i=1 ξi

s.t. min
xi∈Ki

yi(⟨xi, w⟩+ b) ≥ 1− ξi, i = 1, . . . ,m,

where C > 0 is a problem specific constant controlling the trade-off between
margin (generalisation) and classification. The optimistic counterpart of its
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Intermediate situation where a Nash equilibrium is not reached

100 samples 1000 samples 10000 samples

Nash equilibirum is reached

100 samples 1000 samples 10000 samples

Corresponding optimal SVM separation

100 samples 1000 samples 10000 samples

Fig. 1 Separation of clusters of randomly generated 2D samples

corresponding uncertain dual is

(OD-SVM(C))

sup
(λ,x)∈Rm

+ ×K

∑m
i=1 λi − 1

2 ∥
∑m

i=1 λiyixi∥
2

s.t.
∑m

i=1 λiyi = 0,
λi ≤ C, i = 1, . . . ,m.
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In a similar way we formulate the relaxed version of (R-CM)

(R-CM(D))

min
(w,α,β,ξ)∈X∗×R×R×Rm

+

1
2∥w∥

2 − (α− β) +D
∑m

i=1 ξi

s.t. min
xi∈Ki

⟨xi, w⟩ ≥ α− ξi, i ∈ I+,

max
xi∈Ki

⟨xi, w⟩ ≤ β + ξi, i ∈ I−

whose optimistic counterpart of its corresponding uncertain dual is

(OD-CM(D))

sup
(λ,x)∈Rm

+ ×K

− 1
2 ∥
∑m

i=1 λiyixi∥
2

s.t.
∑

i∈I◦
λi = 1, ◦ ∈ {+,−},

λi ≤ D, i = 1, . . . ,m.

This is in fact not else but the problem of minimizing the (squared) distance
between the two convex sets

K◦(D) =

{∑
i∈I◦

αixi : xi ∈ Ki, 0 ≤ αi ≤ D, i ∈ I◦ and
∑
i∈I◦

αi = 1

}
, ◦ ∈ {−,+},

corresponding to Reduced Convex Hull following the terminology of [8]. Under
this form, it is clear that reducing D sufficiently will ensure separability of
the problem. The results established in the separable case can, by almost
similar arguments, be extended to this non-separable case. We can show that
optimizing R-SVM(C) is equivalent to optimizing R-CM(D). The parameters
C and D are related by multiplication of a constant factor as shown by the
following theorem.

Theorem 5 Assume that the uncertainty sets Ki, i = 1, . . . ,m, are convex
and weakly compact, then

1. If (w, b, ξ;λ, x) is solution for (R-SVM(C))− (OD-SVM(C)), with w ̸= 0,
then (

2w∑m
i=1 λi

,
2(1− b)∑m

i=1 λi

,
2(−1− b)∑m

i=1 λi

,
2ξ∑m
i=1 λi

;
2λ∑m
i=1 λi

, x

)
is a solution to (R-CM( 2C∑m

i=1 λi
))− (OD-CM( 2C∑m

i=1 λi
)).

2. If (w,α, β, ξ;λ, x) is solution to (R-CM(D))− (OD-CM(D)), with w ̸= 0,
then (

2w

α− β
,−α+ β

α− β
,

2ξ

α− β
;

2λ

α− β
, x

)
is a solution for (R-SVM( 2D

α−β
))− (OD-SVM( 2D

α−β
)).

This theorem has been established in [8] in the finite dimensional case when
data are not subject to uncertainties. The authors also provide geometrical
insights of the theorem. The interpretation remains valid for the uncertain
case and also the infinite setting.
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9 Conclusion

This theoretical analysis is an additional step towards the generalization of
formulations of binary classification problems in Banach spaces. In [15], it
had already been shown that classical SVM formulations nicely extends to
Banach spaces by the use of semi-inner products. The authors had shown that
most of hard margin separation results in Hilbert spaces remain valid in the
non Euclidean setting when considering an appropriate alternative to inner
products. In our study, we show that using the duality product, we not only
also retrieve the binary classification formulation but robust formulations can
also be derived when data uncertainties lie in Banach spaces. Furthermore,
using the classification formulation based on the duality product, we show
that game theoretic interpretations can also be made. This bridge between
game theory and classification of complex data (represented in Banach spaces
rather than Hilbert spaces) opens new opportunities for exploiting theoretical
and numerical results from both worlds.
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