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General Aviation traffic prediction is a major concern for Air Navigation Service Providers
with a direct impact on air traffic flow and capacity management measures. This paper
introduces a Deep Learning methodology using meteorological and calendar data to predict
General Aviation traffic. The methodology is evaluated in great detail using historical data
from the Nice Cote D’Azur Terminal Control Center sectors with an increase of the global
prediction performance of 32% with Recurrent Neural networks-based models compared to
current tools used in operation. Additional tools are finally proposed to analyze and attain an
in-depth understanding of the predictions generated by the various models.

Nomenclature

𝑋 = Vector of features, entry of the model
𝑦 = Target of the model
𝐷 = The whole dataset used
𝐷𝑡𝑟𝑎𝑖𝑛 = Part of the dataset for model learning or training set
𝐷𝑡𝑒𝑠𝑡 = Part of the dataset for model evaluation or test set
𝑓 , ℎ, 𝑔, 𝑙 = A Machine Learning or a Deep Learning model
Δ, 𝑀𝐸𝑇𝐴𝑅_𝑙𝑜𝑠𝑠, 𝑙𝑜𝑠𝑠𝑎𝑙𝑙 , 𝑙𝑜𝑠𝑠𝑙𝑎𝑠𝑡 , 𝑀𝐴𝐸 = Loss functions
𝑎 [𝑝] = Output of the neurons of a Neural Network layer 𝑝
𝑊 [𝑝] , 𝑏 [𝑝] = Weights/bias of the neurons of a Neural Network layer 𝑝
𝜎 = Standard deviation
𝑅 = Activation function of a Neural Network layer
𝑆 = A coalition of features
𝜙 𝑗 = The Shapley value of feature 𝑗

𝐼 𝑗 = The SHAP importance of feature 𝑗

I. Introduction

A. Operational Problem
General Aviation (GA) traffic directly impacts air traffic flow and capacity management measures. Therefore, GA

traffic prediction is a key issue for the Air Navigation Service Provider (ANSP). Many major airports have to handle both
GA and Commercial Aviation. While the Commercial Aviation framework is clearly defined thanks to flight plans, GA
operations can occur anytime when the airport is open. ANSP has to organize its services taking this major difference
into account to guarantee safety, i.e., always having staff available to handle both types of traffic. In cases of unexpected
events, mainly a dramatic increase in GA traffic, the only safe solution is sometimes to regulate commercial traffic.
Consequently, the trade-off between ANSP’s quality of service and performance becomes a key point. It is considered
very fragile as only rudimentary tools exist to tackle General Aviation traffic prediction.
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The services delivered by the DSNA (French Air Navigation Service) to GA flights include, at least, the Flight
Information Service and Alerts, which are mandatory as long as GA flights contact the Air Traffic Service by radio in
class E to class G airspace. For class C or D airspace (no class B in France), the Control Service is also mandatory for
these flights. DSNA has set up SIVs (Secteurs d’Information de Vol - Flight Information Sectors) managed by Air
Traffic Controllers (ATCo) located in airports to deliver these services to GA flights in France airspace, the level of
which depends on the class of airspace in each SIV.

Nice Cote D’Azur Terminal Control Center (TCC) is managed by the Nice airport, which is one of the major French
airports. It is currently composed of three SIVs, depicted in Fig. 1, that geographically divide a big part of the TCC
airspace under Flight Level (FL) 195: SIV1 (grouping SIV1.1 and 1.2 up to FL175 and FL145, respectively), SIV2
(up to FL145), and SIV3 (grouping SIV3.1 and 3.2 up to FL115 and FL145, respectively). These SIVs can contain
Control Traffic Regions (CTR) and Terminal Manoeuvring Area (TMA) sectors that manage operations to and from a
specific aerodrome. The management of this intricate airspace scheme is further complicated by the changing nature
of the traffic, significantly affected by the season, day of the week, weather, or special events. Consequently, specific
controllers are dedicated entirely to GA flights and related services in the SIVs.

Fig. 1 SIV breakdown in the Nice TCC airspace.

B. The Initial Machine Learning Approach
Today, DSNA does not manage GA traffic globally, since it does not have the same impact on all its airports.

However, as detailed above, the Nice TCC is one of the most impacted ones. Recently, a Machine Learning (ML)
approach was proposed to mitigate this gap [1]. The purpose of the models presented in that study was to predict, four
hours in advance, the GA flights entry counts in a defined period of one hour for a given air traffic sector. The approach
is to cast the flight entry counts prediction as an optimization problem, solved using supervised ML methods.

In general terms, the goal is to predict a variable 𝑦 (our target), in our case, the GA entry counts in a SIV, defined as
an integer, from a set of explanatory features 𝑥, for which 𝑥 and 𝑦 are respectively drawn from probability distributions
𝑋 and 𝑌 . Considering 𝑚 features, 𝑥 ∈ R𝑚 and 𝑦 ∈ R. The random variable 𝑋 is assumed to have a probability density
function (pdf) 𝑝𝑋 (𝑥). Our data is defined by the dataset 𝐷, with 𝐷 = {(𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁 )} ⊆ (𝑋,𝑌 ). The data in 𝐷

are assumed to be independent and identically distributed (i.i.d). Consequently, the problem can be addressed by a
supervised ML regression technique, whose goal is to approximate a function 𝑓 such that: 𝑦 = 𝑓 (𝑥) ∀ (𝑥, 𝑦) ∈ (𝑋,𝑌 ).
Here, 𝑓 (𝑥) is the prediction of our model, and 𝑦 is the true value. The goal of this model, even if trained on a part of 𝐷,
is to generalize well on an unseen dataset denoted by 𝐷𝑡𝑒𝑠𝑡 , the data of which are also assumed to be i.i.d. and sampled
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from the same (𝑋,𝑌 ) distribution.
As with any supervised ML method, the performance of the methodology proposed in [1] strongly depends on the

features engineering phase which constructs the sets of explanatory features 𝑥 and target 𝑦. Calendar, meteorological,
and GA flights entry counts historical data was explored to extract relevant features to identify the pilots’ intent patterns.
The feature extraction methodology adopted in [1] is detailed in the following paragraph. Although, as described next,
the training set assembles historical data of three years, the features 𝑥 include accurately only data available to the
ATCos four hours before the target to predict. Nice TCC surveillance data were used to extract GA entry counts in each
SIV, our 𝑦 prediction target, considering the number of flights in a period of one hour for a total of 24 time slots per day.
Figure 2 presents an example of counts on August 22, 2021.

Fig. 2 Entry counts for SIV1 on Sunday, 22th of August, 2021.

The first set of features used in 𝑥 are meteorological data. Those are composed of METAR (Meteorological
Aerodrome Report) and TAF (Terminal Aerodrome Forecast), which are, respectively, meteorological observation and
forecast data in an aerodrome. Since the historical METAR and TAF data are available in free text format standardized
by the International Civil Aviation Organization, a key step was the definition of a scaling scheme using operational
personnel’s expertise (controllers, pilots). This scheme is defined to capture the impact of meteorology on air traffic
operations, producing a 1-5 rating (higher values imply more critical weather) while using the various keywords inside
METAR and TAF messages. A complete table of those ratings per keyword can be found in [1]. For brevity, several of
those are presented in Table 1. Each keyword is individually rated and the global METAR (or TAF) evaluation considers
the maximal rate from all message keywords. Nice and Cannes aerodrome meteorological stations were chosen for
SIV1 predictions providing the best compromise with regard to the sector geography.

Table 1 METAR and TAF keywords evaluation examples.

Keyword Type Rating

FEW Clouds 1
FU / DZ / MIFG Significant weather 2
≥ G20 and < G30 Gust 3
M10 Temperature 4
PO / TS / SHRA / SHSN / GR / PL Significant weather 5
"1500" Visibility 5

The second set of features used are calendar data that includes, for each day/slot, the week number in the year (WN),
the day number in the week (DoW), the time slot of the day (𝐻, means the 1-hour slot duration from H to H+1). Note
that since WN is related to the week number in a year, W1 and W53, that are separated greatly numerically are close
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from a time and seasonal perspective. To properly capture this periodicity, the WN feature is converted into two features
using cyclical features encoding [2], i.e.,

WNcos = cos
(
2𝜋 · WN

53

)
, (1a)

WNsin = sin
(
2𝜋 · WN

53

)
. (1b)

Finally, information about whether the day is a bank holiday or is during school holidays (Shol), and information
about whether a specific event is organized during the day (Sev) were also added through two Boolean features. For the
last feature, a list of events impacting regional GA traffic according to the ATCo’s experience was identified. A sample
of such features for 2019 is presented in Table 2.

Table 2 Some special events around Nice in 2019.

Event name Start date in 2019 End date in 2019

Monte Carlo Rallye 24th of Jan 27th of Jan
Nice Carnival 16th of Feb 2nd of March
Cannes Festival 14th of May 25th of May
Monaco GP 26th of May 26th of May

In summary, the list of features used in [1] is presented in Table 3.

Table 3 List of Features used in [1].

• Nice_globalMET𝐻-4 : Nice past METAR.
• Cannes_globalMET𝐻-4: Cannes past METAR.
• Nice_TAF𝐻 : Nice TAF.
• Cannes_TAF𝐻 : Cannes TAF.
• Nice_TAF𝐽 : Nice average day TAF.
• Cannes_TAF𝐽 : Cannes average day TAF.
• 𝐻 : Time slot.
• DoW : Day of the week.
• 𝑊𝑁𝑐𝑜𝑠 : Number of the week cosine.
• 𝑊𝑁𝑠𝑖𝑛 : Number of the week sine.
• Shol : Holiday.
• Sev : Special event.

The historical data scope used in this study was limited to the period of January 2019 to May 2022. Due to
COVID-19’s impact on GA traffic, it was decided to remove the 2020 period. Random Forest (RF), Support Vector
Machines, and Linear Regressor models were trained on the 2019/2021 data and evaluated on the 2022 data. The
training and evaluation scope was limited at this stage to Nice TCC SIV1. The results were compared to the current tool
in operation locally (mentioned as the Nice baseline in the present article) and demonstrated a 25% increase in the
prediction performance.

Nice baseline predicts the entry counts (EC) of a given slot 𝐻 by averaging the data available for the same time slot
of the same day of the week, the same week number in the previous years. If EC is considered a function of 𝐻, DoW,
WN, and year (YN), denoted in short by EC(YN), and considering available data excluding 2020 due to COVID-19, the
entry count for a time slot in 2022 is predicted as

EC(2022) =
1
2

[
EC(2021) + EC(2019)

]
. (2)

The approach presented in [1] and enhanced in the current study addresses also the over-fitting of the training part of
𝐷 by balancing prediction accuracy (bias) and prediction error variance [3]. It will also affect the training methodology,
as is addressed in the following sections.
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The current paper extends this ML-based approach for predicting the GA entry counts aiming to improve the
accuracy of the previous publication results using the same historical data scope for training and evaluation. The
following improvements are considered: a new features engineering phase presented in section II, a pre-processing of
the target to predict addressed in section II.D, and training of more advanced ML algorithms detailed in section III.A.
Finally, section IV presents the results and analysis of these new models, proposing a state-of-the-art methodology
based on Deep Learning with a wider evaluation of the three Nice SIVs. Concluding remarks are included in section V.
Please refer to [1] for a complete review of the literature on ML applied to Air Traffic Management tasks, specifically for
trajectory prediction, Demand and Capacity Balancing, and General Aviation prediction.

II. New Features Engineering Phase
Motivated by the results in [1], it was recognized that the performance of the proposed ML method can be improved

by judiciously updating and pre-processing the training features of the method. Moreover, additional ML models are
also considered here. This section presents the enhanced feature engineering phase that was guided by the statistical
analysis of historical data.

A. Calendar Data
Results from [1] showed that a fine re-engineering of calendar data features, with a focus on the school holidays,

bank holidays, and specific events impacts (represented previously by Shol and Sev boolean features) on traffic was
necessary to bring more information to the model. To reach this objective, a statistical analysis has been performed on
the training set to evaluate better the GA entry counts during the day of these specific events. It shows that the impact of
the holidays on traffic is not the same depending on the period (e.g., during the Christmas holidays compared to the
winter holidays) and that initial ATCo feeling about the impact of specific events on traffic was not aligned with reality
(e.g., some initially selected events had negligible impact on GA traffic).

To better represent the effect of special events on the GA counts, we analyzed the difference between average day GA
counts during specific events and during the entire training data period for all SIV sectors. The result of this analysis is
presented in Figure 3. Consequently, a scale that represents the impact of specific events on GA traffic is proposed,
where a higher value means a stronger effect on GA traffic. The chosen scale, summarized in Table 4, will constitute a
new and single feature, called Sfinalev. It will replace the former two Boolean features Shol and Sev.

Table 4 New specific event feature.

Event name Impact

Monte Carlo Rallye / Ascension weekend 3
Nice Carnival / Cannes Festival / Monaco GP 2
Yacht Festival Cannes / Regates Royales Cannes / Voiles d’Antibes 1
Christmas holidays -1
Other event 0
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Fig. 3 Difference of GA average day counts during specific events & corresponding period on SIV1,2 and 3
during 2019/2021.

B. Meteorological Data
Considering the meteorological features, this part proposes two aspects of improvement compared to the baseline

work performed in [1]. The first aspect relates to better use of the METAR and TAF data utilized before, while the
second is aimed at identifying a new feature extracted from an additional data source, specifically the meteorology radar
information.

1. A Better Use of METAR and TAF Data
METAR and TAF messages from different aerodromes were selected in correlation with their geographic location

in the sector of interest. As this article focuses on other Nice TCC SIVs, other meteorological stations were selected
considering the geographic correlation of SIV2 and SIV3: Toulon (LFTH) and Bastia (LFKB) were added to the initial
selection of Nice (LFMN) and Cannes (LFMD). Data was extracted from historical METAR of Iowa Environmental
Mesonet from Iowa State University [4] and OGIMET [5] to construct the same features as before for those new stations
(i.e., xxxx_globalMET𝐻-4, xxxx_TAF𝐻 , xxxx_TAF𝐽 - see Table 3 for the naming conventions).

In [1] it was concluded that to consider the meteorological scale built and presented in Table 1 was probably too
simple to fully capture the complexity of the meteorological impact on the traffic. Nonetheless, this selection allowed
us to attain initial models and results, i.e. error distribution bias and variance that are expected to be improved. For
instance, the existing meteorological scale did not really focus on the temperature impact on traffic apart from extreme
temperature conditions. The purpose of the following modifications was to identify new relevant features to enhance the
initial selection.

First, the set of features extracted from METAR was expanded to include also: three temperature features (Air
Temperature 𝑡𝑚𝑝 𝑓 , Apparent Temperature 𝑓 𝑒𝑒𝑙 - Wind Chill or Heat Index, Dew Point Temperature 𝑑𝑤𝑝 𝑓 ), Relative
Humidity 𝑟𝑒𝑙ℎ, Pressure altimeter 𝑎𝑙𝑡𝑖 and Visibility 𝑣𝑠𝑏𝑦. Figure 4 illustrates the correlation of the features with the
traffic count focusing on Nice meteorological features. For comparison, also the calendar features are included in this
chart. It appears clearly that the new selection has a correlation in absolute value between 0.1 and 0.2 with traffic count
on the training set. At the end, these six new features were added for each of the four relevant meteorological stations
cited previously: 𝑁𝑖𝑐𝑒_𝑡𝑚𝑝 𝑓 H-4, 𝑁𝑖𝑐𝑒_𝑑𝑤𝑝 𝑓 H-4, 𝑁𝑖𝑐𝑒_𝑟𝑒𝑙ℎH-4, 𝑁𝑖𝑐𝑒_𝑎𝑙𝑡𝑖H-4, 𝑁𝑖𝑐𝑒_𝑣𝑠𝑏𝑦H-4, 𝑁𝑖𝑐𝑒_ 𝑓 𝑒𝑒𝑙H-4 are the
features notation for Nice.

Then, instead of only using the conversion of the whole meteorological information included in METAR directly to
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Fig. 4 Correlation between features and traffic count on the training set in absolute value.

this synthetic scale, a specific features extraction phase based on a Deep Learning approach is proposed. It consists in
training a dedicated model (aka, a neural network) to learn the most relevant and low-dimensional representation of
METAR to predict the meteorological scale level considered as 5 categories.

The solution is based on tokenization and embedding layers that convert each word of the METAR message into
positive integers and then into dense vectors. This idea was inspired by solutions used in Natural Language Processing
for word representations with numeric versions like Word2Vec [6]. Then, embedding layers outputs feed an Autoencoder
Neural Network [3, Ch. 14]. This type of Neural Network (NN) is trained to learn its own input in an unsupervised
manner. Its architecture, presented in Fig. 5, is composed of two components: an encoder and a decoder, denoted,
respectively, as functions 𝑔 and ℎ. The encoder squeezes the NN input through a bottleneck layer (with fewer nodes than
the input layer) into a lower-dimensional representation (the code). Then the decoder tries to reconstruct the input from
this representation. Controlling the code dimension allows to learn the best input representation in this dimension. In
other words, the compression allows to minimize the loss of information to reconstruct the input. From a mathematical
point of view, the problem is to learn 𝑔 and ℎ functions that satisfy [7]

min
𝑔,ℎ
E
[
Δ

(
𝑋, ℎ ◦ 𝑔(𝑋)

)]
(3)

with 𝑋 the probability distributions of the data and Δ the reconstruction loss function (often 𝑙2 norm).

Fig. 5 Presentation of an autoencoder architecture.

The tokenization process only keeps 2800 most cited words (others are set to Unknown token). Each METAR
message is considered as a sequence of 25 tokens (if necessary METAR message are padded or truncated to fit to this
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size). The embedding layer is set to a dimension of 8. To better capture the information provided by a METAR sequence
of words, the architecture of the Autoencoder is modified using recurrent layers instead of Dense fully connected layers
[8]. Long Short Term Memory (LSTM) with hyperbolic tangent activation functions have been selected because they
are more robust than simple RNN layers to tackle long sequences and to better address the vanishing gradient effect [3].
The number of neurons of the LSTM layer is set to 8 for both the encoder and decoder. LSTM encoder output feeds
the decoder composed of an LSTM layer (same number of neurons, same activation function) and then a Dense Fully
connected layer (Dense) with a normalized exponential function (softmax) as activation function.

In parallel, the encoder output (the code) also feeds a classic Artificial Neural Network (ANN) represented by
function 𝑙. Its role is to predict the meteorological scale level (1 to 5) based on the code representation. This second
Neural Network, trained in parallel with the previous one, helps the first one to learn the best representation useful to
capture the impact on the GA traffic. The ANN is composed of 2 Dense layers with, respectively, 100 and 50 neurons
and a rectified linear unit (ReLU) activation function. The output layer is a Dense layer with 5 neurons and a softmax
activation function.

The whole network (METAR_network), composed of the Autoencoder and the ANN, is trained to optimize a
customized loss function (𝑀𝐸𝑇𝐴𝑅_𝑙𝑜𝑠𝑠). If 𝑦_𝑡𝑟𝑢𝑒 is the true target category for meteorological scale impact on GA
traffic (both of 5 dimensions) and 𝑥 is the METAR sequence representation (25 dimensions), the loss function is defined
by

𝑀𝐸𝑇𝐴𝑅_𝑙𝑜𝑠𝑠 =

[ 5∑︁
𝑖=1

𝑦_𝑡𝑟𝑢𝑒𝑖 ∗ log
(
𝑙 ◦ 𝑔(𝑥𝑖)

)]2

+


25∑︁
𝑗=1

𝑥 𝑗 ∗ log
(
ℎ ◦ 𝑔(𝑥 𝑗 )

)
2

. (4)

The global architecture for meteorological data features extraction is presented in Fig. 6. The METAR_network
was trained on a set of around 450000 LFTH, LFKB, LFMN, LFMD METAR from 2014 to 2018 with an Adam
optimizer [9] and specific hyper-parameters (learning rate: 0.001, epochs: 100, batch size: 32, exponential decay rate
for the first moment estimates: 0.9, exponential decay rate for the second moment estimates: 0.999). When trained,
the model allows to extract from each METAR an 8-dimension representation using the encoder part of Autoencoder.
This brings more information than the basic meteorological scale used in [1] and is considered as additional features
(e.g., 𝑁𝑖𝑐𝑒_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡1H-4 is feature 1 or first dimension of 8-dimension vector output generated by encoder part of
METAR_network for Nice station METAR available for slot 𝐻 − 4).

Fig. 6 METAR features extraction through the autoencoder pipeline.

2. New meteorological sources
METEO FRANCE ASPOC service allows to identify weather hazard objects that directly impact aviation, most of

the time linked to convection [10]. Convection, in weather, describes the vertical transport of heat and moisture in
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the atmosphere. When convection is severe, it is generally associated with thunderstorms. This real-time information
is observed by ATCo using meteorology radars. It was possible to get METEO FRANCE ASPOC archives through
MetSafe API [11] and to extract events that occurred in each of the three Nice SIVs. Each ASPOC message identifies
a weather hazard, the 5-minute slot while it is observed and its severity (light / moderate / moderate severe / severe).
The severity category is converted to a severity number from 1 (light) to 4 (severe) and the severity numbers of all
the events on each 1-hour slot are summed (0 if no event occurred during the slot). The resulting number is the
new 𝐴𝑆𝑃𝑂𝐶_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 feature integrated into our features vector and the information used for the prediction is the
𝐴𝑆𝑃𝑂𝐶_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 available 4 hours before the target slot to predict.

C. GA counts related to SIV2 and SIV3
The geographic location of SIV2 and SIV3 is very close as both are covering a major part of maritime traffic. So,

even if they are currently separated in the Nice TCC for operational reasons, it was considered relevant to tackle both
SIVs together. As a consequence, GA counts of both SIVs were merged into a specific sector, called SIV2/3 for the
remainder of the paper.

D. Pre-Processing of the Target to Predict
One lesson learned from [1] is that the use of 1-hour time slots made the data jumpy, possibly affecting the

performance of the model. To address this issue, we propose pre-processing the GA entry counts (ML targets) with
a smoothing method called averaging windows applied before the ML model training. This processing intends to
smooth the effect of considering a 1-hour slot, starting at a fixed time (e.g., from 8 AM to 9 AM). From a mathematical
perspective, the processing relies on the following idea. Instead of taking the entry counts (𝐸𝐶) from the start of a
1-hour time slot to its end (for instance, from 8 AM to 9 AM), a window is slid over the slot every minute keeping the
whole time slot as a constraint (so counting, for example, from 8:01 AM to 9:01 AM) to generate new counts. This is
done over an interval of [-15 minutes, +15 minutes] around the initial slot. The new counts (𝑎𝑣𝑔𝐸𝐶) obtained over
each 1-hour time slot are the average of those intermediate counts. Specifically, if 𝐸𝐶𝑖 is the count obtained when the
window is slid by 𝑖 minutes, the average count is computed by

𝑎𝑣𝑔𝐸𝐶 =
1
31

15∑︁
𝑖=−15

𝐸𝐶𝑖 . (5)

This average 𝑎𝑣𝑔𝐸𝐶 replaces the original target for ML model training.

III. Training of State-of-the-Art ML Models

A. New Models
Several types of models were considered: Gradient Boosting Decision Trees (GBDT), Artificial Neural Networks

(ANN), ANN ensemble (ANN_ens), mixed Convolutional Neural Network and Recurrent Neural Networks (RNN),
RNN with training on last the time step (RNN_last), and RNN with training on all the time steps (RNN_all) [3, 12].
These models were trained and their performance was compared with each other and with the Nice baseline of (2) and
with the best former RF baseline [1].

GBDT is an ensemble model based on Decision Trees (DT) trained sequentially. Each new tree added is trained to
optimize previous tree residual errors with gradient descent. However, the model selected in this article is an improved
version of GBDT called LightGBM [13]. This version is known to optimize training speed and memory usage using
histogram-based algorithms, accuracy using a leaf-wise strategy for DT growing (instead of a level-wise strategy), and
the split for categorical features using histogram property. In addition, it uses the Goss method [13] which is the newest
and the lightest implementation of GBDT. It suggests a training data sampling method based on gradient calculation
to avoid searching on all the data space. However, in the present article, the sampling strategy was kept to a default
bagging strategy considering the reasonable size of the dataset.

ANN model is a classic MultiLayer Perceptron Neural Network based on the composition of fully connected Dense
layers with nonlinear activation functions. If 𝑎 [𝑝] , 𝑊 [𝑝] , 𝑏 [𝑝] represent the output, the weights/bias of the neurons
of the layer 𝑝, 𝑅 the activation function of the related layer (e.g. RELU / sigmoid function for instance), the relation
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between each layer output is

𝑎 [𝑝] (𝑥) = 𝑅

(
𝑊 [𝑝] .𝑎 [𝑝−1] + 𝑏 [𝑝]

)
. (6)

The output of the model is the composition of the output of each of its layers. The model is trained by minimizing the
loss of the network using a cost function over the training set that compares predictions with ground truth. The NN
weights and bias are updated through the backpropagation technique [3]. ANN_ens is an ensemble model based on
prediction averaging of the best ANN models trained during the hyper-parameters tuning phase [14].

RNN models are Recurrent Neural Networks using past data information. Considering the previous models, all the
features provided to each of them were static. In this phase, the model is designed to analyze and extract the relevant
features from the past (168 steps, which is equal to one week of past data information). RNN can be considered as an
ANN that has been unfolded through time. The calculation of the loss is identical to ANN and a specific technique
called backpropagation through time is used to calculate RNN bias and weights updates [3]. Several versions have been
evaluated:

• RNN version is a RNN with Long-Short-Term-Memory (LSTM) or Gated Recurrent Unit (GRU) layers. These
layers are known to be more robust than simple RNN layers to tackle long sequences and to fight against the
vanishing gradient effect [3] by putting in place specific gates to manage the memory to keep from the past
[15, 16];

• CNN/RNN version is the same RNN adding a preliminary feature extraction level based on 1D-convolutional
layer processing (Convolutional Neural Network) [17]. This level addition is expected to deal with a very long
sequence, reducing its size by convolution.

For RNN, two sub-versions are trained. First, RNN_last is trained by calculating the loss (𝑀𝐴𝐸) only on the last
time step of the sequence. If (𝑥, 𝑦) is a set of (features, target), 𝑛 the length of the sequence, 𝑓 the RNN model, the
corresponding loss evaluated on the last time step (𝑙𝑜𝑠𝑠𝑙𝑎𝑠𝑡 ) is

𝑙𝑜𝑠𝑠𝑙𝑎𝑠𝑡 (𝑥, 𝑦) = 𝑀𝐴𝐸

(
𝑓 (𝑥𝑛), 𝑦

)
. (7)

Then, RNN_all is trained by calculating the loss (𝑀𝐴𝐸) on all the time steps of the sequence. The corresponding loss
evaluated on all-time steps (𝑙𝑜𝑠𝑠𝑎𝑙𝑙) is

𝑙𝑜𝑠𝑠𝑎𝑙𝑙 (𝑥, 𝑦) =
1
𝑛

𝑛∑︁
𝑖=1

𝑀𝐴𝐸

(
𝑓 (𝑥𝑖), 𝑦𝑖

)
. (8)

It is important to note that the RNN models allow to consider complementary features: GA flights counts of past
slots (4 hours before the slot to predict) and all the already identified features information (calendar, meteorological
data) from the past on a 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 period. This 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 period represents the past time window considered by the
RNN model and is measured by the number of time steps in the time window (as a time step is a 1-hour slot, for instance,
a 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 of 10 means a past time window of 10 hours).

B. Updated List of Features and the Models Training Procedure
Following the updated features engineering and the models chosen for training discussed above, the final list of

features is:
• 𝐻 : Time slot
• DoW : Day of the week
• 𝑊𝑁𝑐𝑜𝑠 : Number of the week cosine
• 𝑊𝑁𝑠𝑖𝑛 : Number of the week sine
• Sfinalev : Special event of specific day new evaluation
• 𝐴𝑆𝑃𝑂𝐶_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 : Global evaluation of ASPOC impact of the SIV
• Nice_globalMET𝐻-4 : Nice past METAR global evaluation
• 𝑁𝑖𝑐𝑒_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡1H-4 to 𝑁𝑖𝑐𝑒_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡8H-4 : 8 new features to describe Nice METAR content
• 𝑁𝑖𝑐𝑒_𝑡𝑚𝑝 𝑓 H-4, 𝑁𝑖𝑐𝑒_𝑑𝑤𝑝 𝑓 H-4, 𝑁𝑖𝑐𝑒_𝑟𝑒𝑙ℎH-4 : Air Temperature, Apparent Temperature, Dew Point Temperature

for Nice station
• 𝑁𝑖𝑐𝑒_𝑎𝑙𝑡𝑖H-4, 𝑁𝑖𝑐𝑒_𝑣𝑠𝑏𝑦H-4, 𝑁𝑖𝑐𝑒_ 𝑓 𝑒𝑒𝑙H-4 : Relative Humidity, Pressure altimeter and Visibility for Nice station
• Nice_TAF𝐻 : Nice TAF global evaluation
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• Nice_TAF𝐽 : Nice average day TAF global evaluation
• 𝐶𝑜𝑢𝑛𝑡 : Count of past slots (only available in RNN_all model)

Note: All the Nice features exist also for other meteorological stations (Toulon, Bastia, Cannes). This means that the
final list of features is made up of 74 features. For RNN, considering the past information and the additional 𝑐𝑜𝑢𝑛𝑡
feature, the number of features is 75*𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 .

All the ML models presented in section III.A are based on Supervised Learning and have been implemented and
trained on the training data (𝐷𝑡𝑟𝑎𝑖𝑛) to perform the regression task of GA entry counts prediction. The optimization
criterion remains the Mean Absolute Error (𝑀𝐴𝐸) between predicted and true entry counts in the SIV loss function as
in [1]. For each ML model trained, the same methodology has been followed and is summarized in Fig. 7.

Fig. 7 Flowchart of data selection and model training.

The training methodology has been maintained as close as possible to [1] for results comparison in section IV. First,
2019 and 2021 historical data was used for 𝐷𝑡𝑟𝑎𝑖𝑛. 2020 data was removed from the training set due to the COVID
period (lockdown and curfew impacts). Then, January to May 2022 data was used for 𝐷𝑡𝑒𝑠𝑡 . This temporal split was
done to avoid data leakage from the future to the past and to allow evaluation of the models on unseen data. Finally, a
full day is represented by fifteen 1-hour time slots between 5 AM and 8 PM (Universal Time) as it was demonstrated
that this period contains more than 99% of the daily traffic.

Additional parameters had to be set. For Neural Networks, the Adam stochastic optimization algorithm was used [9]
with a batch size of 128 samples of 𝐷𝑡𝑟𝑎𝑖𝑛 for gradient update calculation and update. An intermediate number of
training period was set to 30 epochs for each Neural Network preliminary evaluation with early pruning of the model if
its intermediate result was worse than the median of intermediate results for the already trained models. If not pruned,
an additional training period was set to 130 epochs with an early stopping callback in case 𝑀𝐴𝐸 stops improving on
the evaluation dataset. For ANN, the Batch Normalization technique was systematically applied to reduce learning
duration [18]. For RNN, as this solution is not efficient, the Layer Normalization alternative was applied [19]. A last
RNN specificity is the definition of the 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 period parameters that control the size of the time series and the
past period used by the model. Based on the operational expertise, a 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 of 105 time steps was chosen which is
equivalent to one week of past data.

Hyper-parameters tuning strategy was a 5-fold cross-validation (CV) splitting strategy for the evaluation dataset [3]
with a Bayesian optimization based on Tree Parzen Error sampling method [20]. For RNN and time series prediction,
the classic 5-fold CV split is not appropriate as data splitting is done randomly, implying the possibility of using future
values to forecast past values, i.e., data leakage. To prevent this, a stacked 5-fold CV splitting strategy was used for all the
RNN-based model training. It consists of splitting the training set into five different subsets. The model is then trained
five times in the following way: on training trial 𝑖 ∈ [1, . . . , 5], the model is evaluated on the 𝑖-th subset considered as
the present time data and training is done exclusively on the past data part of the dataset. Optuna framework was used
for each model hyper-parameters tuning with a set of 100 trials to find the best results [21]. The set of all tunable model
hyper-parameters that are used to control overfitting are [12]:

• n_estimators specifies the total number of DT that the model will learn;
• learning_rate determines the step size at each learning iteration while moving toward a minimum of a loss function;
• 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ controls the maximum depth of each DT;
• 𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 defines the ratio from 𝐷 to use for each DT training (bagging);
• 𝑚𝑎𝑥_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 determines the number of features to consider when looking for the best DT split;
• 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 controls if bootstrap samples are used when building DT [22];
• num_leaves controls the maximum number of tree leaves for each DT;
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• reg_alpha, reg_lambda determine the L1 / L2 regularization terms on weights;
• min_child_samples defines the minimum number of data needed in a leaf child in a DT;
• subsample_freq, colsamp_tree specify the bagging frequency, the subsample features ratio for each DT construction;
• nb_hidden_dense_layers, nb_dense_neurons, activation_function_hl define the number of intermediate Dense

layers, the number of neurons for each intermediate Dense layer, the activation function for each intermediate
Dense layer (𝑅) for CNN/RNN, RNN, ANN models;

• kernel_init, bias_init define the method for weights, bias matrix initialization;
• ker_reg_dense, bias_reg_dense, dropout_rate_dense control the regularization strategy on weights, bias and global

dropout rate.
• beta_1, beta_2 control the exponential decay rate for the first moment estimates, the second moment estimates in

Adam gradient-descent optimization algorithm [9];
• rec_layer_type, nb_hidden_rec_layers, nb_rec_neurons define the type of recurrent layers (LSTM, GRU), the

number of recurrent layers, the number of neurons in each recurrent layers for CNN/RNN and RNN models. The
default activation functions for these layers were used (hyperbolic tangent for the activation function / sigmoid
activation function for the recurrent step) [15, 16];

• ker_reg_rnn, rec_reg_rnn, bias_reg_rnn, dropout_rate_rnn, rec_dropout_rate control the recurrent layers regular-
ization by applying regularization strategies on the weights/bias matrices of each layer.

• cnn_filters defines the numbers of outputs filters in the convolution
• cnn_kernel_size, cnn_strides, cnn_padding specify the length of the 1D convolution window, the stride length of

the convolution, the regularization strategy in the convolution layer for CNN/RNN models.
Table 5 presents the relevant hyper-parameters for each ML model. GBDT and NN have specific hyper-parameters for
regularization: a L1/L2 regularization term can be applied on weights [23]. Dropout regularization techniques can be
used in addition for the NN models [24].

Table 5 Tunable Hyper-parameters.

Model Hyper-parameters list

RF n_estimators, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ, 𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑚𝑎𝑥_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝
GBDT n_estimators, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ, 𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, num_leaves, min_child_samples,

subsample_freq, colsamp_tree, reg_alpha, reg_lambda, learning_rate
ANN nb_hidden_dense_layers, nb_dense_neurons, activation_function_hl, kernel_init, bias_init,

ker_reg_dense, bias_reg_dense, dropout_rate_dense, learning_rate,beta_1, beta_2
RNN∗ rec_layer_type, nb_hidden_rec_layers, nb_rec_neurons,

ker_reg_rnn, rec_reg_rnn, bias_reg_rnn, dropout_rate_rnn, rec_dropout_rate
CNN/RNN† cnn_kernel_size, cnn_strides, cnn_padding

IV. Results and Analysis
The current paper expands the preliminary evaluation presented in [1], addressing all the methods and models

presented above, on both Nice SIV sectors, SIV1 and SIV2/3.

A. Evaluation on Global Metrics
The first evaluation compares the following global metrics: 𝑀𝐴𝐸 on 𝐷𝑡𝑟𝑎𝑖𝑛 and on 𝐷𝑡𝑒𝑠𝑡 , standard deviation (𝜎)

and 95% Confidence Interval (CI95%) on 𝐷𝑡𝑒𝑠𝑡 . The following families of models are evaluated:
• Models without averaging windows / without new features engineering phase;
• Models with averaging windows / without new features engineering phase (Without NFEP);
• Models with averaging windows / with new features engineering phase (With NFEP).

Table 6 and Table 7 sum up the evaluation of the models on these global metrics.
∗RNN hyper-parameters also encompasses ANN ones.
†CNN/RNN hyper-parameters also encompasses RNN ones.
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Table 6 Global results without averaging windows / without new features engineering phase.

Model SIV1 sector SIV2/3 sector
Train 𝑀𝐴𝐸 Test 𝑀𝐴𝐸 / 𝜎 𝐶𝐼95% Train 𝑀𝐴𝐸 Test 𝑀𝐴𝐸 / 𝜎 𝐶𝐼95%

Nice baseline NA 3.23 / 4.75 [3.08, 3.38] NA 3.53 / 5.25 [3.36, 3.70]
RF baseline 2.07 2.45 / 3.58 [2.33, 2.56] 2.36 2.76 / 4.19 [2.62, 2.91]
GBDT 2.01 2.41 / 3.51 [2.30, 2.52] - - -
ANN 1.98 2.54 / 7.35 - - - -
ANN_ens 1.82 2.46 / 3.58 [2.34, 2.57] - - -
CNN/RNN 2.21 2.54 / 7.36 [2.42, 2.66] - - -
RNN_last 2.15 2.31 / 7.25 [2.21, 2.43] - - -
RNN_all 2.03 2.30 / 3.35 [2.19, 2.41] 2.28 2.68 / 3.85 [2.54, 2.81]

Table 7 Global results with averaging windows / with and without new features engineering phase.

Model SIV1 sector SIV2/3 sector
Train 𝑀𝐴𝐸 Test 𝑀𝐴𝐸 /𝜎 𝐶𝐼95% Train 𝑀𝐴𝐸 Test 𝑀𝐴𝐸 /𝜎 𝐶𝐼95%

Nice baseline NA 3.15 / 4.63 [3.01, 3.30] NA 3.46 / 5.11 [3.29, 3.62]

RF without NFEP 1.84 2.34 / 3.44 [2.24, 2.45] 2.25 2.64 / 4.02 [2.50, 2.78]
RNN_all without NFEP 1.70 2.22 / 3.26 [2.12, 2.33] 2.18 2.43 / 3.57 [2.31, 2.56]

RF with NFEP 1.67 2.25 / 3.26 [2.15, 2.35] 1.98 2.46 / 3.83 [2.33, 2.59]
RNN_all with NFEP 1.28 2.15 / 3.19 [2.05, 2.24] 1.78 2.38 / 3.59 [2.26, 2.50]

Considering only the improvements attained by using different models, addressed inTable 6 showing results without
averaging windows and without new features engineering phase, the best baseline for the SIV1 sector is RNN_all
performance criteria. It improves the Nice baseline by 29% and the previous state-of-the-art model (former RF) by 5%
when evaluated using the test set of SIV1. This confirms that past data are relevant for model prediction. Moreover, it is
important to note that RNN_all is the most robust as its standard deviation is the lowest which also yields the lowest 95%
Confidence Interval. This evaluation also allows to conclude that other models evaluated do not add value compared to
easy-to-train RF and best performing RNN_all. GBDT is the best non-Deep Learning ML model. Nevertheless, GBDT
is difficult to fit, prone to overfitting and the cost/benefit ratio compared to RF was not considered worthwhile (less than
a 2% improvement). As far as DL models are concerned, ANN performed poorly and ANN_ens was only able to reach
the RF baseline performance at a much higher training cost. Finally, the CNN part of CNN/RNN did not help to improve
the performance and RNN_last: although it showed similar 𝑀𝐴𝐸 to RNN_all, its standard deviation was higher.

Based on the results for SIV1 while using all the models considered, it was decided to expand more in-depth analysis
only of RF and RNN_all while considering the other sector and variants of those models discussed in section III. In
fact, Table 6 confirms that the ML approach works on other Nice sectors. Results on SIV2/3 completely corroborate
preliminary results obtained on SIV1 with RF and RNN_all showing, respectively, 22% and 24% performance
improvement compared to the Nice baseline.

Table 7 presents the results obtained when training the same models while preliminary applying the averaging
windows pre-processing but without the new features engineering phase, i.e. without NFEP. Its effect was evaluated
on the RF and RNN_all models (respectively RF without NFEP, RNN_all without NFEP) on both sectors. First, the
Nice baseline with averaging windows slightly improves its global performance results compared to the results without
averaging windows. More interestingly, comparing the ML models with averaging windows to the Nice baseline without
averaging windows showed clear improvements: a 28% and 25% 𝑀𝐴𝐸 decrease on SIV1, SIV2/3, respectively, for RF
and 31.3% and 31.1% 𝑀𝐴𝐸 decrease on SIV1, SIV2/3, respectively, for RNN_all.

Table 7 also shows the results encompassing the new features engineering phase (NFEP) in addition to the effect of
averaging windows. It allows to obtain the best RF and RNN_all models for both SIVs, validating the global approach
with the following results: 30.3% decrease on both SIV1 and SIV2/3, respectively, for RF and 31.3% and 32.6% 𝑀𝐴𝐸
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decrease on SIV1 and SIV2/3, respectively, for RNN_all compared to the Nice baseline without averaging windows.
Compared to the former RF baseline in [1], our new state-of-the-art model RNN_all with averaging windows and
NFEP allowed to decrease 𝑀𝐴𝐸 by 12.2% and standard deviation by 10.9%. This demonstrates the added value of the
averaging windows pre-processing to reduce GA entry count prediction error performed by the ML model when trained
on these new data instead of rough entry counts.

In conclusion, the new features engineering phase allows us to take advantage of the new meteorological information.
Compared to the Nice baseline, improvements are particularly notable for SIV2/3 global results, where the meteorological
information is better correlated with the geography. The contribution of the new features engineering will be further
analyzed next for the two best ML models: RF and RNN_all with NFEP and averaging windows. The analysis is
performed on SIV1 and SIV2/3 data using two methods: a global analysis and a local analysis to provide explainability
on each black box model. Note that from now on RNN_all model will be referred to as RNN.

B. Global Analysis of the Best Models Using the Permutation Feature Importance Method
The global analysis presented here uses the first feature importance method based on Permutation Feature Importance

(PFI) to evaluate the global impact of each feature on our model. This method measures the predictive value of a feature
for any estimator by evaluating how the prediction error increases when a feature is removed from the input to the model.
For each feature, this is implemented by shuffling randomly the values of the feature in the original dataset used for
evaluation (𝐷𝑡𝑒𝑠𝑡 ). The predictions with the original model on the “shuffled” dataset are compared through 𝑀𝐴𝐸

metric indicating the importance of the feature.
Results for the RF models are presented in Fig. 8. PFI for the former RF baseline on SIV1 [1] are compared

with the new state-of-the-art RF model. 𝐻, 𝑊𝑁𝑐𝑜𝑠, DoW and 𝐶𝑎𝑛𝑛𝑒𝑠_𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝐸𝑇𝐻-4 features display the same
level of importance for both models. However, there were some significant differences: 8 newly integrated fea-
tures (𝐶𝑎𝑛𝑛𝑒𝑠_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡5H-4, 𝑇𝑜𝑢𝑙𝑜𝑛_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡1H-4, 𝑁𝑖𝑐𝑒_ 𝑓 𝑒𝑒𝑙H-4, 𝑇𝑜𝑢𝑙𝑜𝑛_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡5H-4, 𝑇𝑜𝑢𝑙𝑜𝑛_𝑇𝐴𝐹J,
𝑇𝑜𝑢𝑙𝑜𝑛_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡6H-4, 𝑁𝑖𝑐𝑒_𝑡𝑚𝑝 𝑓 H-4, 𝑇𝑜𝑢𝑙𝑜𝑛_𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝐸𝑇𝐻-4) are in the list of the 12 most important features for
the new state-of-the-art SIV1 RF model with a global contribution of 6% (Figs. 8a and 8b). The PFI of RF for SIV2/3 is
presented in Fig. 8c confirming that the new features’ global contribution is more significant for these SIVs (12%).

(a) PFI for former RF baseline on SIV1. (b) PFI for the best RF SIV1 model (12 most important features).

(c) PFI for the best RF SIV2/3 model (12 most important
features).

Fig. 8 PFI comparison for the RF models.

Results for the RNN models are presented in Fig. 9 for both SIV1 and SIV2/3 models. These are not satisfactory
as the method is not suitable to handle such a high number of features (7875 features taking into account all the past
features over 1 week). Even if the features’ importance values of the 12 most important features are very low, it can be
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noted that 𝐻 and 𝐶𝑜𝑢𝑛𝑡 past and present features are the most important for both models. This limitation highlights the
need for an alternative method to analyze the results, i.e., the use of the SHAP method proposed in the next subsection.

(a) PFI for the best SIV1 RNN. (b) PFI for the best SIV2/3 RNN (12 most important features).

Fig. 9 PFI comparison for the RNN models.

C. Global Analysis of the Best Models Using the SHAP Method

1. The SHAP Method
SHapley Additive exPlanations (SHAP) is a model-agnostic method well-recognized in the ML world as a global

method to describe how features affect the prediction on average but also as a local method to explain individual
predictions [25]. This method is based on Shapley values, a concept from Game Theory [26].

The Shapley value is calculated for each feature. This is the only method that satisfies the Efficiency, Symmetry,
Dummy, and Additivity properties, which together can be considered as the definition of a fair payout attribution
between the features. Applying this concept to a particular instance 𝑥 predicted by our model, the Shapley value of the
feature 𝑗 , denoted by 𝜙 𝑗 , indicates know how each feature contributed to the prediction of this instance compared to the
average prediction for the dataset. The Shapley value of a specific feature value is the average change in the prediction
that a coalition of considered features 𝑆 gains when the specific feature is added to them. Then, the notion of the value
function, denoted by 𝑣𝑎𝑙𝑥 (𝑆), must be introduced. If 𝑆 is a coalition of features (i.e., a subset of the features used in the
model), then 𝑣𝑎𝑙𝑥 (𝑆), called the worth of coalition 𝑆, describes the total expected sum of payoffs the members of 𝑆 can
obtain by cooperation. Its mathematical expression is the prediction for feature values in set 𝑆 that are marginalized over
features that are not included in set 𝑆 and is given by

𝑣𝑎𝑙𝑥 (𝑆) =
∫

𝑓

(
𝑥1, ..., 𝑥𝑚

)
d𝑃𝑥∉𝑆 − E𝑋

[
𝑓 (𝑋)

]
= E𝑋

[
𝑓 (𝑋)

�� 𝑋 = 𝑥𝑆
]
− E𝑋

[
𝑓 (𝑋)

]
, (9)

where 𝑓 is the model to explain, 𝑚 is the number of features, i.e., 𝑥 ∈ R𝑚. The Shapley value 𝜙 𝑗 is obtained considering
all possible different permutations in which the coalition 𝑆 can be formed, then adding feature 𝑗 to it, and considering
that its contribution is the difference between 𝑣𝑎𝑙𝑥 (𝑆 ∪ { 𝑗}) and 𝑣𝑎𝑙𝑥 (𝑆), i.e.,

𝜙 𝑗 (𝑥) =
∑︁

𝑆⊆{1,...,𝑚}\{ 𝑗 }

|𝑆 |!
(
𝑚 − |𝑆 | − 1

)
!

𝑚!

[
𝑣𝑎𝑙𝑥

(
𝑆 ∪ { 𝑗}

)
− 𝑣𝑎𝑙𝑥

(
𝑆

)]
. (10)

Examining (10) reveals that the exact calculation of Shapley values can be intractable. SHAP first proposes an
approach to efficiently approximate them. Specific and optimized algorithms have been proposed to tackle Tree based
models (TreeSHAP) with a polynomial time algorithm that recursively keeps track of what proportion of all possible
subsets flow down into each of the leaves of the tree and Neural Networks models (DeepSHAP) using the compositional
nature property of the NN [25, 27]. Alternatively, SHAP suggests a local and a global method based on the Shapley
value explanation that is represented as an additive feature attribution method. Specifically, the SHAP local method
specifies an explanation model 𝑓 that approximates 𝑓 as a linear model, with Shapley values features of the model, and
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expressed as

𝑓 (𝑥) ≈ 𝑓 (𝑧′) = 𝜙0 +
𝑀∑︁
𝑗=1

𝜙 𝑗 ∗ 𝑧′𝑗 (11)

with 𝑀 being the maximum coalition size (number of features or group of features), 𝑧′ ∈ {0, 1}𝑀 the coalition vector (1
means corresponding feature is in coalition and its value is related feature value of 𝑥, 0 means corresponding feature is
not in coalition and related value is assigned randomly), and 𝜙 𝑗 the Shapley value of feature 𝑗 (or group of features 𝑗).

The latter method allows to define SHAP global importance of a feature defined as average of the Shapley values per
feature across the whole dataset 𝐷, given by

𝐼 𝑗 =
1
𝑛

𝑛∑︁
𝑖=1

���𝜙 (𝑖)
𝑗

��� . (12)

It is an alternative to permutation feature importance that relies on the magnitude of feature attributions instead of a
decrease in model performance.

2. Evaluation of the SIV1 Models and Comparison with the Previous Baseline
In this section, the aim is to evaluate the RF and RNN models trained on SIV1, and to compare them with each other

and with the former RF baseline [1].
Figures 10a and 10b depict an overview of the most important features for both the RNN and RF SIV1 models

considering their SHAP importance on the test set. It confirms that, for both of them, 𝐻 is the most important feature.
However, apart from this feature, each model relies on very different information: 𝐶𝑜𝑢𝑛𝑡 and meteorological past
data (e.g. 𝐶𝑎𝑛𝑛𝑒𝑠_𝑀𝐸𝑇_ 𝑓 𝑒𝑎𝑡5H-4, 𝑁𝑖𝑐𝑒_𝑑𝑤𝑝 𝑓 H-4, 𝑁𝑖𝑐𝑒_𝑟𝑒𝑙ℎH-4, 𝑁𝑖𝑐𝑒_𝑡𝑚𝑝 𝑓 H-4) have a major contribution for the
RNN whereas the RF can only rely on present data. It shows that the meteorology evolution over time is crucial for the
GA traffic evolution in the medium term perspective. 𝐶𝑜𝑢𝑛𝑡 features help to smooth the predictions over time, probably
explaining the major contribution to the standard deviation reduction of RNN presented in section IV.A.

Figure 11 presents another view of the features contribution based on their SHAP importance on the test set. In this
plot, features are grouped by category. The advantage of the SHAP method is its additivity property that allows to group
each feature contribution and to calculate the global contribution of the group of features, which was not possible with
the PFI method. Figures 11a and 11b consider a first breakdown of all the features: the first group is related to the
time slot (𝐻), the second to the weather data available 4 hours before the slot to predict (𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑑𝑎𝑡𝑎𝐻−4), the third
deals with the week number information (𝑊𝑁), the fourth with weather data available one day before the slot to predict
(𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑑𝑎𝑡𝑎𝐽−1), the fifth considering all the information about the day (𝐷𝑜𝑊_𝑎𝑛𝑑_𝑒𝑣𝑒𝑛𝑡), and the last group
(specific to the RNN model) considers all the past counts information (𝐶𝑜𝑢𝑛𝑡). These figures confirm the importance of
the weather information 4 hours before the slot to predict, reaching more than 33% SHAP importance for the RNN
model. It confirms that GA counts prediction is a difficult task since it is heavily affected by meteorological changes,
which can be so uncertain that pilots wait until the very last moment to decide whether to fly or not.

Figures 11c and 11d present the same breakdown splitting the test set into quartiles with respect to the target
entry counts prediction of each slot. It shows that the importance of 𝐻 group decreases when count predictions are
increasing which seems strongly linked to the fact that very low entry counts mainly occur early in the morning or in
the evening. Moreover, 𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑑𝑎𝑡𝑎𝐻−4 group importance exceeds 𝐻 group importance for Q4 quartile. 𝑊𝑁 and
𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑑𝑎𝑡𝑎𝐽−1 groups have more importance for Q2 and Q3 quartiles. Figures 11e and 11f consider a second
breakdown of the features: the new ones identified in the present article and the previous features made available in [1].
The new features contribution is significant for RF with around 20% SHAP importance and major for RNN with 45%
SHAP importance.
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(a) RF SIV1 SHAP summary plot. (b) RNN SIV1 SHAP summary plo.t

(c) RF SIV2/3 SHAP summary plot. (d) RNN SIV2/3 SHAP summary plot.

Fig. 10 SHAP summary plot (12 most important features) for the SIV1 and SIV2/3 models features.
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(a) RF SIV1 SHAP summary plot - features type category. (b) RNN SIV1 SHAP summary plot - features type categ.

(c) RF SIV1 SHAP summary plot - feat. type categ. per quartile. (d) RNN SIV1 SHAP summ plot - feat type categ per quart.

(e) RF SIV1 SHAP summary plot - new/former category. (f) RNN SIV1 SHAP summary plot - new/former categ.

Fig. 11 SHAP summary plot for the SIV1 models features grouped by category.
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3. Evaluation of the SIV2/3 Models
This part is related to the SIV2/3 RF and RNN models evaluation with the SHAP method. Figures 10c and 10d

present the most important features for both models. It is not surprising to see that 𝐻 remains the most important feature
but the rest of the classification highlights many differences, with the SIV2/3 RF relying more on Toulon weather than
on Cannes and Nice. 𝑊𝑁 features also seem to be more significant for this model which shows that the seasonality has
much more impact for these SIVs. This is not surprising considering their geographical location. The SIV2/3 RNN
presents a pattern very close to the SIV2/3 RF’s with the following differences: 𝐷𝑜𝑊 feature has more impact as the
third most important feature of the model. Moreover, even if 𝐶𝑜𝑢𝑛𝑡 feature is present in the RNN most important
features classification, it has clearly less importance than for the SIV1 RNN model. It can be finally noted that the Bastia
meteorological information does not seem to have any importance for any of the models or SIVs. This is surprising for
SIV2/3 models if we consider their geographical location.

Figure 12 presents the features contribution based on their SHAP importance grouped by category as in Fig. 11.
Figures 12a and 12b consider the same features breakdown proposed in Figs. 11a and 11b. As for SIV1, it shows the
importance of the weather information 4 hours before the slot to predict, reaching 32% SHAP importance for the RNN
model (𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑑𝑎𝑡𝑎𝐻−4). However, the SIV2/3 RF model less relies on weather information (𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑑𝑎𝑡𝑎𝐻−4,
𝑊𝑒𝑎𝑡ℎ𝑒𝑟_𝑑𝑎𝑡𝑎𝐽−1 groups) as much as the SIV1 RF model. 𝑊𝑁 group is much more important for these models: this
group reaches 11% SHAP importance for both SIV1 models and reached 15% and 26% for the SIV2/3 RNN and RF
models respectively. Finally, the SIV2/3 RNN model relies more on 𝐷𝑜𝑊_𝑎𝑛𝑑_𝑒𝑣𝑒𝑛𝑡 group and less on 𝐶𝑜𝑢𝑛𝑡 than
the SIV1 RNN model as already seen before. Figures 12c and 12d present the same breakdown splitting the test set
into quartiles with respect to the target entry counts of each slot. It confirms the observation made on SIV1 as the
distribution over the quartiles is very similar for both SIVs: the importance of 𝐻 group decreases as counts increase,
and the 𝑊𝑁 group is more important for Q2 and Q3 quartiles.

D. Local Analysis of the Best Models
This section compares all the models with each other and with the Nice baseline on specific examples. The purpose

is to define an approach to better understand model prediction to give ATCo more confidence in them as, to date, one
remaining limitation to using ML-based tools in operation is their lack of transparency.

First, a focus is made on a specific day, the 15th of May 2022, to compare the results of all the reference models.
Figures 13a and 13b compare each RNN and RF performance by displaying the absolute error between the model
prediction and the true entry count value for each slot of the day on SIV1 and SIV2/3 respectively. For SIV1, the former
RF and the Nice baseline performance are also displayed, showing the improvements of the new RNN and RF models.
The performance of the RNN is also highlighted by the error over the day slots variance for both SIVs (orange bars).
These figures are complemented with Figs. 13c and 13d that present the RNN and RF performance on the full month
of May 2022: the cumulative absolute error over each day is presented for each model and each SIV. These figures
illustrate the improvements of both the RF and RNN models over the month compared to the former reference baselines:
the former RF for SIV1 and the Nice baseline for SIV2/3.

Finally, waterfall plots of the Shapley values calculated over the test set are proposed to support operational decisions
and complement the model predictions. For a specific slot, it starts with the expected value of the predictions over the
set and gives information on the features impacting the prediction of the specific slot the most. For instance, Figs. 14a
and 14c show how the RF and RNN models respectively have taken into account main features to come to their final
prediction for the 12-hour slot on 15th May 2022, 12h slot (entry counts: 10.754 for RF / 12.795 for RNN) starting
from the expected value of all the predictions (5.839 for RF / 5.61 for RNN). For both of them, 𝐻 has a major impact
on the target prediction increase (+2.2 for RF / +2.36 for RNN). Meanwhile, Cannes TAF (Cannes_TAF𝐽 for RF and
Cannes_TAF𝐻 for RNN) has a slight impact on the target prediction decrease (-0.25 for RF for / -0.29 for RNN). The
authors are convinced that this kind of tool can bring real added value to operational staff as it helps understand the
black box model decision, gives confidence in the prediction, and helps the operator change the decision if he considers
that the model has missed some crucial information not presented in the waterfall plot. It can also help identify easily if
the model is performing poorly in specific situations and can bring further ideas for potential complementary model
training to take these situations into account.
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(a) RF SIV2/3 SHAP summ plot - features type category. (b) RNN SIV2/3 SHAP summ plot - features type categ.

(c) RF SIV2/3 SHAP summ plot - feat. type categ. per quartile. (d) RNN SIV2/3 SHAP summ plot - feat type categ per quart.

Fig. 12 SHAP summary plot for the SIV2/3 models features grouped by category.
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(a) SIV1 results for Thursday 15 May 2022. (b) SIV2/3 results for Thursday 15 May 2022.

(c) SIV1 results for May 2022. (d) SIV2/3 results for May 2022.

Fig. 13 Illustrative example of results comparison.
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(a) RF waterfall plot, 15 May 2022, 12 h. (b) RF waterfall plot, 15 May 2022, 16 h.

(c) RNN waterfall plot, 15 May 2022, 12 h. (d) RNN waterfall plot, 15 May 2022, 16 h.

Fig. 14 Example of waterfall plots for the SIV1 models.
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V. Conclusions
The objective of this paper was to propose an updated and state-of-the-art methodology to predict GA entry counts

of flights in advance, expanding the results in [1]. It has been shown that new models based on Recurrent Neural
Networks with the support of a new features engineering phase based on Deep Learning and the averaging windows
pre-processing improve the performance of the proposed Machine Learning approach as tested on the Nice TCC sectors
SIV1 and SIV2/3. This resulted in improvements such as 31.3% and 32.6% 𝑀𝐴𝐸 decrease on SIV1 and SIV2/3,
respectively, compared to the Nice baseline currently in operation. Compared to the RF presented in [1], and using the
same set of historical data, the RNN_all model with averaging windows and NFEP allowed to decrease of 𝑀𝐴𝐸 by
12.2% and standard deviation of the prediction error by 10.9%. In addition, this study addressed the explainability of
the ML models using the SHAP framework based on Shapley values theory. It provides the operational staff additional
information to better understand the ML model predictions which facilitate its operational use as a support to ATCo
decisions.

In future work, it could be valuable to consider the following areas: new data exploration (e.g. wider dataset
with additional years, detailed COVID-19 period analysis), assessment of new features (e.g. flying schools booking
slots, flights trajectory), an additional framework based on a level of traffic prediction (classification task) instead of
a regression task. This raises the question of the ML cost function that probably can be adapted in the future with a
second training criteria based on the minimization of the entry counts error on the complete day keeping the distribution
of the error over the day slots variance as minimal. A further step towards operational use would be to address the
quantification of the uncertainty of the ML prediction with Bayesian Neural Networks [28] and on the covariate shift
detection [29].
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