
HAL Id: hal-04431914
https://enac.hal.science/hal-04431914

Preprint submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

MIQCQP reformulation of the ReLU neural networks
Lipschitz constant estimation problem

Mohammed Sbihi, Sophie Jan, Nicolas Couellan

To cite this version:
Mohammed Sbihi, Sophie Jan, Nicolas Couellan. MIQCQP reformulation of the ReLU neural networks
Lipschitz constant estimation problem. 2024. �hal-04431914�

https://enac.hal.science/hal-04431914
https://hal.archives-ouvertes.fr

MIQCQP reformulation of the ReLU neural networks Lipschitz

constant estimation problem

Mohammed Sbihi∗1, Sophie Jan†2, and Nicolas Couellan‡1,2

1Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France
2Institut de Mathématiques de Toulouse UMR 5219, Université de Toulouse; CNRS,

UPS, F-31062 Toulouse Cedex 9, France.

Abstract

It is well established that to ensure or certify the robustness of a neural network, its Lipschitz

constant plays a prominent role. However, its calculation is NP-hard. In this note, by taking

into account activation regions at each layer as new constraints, we propose new quadratically

constrained MIP formulations for the neural network Lipschitz estimation problem. The solutions

of these problems give lower bounds and upper bounds of the Lipschitz constant and we detail

conditions when they coincide with the exact Lipschitz constant.

1 Introduction

Several studies have demonstrated the prominent role of the Lipschitz constant in the robustness of
neural networks. It has been shown for example that it is related to generalization bounds of neural
network classifiers [11, 1]. The Lipschitz constant expresses also the maximum variation of the neural
network outputs and can therefore be used to derive robustness certificates when inputs are subject to
random or adversarial perturbations [10]. Furthermore, it has been used as a regularization term of the
neural network training loss function to compute optimal neural network weights that achieve better
robustness [5]. Alternatively, constraints on the Lipschitz constant have been added in the training
loss minimization problem to develop 1-Lipschitz neural networks [2].

The exact calculation of the Lipschitz constant of a neural network is a difficult problem. Even in
the simple case of one hidden layer neural network, it can be shown that the problem is NP-hard [10].
Therefore, an estimation of the constant in the form of upper bounds (sometimes lower bounds) is
usually sought. However, in the common case of ReLU networks, computing tight estimates of the
constant is also an NP-hard problem (see Theorem 4 in [9]). Several approaches have been proposed
in the literature. They vary by the scope of the input being considered (global or local Lipschitz
regularity), the order p of Lp-Lipschitz regularity, or the underlying estimation method.

Among these various approaches, Lipschitz certificates via semidefinite programming (SDP) are
proposed in [4]. By exploiting slope restriction properties of common activation functions, incremental
quadratic constraints are formulated and the global L2-Lipschitz constant problem is then expressed
as a SDP. While it provides a nice convex formulation of the constant estimation, its application to
real life neural networks architectures is limited by the computational complexity of available methods
for solving SDP. Alternatively, in the case of ReLU networks, authors have considered mixed integer
programming (MIP) approaches to derive exact or upper bounds of the Lipschitz constant. Indeed,

∗mohammed.sbihi@recherche.enac.fr
†sophie.jan@math.univ-toulouse.fr
‡nicolas.couellan@recherche.enac.fr

1

in [9], by showing that a ReLU network is a composition of MIP-encodable components and therefore
itself MIP-encodable, the authors formulate the exact calculation of the local Lipschitz constant of
ReLU networks as a MIP. In the worst case, MIP problems have exponential time complexity, however,
in practice they are often solved in reasonable time.

In this note, we propose new quadratically constrained MIP formulations for the neural network
Lipschitz estimation problem. First, by taking into account activation regions at each layer as new con-
straints, we derive three new MIP formulations whose solutions give a lower bound L of the Lipschitz
constant, a sequence {Lǫ}ǫ>0 of lower bounds converging to L and an upper bound L̄. We further show
that L and L̄ coincide and are equal to the true Lipschitz constant if the neural network is in general
position as defined in [9]. We also show that, except on a set of network parameters of Lebesgue mea-
sure 0, L coincide with L̄. Next, by reformulating the activation constraints as quadratic constraints,
we propose equivalent Mixed Integer Quadratically Constrained Quadratic Program (MIQCQP) for-
mulations. These new constrained problems have the benefit of reducing the search space in the
branching phase involved in the MIP solving process. Furthermore, the specific quadratic structure
of the objective and the constraints can also be exploited in the bounding phase of MIP solvers using
quadratic convex relaxations and linearizations strategies as explained in [3]. However, the study of
the numerical solutions of these problems goes beyond the scope of this note that was only intended to
explain the derivation of the MIQCQP formulation of the neural network Lipschitz estimation problem.

The note is organized in three sections. Section 2 introduces the general problem of calculating the
Lipschitz constant L(f,X) of a neural network f over an input set X . Section 3 details the derivation
of lower and upper bounds for L(f,X). Finally, Section 4 provides Mixed Integer Quadratically
Constrained Quadratic Program reformulations for the problem of estimating L(f,X) using the bounds
obtained in Section 3.

2 Problem statement

We consider ReLU Multi-Layer-Perceptron function f : Rn0 → R
nL , that is a composition of affine

operators and element-wise ReLU nonlinearities. More precisely, it may be encoded by:

f(x) = TL ◦ ρL−1 ◦ TL−1 ◦ · · · ◦ ρ1 ◦ T1(x)

where Tk : Rnk−1 ∋ x 7→ Mkx + bk ∈ R
nk is an affine function and ρk : Rnk → R

nk is the ReLU
operator applied element-wise. We denote by θk = Tk ◦ ρk−1 ◦ Tk−1 ◦ · · · ◦ ρ1 ◦ T1 the pre-activation
output of the k-th layer and by θik the i-th component of θk (corresponding to the pre-activation of
the i-th neuron of layer k). In the following, given an element v ∈ R

n, we denote its i− th component
by vi and we denote Hadamard product between two vectors v1 and v2 by v1 ⊙ v2.

We are interested in computing the quantity

sup
x,y∈X

‖f(y)− f(x)‖

‖y − x‖
,

where X is an open subset of Rn and ‖.‖ is a norm. When this quantity is finite, we denote it by
L(f,X) and we say that f is locally Lipschitz over X . If X = R

n0 , then we denote the above quantity
L(f) and we simply say that f is (globally) Lipschitz.

3 Deriving lower and upper bounds of the Lipschitz constant

of ReLU networks

We now derive an upper and lower bounds for L(f,X) by observing [9, Theorem 1] that

L(f,X) = esssupx∈X sup
G∈J f(x)

‖G‖ (1)

2

where J f(x) is the (Clarke) generalized jacobian of f at x. Using recursively the Clarke jacobian
Chain Rule (see [8, Theorem 4]), we obtain the following bound

L(f,X) ≤ sup
x∈X

{

‖MLdiag(gL−1)ML−1 · · · diag(g1)M1‖ | gk ∈ [0, 1]nk , gik ∈ ∂ReLU(θik(x))
}

. (2)

Here ∂ReLU(x) is the subdifferential of the ReLU function:

∂ReLU(x) =

{0} if x < 0,
[0,1] if x = 0,
{1} if x > 0.

An activation pattern for the ReLU network f is an assignment to each hidden neuron of a sign 1
or 0:

(σ1, σ2, . . . , σL−1) ∈ {0, 1}n1 × {0, 1}n2 × · · · × {0, 1}nL−1.

The activation region in X corresponding to (σ1, σ2, . . . , σL−1) is

R (X ; (σ1, σ2, . . . , σL−1)) =

{

x ∈ X |

(

σi
k −

1

2

)

θik(x) > 0, ∀i ∈ {1, . . . , nk}, ∀k ∈ {1, · · · , L− 1}

}

.

When specifying an activation pattern, the signal assigned to a neuron i from the k−th layer determines
whether it is on or off for inputs in the activation region since the pre-activation of neuron is positive
(resp. negative) when σi

k = 1 (resp. σi
k = 0). Let us define Hk,i = {x ∈ R

n0 | θik(x) = 0} (for
i ∈ {1, . . . , nk}, k ∈ {1, · · · , L − 1}) which can be thought of as “bent hyperplanes”. The non-empty
activation regions is not else but the connected components of X \ ∪k,iHk,i (Lemma 2 in [6]). The
Jacobian exists and is the same for all the points belonging to the same activation pattern. The
Jacobian corresponding to a pattern (σ1, · · · , σL−1) is equal to MLdiag(σL−1)ML−1 · · · diag(σ1)M1.
We obtain the following lower bound for L(f,X):

L(f,X) ≥ sup
(σ1,σ2,...,σL−1)∈{0,1}n1+n2+···+nL−1 |R(X ;σ) 6=∅

‖MLdiag(σL−1)ML−1 · · · diag(σ1)M1‖. (3)

Denoting N(g) = ‖MLdiag(gL−1)ML−1 · · ·diag(g1)M1‖, we are thus interested in solving the fol-
lowing two optimization problems to obtain upper and lower bounds of the Lipshitz constant of the
ReLU neural network:

(U∗)

max N(g)
s.t. gik ∈ ∂ReLU(θik(x)), ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L− 1}

gk ∈ [0, 1]nk , ∀k ∈ {1, · · · , L− 1}
x ∈ X

and

(L∗)

max N(σ)
s.t. R(X ; (σ1, · · · , σL−1)) 6= ∅

σk ∈ {0, 1}nk, ∀k.

Proposition 1. For each k ∈ {1, · · · , L − 1} and each i ∈ {1, . . . , nk}, the function gik 7→ N(g) is
convex.

Proof. The function is the composition of gik 7→ MLdiag(gL−1)ML−1 · · · diag(g1)M1 which is affine and
the norm ‖.‖ which is convex, therefore it is convex [7, Proposition 2.1.5].

Proposition 2. Problem (U∗) is equivalent to the following one:

(Û)

max N(g)
s.t. gik ∈ ∂ReLU(θik(x)), ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L− 1}

gk ∈ {0, 1}nk, ∀k ∈ {1, · · · , L− 1}
x ∈ X .

3

Proof. Let g∗ denote a solution of (U∗) and ĝ a solution of (Û).
The vector ĝ is naturally feasible for (U∗) and thus

N(ĝ) ≤ N(g∗).

Now, if (g∗)ik ∈]0, 1[for some i and k, using convexity of gik 7→ N(g), there exists g, whose all com-
ponents are equal to that of g∗ except (g)ik which belongs to {0, 1}, such that N(g) ≥ N(g∗). Moreover
(g∗)ik ∈]0, 1[∩∂ReLU(θik(x)) implies that θik(x) = 0 and thus (g)ik ∈ {0, 1} is also in ∂ReLU(θik(x)).
Repeating this for all components of g∗ that are in]0, 1[, we show that there exists a solution g of (U∗)
whose components are all in {0, 1} satisfying N(g∗) ≤ N(g). Therefore, we have

N(g∗) ≤ N(g) ≤ N(ĝ).

Using Proposition 2 and the fact that gik ∈ ∂ReLU(θik(x)) is equivalent to
(

gik −
1
2

)

θik(x) ≥ 0 for
gik ∈ {0, 1}, we compute an upper bound of the Lipschitz constant by solving

(P)

max N(g)
s.t. (gik −

1
2)θ

i
k(x) ≥ 0, ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L− 1}

gk ∈ {0, 1}nk, ∀k ∈ {1, · · · , L− 1}
x ∈ X .

By the definition of the activation region, problem (L∗) can be reformulated as

(P)

max N(σ)
s.t. (σi

k − 1
2)θ

i
k(x) > 0, ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L− 1}

σk ∈ {0, 1}nk, ∀k ∈ {1, · · · , L− 1}
x ∈ X .

In order to avoid strict inequalities, we introduce for ε ≥ 0,

(P)ε

max N(σ)
s.t.

(

σi
k − 1

2

)

θik(x) ≥ ε, ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L− 1}
σk ∈ {0, 1}nk , ∀k ∈ {1, · · · , L− 1}
x ∈ X .

Observe that (P)0 corrresponds to (P).

We now introduce the following constraint sets:

C = X × {0, 1}n1+n2+...+nL−1 , (4)

Cs =

{

(x, σ) ∈ C :

(

σi
k −

1

2

)

θik(x) > 0, ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L− 1}

}

, (5)

Cε =

{

(x, σ) ∈ C :

(

σi
k −

1

2

)

θik(x) ≥ ε, ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L− 1}

}

, (6)

so that the preceeding problems can be rewritten as:

(P)

{

maxx,σ N(σ)
s.t. (x, σ) ∈ C0

}

(P)

{

maxx,σ N(σ)
s.t. (x, σ) ∈ Cs

}

(P)ε

{

maxx,σ N(σ)
s.t. (x, σ) ∈ Cε

}

.

Let L, L, Lε denote the optimal values of (P), (P) and (P)ε respectively. The following proposition
summarizes and completes the above discussion.

4

Proposition 3. We have

1. The function]0,+∞[∋ ε 7→ Lε is non-increasing and piece-wise constant.

2. limε↓0 Lε ↑ L ≤ L(f,X) ≤ L = L0.

3. If ∪i,kHi,k is Lebesgue measure negligible, then L(f,X) = L.

4. If the ReLU network f is in general position (see Definition 4 in [9]), then L(f,X) = L = L.

Proof. 1. If ε1 ≤ ε2 then Cε2 ⊂ Cε1 which implies that Lε is non increasing. Moreover, Lε belongs
to {N(σ), σ ∈ {0, 1}n1+n2+...+nL−1} which is a finite set. Hence Lε is piece-wise constant.

2. Observe that Lε ≤ L ≤ L(f,X) ≤ L = L0. To prove the remaining statement, let σ̂ an optimal
solution of (P). Then R(X ; σ̂) 6= ∅, that is there exists x̂ ∈ X such that

(

σ̂i
k − 1

2

)

θik(x̂) > 0, ∀i ∈
{1, . . . , nk}, ∀k ∈ {1, · · · , L− 1}. Define

ε̂ = min
i∈{1,...,nk},k∈{1,··· ,L−1}

(

σ̂i
k −

1

2

)

θik(x̂).

So (x̂, σ̂) ∈ Cε for all ε ≤ ε̂ and thus Lε ≥ L.

3. We can write X = (
⋃

σ R(X ;σ)) ∪ (
⋃

i,k Hi,k ∩ X). Now (1) implies

L(f,X) = esssupx∈(
⋃

σ
R(X ;σ)) sup

G∈Jf(x)

‖G‖

= sup
σ|R(X ,σ) 6=∅

N(σ)

= L.

4. By [9, Theorem 2] if the ReLU network is in general position then

J f(x) =
{

‖MLdiag(gL−1)ML−1 · · · diag(g1)M1‖ | gk ∈ [0, 1]nk , gik ∈ ∂ReLU(θik(x))
}

.

By (1) we obtain L(f,X) = L. Furthermore, if the ReLU network f is in a general position
then ∪i,kHi,k is Lebesgue measure negligible [9], which ensures the second equality using the
preceding item.

Remark 1. By [9, Theorem 3] the set of ReLU networks not in general position has Lebesgue measure
zero over the parameter space and consequently for almost all ReLU Networks we have L(f,X) = L =
L.

Corollary 1. If X = R
n0 and the bias bk, k ∈ {1, · · · , L− 1} are zero, then Lε = L for all ε > 0.

Proof. We have already established that Lε ≤ L. Let (x̂, σ̂) ∈ Cs an optimal solution of (P) and let ε >
0. Since the bias bk, k ∈ {1, · · · , L−1} are zero then for any λ > 0 we have θk(λx̂) = λθk(x̂). Therefore
we can choose λ sufficiently large so that

(

σ̂i
k − 1

2

)

θik(λx̂) > ε, ∀i ∈ {1, . . . , nk}, k ∈ {1, · · · , L − 1}
ensuring that (λx̂, σ̂) ∈ Cε and consequently Lε ≥ N(σ̂) = L.

The following simple examples illustrate the above results.

Exemple 1. For f(x) = x − 1, we trivially have L(f,X) = 1. This function can also be written
f(x) = max(x − 1, 0)−max(1− x, 0), corresponding to our formalism with

M1 =

(

1
−1

)

, M2 =
(

1 −1
)

, b1 =

(

−1
1

)

, b2 = 0.

5

With this choice, we have Lε = L = 1 for all ε > 0 and L0 = L = 2. Indeed, x = 1 is neither in
R(R;σ) nor in the feasible set of (P)ε for ε > 0, but it belongs to C0.

ε

Lε

2•

1

Exemple 2. For f(x) = max(x+ 1, 0)−max(x− 1, 0) corresponding to

M1 =

(

1
1

)

, M2 =
(

−1 1
)

, b1 =

(

−1
1

)

, b2 = 0,

we have L = 1, L(f,X) = 1 and L0 = L = 1. Moreover,

Lε =

{

1 for all 0 < ε ≤ 0.5,
0 for all ε > 0.5.

ε

Lε

1• •

0.5

4 MIQCQP reformulations

Let now consider the Lp-norm for p ∈ {1, 2,∞} and assume that X can be expressed by quadratic
constraints (e.g. a ball) or linear constraints (e.g. polyhedron).

Then let us remark that we have ρk ◦ θk(x) = σk ⊙ θk(x) for all k = 1, 2, · · ·L− 1 as soon as (x, σ)
is in one of the sets Cε, Cs or C0. By definition of θk(x), we have thus ρk ◦ θk(x) = σk ⊙ θk(x) =
σk ⊙ (Mk ◦ ρk−1 ◦ θk−1(x) + bk) for k = 2, 3, · · ·L− 1 and ρ1 ◦ θ1(x) = σ1 ⊙ (M1x + b1). Denoting
xk = ρk ◦ θk(x) we get the following bilinear relations

xk = σk ⊙ (Mkxk−1 + bk) for k = 1, 2, · · ·L− 1 with x0 = x.

Therefore, the constraints of (P)ε are equivalent to

x0 ∈ X and for all k ∈ {1, 2, . . . , L− 1},

xk = σk ⊙ (Mkxk−1 + bk),
(σk − 1

2)⊙ (Mkxk−1 + bk) ≥ ε,

σk ∈ {0, 1}nk.

The objective function of (P)ε can also be expressed, depending on the chosen Lp-norm, as

Np(σ) = ‖MLdiag(σL−1)ML−1 · · ·diag(σ1)M1‖p = sup
y,‖y‖p≤1

‖MLdiag(σL−1)ML−1 · · · diag(σ1)M1y‖p

6

and equivalently as
max

y
‖yL‖p

s.t. yk = Mkdiag(σk−1)yk−1, ∀k ∈ {2, . . . , L},
y1 = M1y0
‖y0‖p ≤ 1

where y is the collection of y0, y1, . . . , yL.
Finally, for a given p ∈ {1, 2,∞}, (P)ε is equivalent to the following problem:

(Pp)ε

max
y,σ,x

‖yL‖p

s.t. yk = Mkdiag(σk−1)yk−1, ∀k ∈ {2, . . . , L},
y1 = M1y0
xk = σk ⊙ (Mkxk−1 + bk), k = 1, 2, · · ·L− 1
(σk − 1

2)⊙ (Mkxk−1 + bk) ≥ ε, k = 1, 2, · · ·L− 1
σk ∈ {0, 1}nk , k = 1, 2, · · ·L− 1
x0 ∈ X
‖y0‖p ≤ 1

where σ is the collection of σ1, . . . , σL−1 and x is the collection of x0, x1, . . . , xL−1. Provided that
X is expressible by quadratic (or linear) constraints, the above problem can also be expressed as a
MIQCQP as shown below.

The case p = 2 In this case, (P2)ε is trivially equivalent to the following MIQCQP problem.

max
y,σ,x

‖yL‖22

s.t. yk = Mkdiag(σk−1)yk−1, ∀k ∈ {2, . . . , L},
y1 = M1y0
xk = σk ⊙ (Mkxk−1 + bk), k = 1, 2, · · ·L− 1
(σk − 1

2)⊙ (Mkxk−1 + bk) ≥ ε, k = 1, 2, · · ·L− 1
σk ∈ {0, 1}nk, k = 1, 2, · · ·L− 1
x0 ∈ X
‖y0‖22 ≤ 1.

The case p = 1 Observing that for all a ∈ R, |a| = (2λ − 1)a with λ ∈ {0, 1} and (2λ − 1)a ≥ 0,
(P1)ε is equivalent to

max
y,σ,x,ν,µ

∑nL

i=1(2µi − 1)(yL)i

s.t. yk = Mkdiag(σk−1)yk−1, ∀k ∈ {2, . . . , L},
y1 = M1y0
xk = σk ⊙ (Mkxk−1 + bk), k = 1, 2, · · ·L− 1
(σk − 1

2)⊙ (Mkxk−1 + bk) ≥ ε, k = 1, 2, · · ·L− 1
σk ∈ {0, 1}nk , k = 1, 2, · · ·L− 1
x0 ∈ X

ν ∈ {0, 1}n0

(2νi − 1)(y0)i ≥ 0, i = 1, 2, · · · , n0
∑n0

i=1(2νi − 1)(y0)i ≤ 1, i = 1, 2, · · · , n0

µ ∈ {0, 1}nL

(2µi − 1)(yL)i ≥ 0, i = 1, 2, · · · , nL.

The last constraints can be further linearized by introducing additional binary variables and using a
big-M technique. Indeed, for all x ∈ R, with |x| ≤ B, u = |x| if and only if there exists λ ∈ {0, 1} such

7

that

u ≥ x and u ≥ −x,

x ≤ B(1− λ) and x ≥ −Bλ,

u ≤ −x+ 2B(1− λ) and u ≤ x+ 2Bλ.

The first constraints imply that u ≥ |x|. The second ones ensure that if x > 0 (respectively x < 0)
then λ = 0 (respectively λ = 1). The last constraints guarantee that u ≤ |x|. Problem (P1)ε is hence
equivalent to

max
y,σ,x,u,w,ν,µ

∑nL

i=1 wi

s.t. yk = Mkdiag(σk−1)yk−1, ∀k ∈ {2, . . . , L},
y1 = M1y0
xk = σk ⊙ (Mkxk−1 + bk), k = 1, 2, · · ·L− 1
(σk − 1

2)⊙ (Mkxk−1 + bk) ≥ ε, k = 1, 2, · · ·L− 1
σk ∈ {0, 1}nk , k = 1, 2, · · ·L− 1
x0 ∈ X

ν ∈ {0, 1}n0

−1 ≤ y0 ≤ 1
(y0)i ≤ ui, i = 1, 2, · · · , n0

−(y0)i ≤ ui, i = 1, 2, · · · , n0

(y0)i ≤ 1− νi, i = 1, 2, · · · , n0

(y0)i ≥ −νi, i = 1, 2, · · · , n0

ui ≤ −(y0)i + 2(1− νi), i = 1, 2, · · · , n0

ui ≤ (y0)i + 2νi, i = 1, 2, · · · , n0
∑n0

i=1 ui ≤ 1

µ ∈ {0, 1}nL

(yL)i ≤ wi, i = 1, 2, · · · , nL

−(yL)i ≤ wi, i = 1, 2, · · · , nL

(yL)i ≤ C(1− µi), i = 1, 2, · · · , nL

(yL)i ≥ −Cµi, i = 1, 2, · · · , nL

wi ≤ −(yL)i + 2C(1− µi), i = 1, 2, · · · , nL

wi ≤ (yL)i + 2Cµi, i = 1, 2, · · · , nL

where C ≫ 0 is the so-called big-M constant.

The case p = ∞ Problem (P∞)ε can similarly be expressed as

max
y,σ,x,u,µ,η

∑nL

i=1 ηiui

s.t. yk = Mkdiag(σk−1)yk−1, ∀k ∈ {2, . . . , L},
y1 = M1y0
xk = σk ⊙ (Mkxk−1 + bk), k = 1, 2, · · ·L− 1
(σk − 1

2)⊙ (Mkxk−1 + bk) ≥ ε, k = 1, 2, · · ·L− 1
σk ∈ {0, 1}nk, k = 1, 2, · · ·L− 1
x0 ∈ X
−1 ≤ y0 ≤ 1

µ ∈ {0, 1}nL

u ≥ 0
ui = (2µi − 1)(yL)i, i = 1, 2, · · · , nL

η ∈ {0, 1}nL

∑nL

i=1 ηi = 1.

Note: in this formulation the last constraints can also be linearized as in the case p = 1.

8

References

[1] Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks, 2017.

[2] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Par-
seval networks: improving robustness to adversarial examples. In ICML’17: Proceedings of the
34th International Conference on Machine Learning, page 854–863, 2017.

[3] Sourour Elloumi and Amélie Lambert. Global solution of non-convex quadratically constrained
quadratic programs. Optimization Methods and Software, 34(1):98–114, 2019.

[4] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks, 2023.

[5] H. Gouk, E. Frank, B. Pfahringer, and M.J. Cree. Regularisation of neural networks by enforcing
lipschitz continuity. Machine Learning, 110:393–416, 2021.

[6] Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[7] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization algo-
rithms. I, volume 305 of Grundlehren der mathematischen Wissenschaften [Fundamental Princi-
ples of Mathematical Sciences]. Springer-Verlag, Berlin, 1993. Fundamentals.

[8] Cyril Imbert. Support functions of clarke’s generalized jacobian and of its plenary hull. Nonlinear
Analysis: Theory, Methods and Applications, 29(8):1111–1125, 2002.

[9] Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of relu
networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 7344–7353. Curran Associates, Inc.,
2020.

[10] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In NeurIPS, 2018.

[11] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certifi-
cation of perturbation invariance for deep neural networks, 2018.

9

