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Mixed-integer nonlinear and continuous

optimization formulations for aircraft conflict

avoidance via heading and speed deviations∗

Sonia Cafieri, Andrew R. Conn, Marcel Mongeau

Abstract

We introduce two new optimization models for the aircraft conflict
avoidance problem that aims at issuing decisions on both speed and heading-
angle deviations to keep aircraft pairwise separated by a given separation
distance. The first model is a new mixed-integer nonlinear formulation.
The second model is a continuous optimization formulation, less typical
in aircraft conflict avoidance. The advantages of the two models are com-
bined within a three-phase method that we propose to solve the problem to
global optimality. Computational experiments on various instances from
the literature yield very promising results, and show the effectiveness of
the proposed models and of the three-phase solution approach.

1 Introduction

We address a real-world application arising in transportation engineering, and
more specifically a traffic conflict avoidance problem, where it is essential to
maintain vehicles pairwise separated by a threshold distance. The pairwise
separation between moving objects arises as a fundamental component in a
number of applications spanning from transportation engineering, to robotics,
computational geometry, computer graphics, and computer-aided design ([5]).
In transportation engineering, traffic conflict avoidance applies to various modes
of transportation; recent applications concern autonomous vehicles ([1]). In
robotics, motion planning optimization ([19]) must encompass collision avoid-
ance among robots. This can be modeled considering a safety zone around each
robot, to be avoided ([8]). In computational geometry, the problem we consider
could be seen as a special case of collision detection of simple 2D geometrical
objects with rectilinear motion as in [16].

In this paper we consider in particular the context of air traffic manage-
ment and we address the aircraft conflict avoidance problem. The objective is
to keep vehicles (in our case, aircraft) pairwise separated by a given standard
distance all along their trajectories; the loss of such a separation leading to a
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conflict. This separation is an essential safety issue in air traffic management
(a hard constraint). The problem is in fact a feasibility problem. It is typi-
cally addressed as a proper optimization problem because there are secondary
criteria (such as minimizing deviations with respect to initial trajectories), that
are used by various authors to discriminate among possibly numerous feasible
solutions. Aircraft separation is achieved in practice by modifying the aircraft
headings, speeds or altitudes, or sometimes by combining some of these possible
maneuvers. Decision variables of the optimization models from the literature
are then related to the chosen maneuvers (see [9]).

Separation constraints depend continuously on time; the simplest way to deal
with them is based on discretizing the time horizon and to impose pairwise sep-
aration at each time step. Some approaches discretize the decision variables as
well (see [22] and references therein), while others rely on optimal control ([10]).
Space discretization (where separation is built upon a set of relevant points of
the 2D space) is also proposed in the literature, (see e.g., [23]), where moreover
a discrete set of turning angles is used. Such discretizations potentially yield
very large combinatorial optimization problems. Other ways to model separa-
tion constraints rely on geometrical constructions or on analytical descriptions
of aircraft motion. One such geometrical construction, proposed in [24] and
extended later (e.g., [2, 3]), is based on disks representing safety areas around
aircraft (shadows), and on their interception. In this paper, we build on the
analytical description of aircraft motion presented in [13], and exploited subse-
quently e.g., in [12, 14, 15]. It is tailored to optimization models that do not
rely on discretizing either time or decision variables. The resulting formulation
of the separation constraints is however nonlinear.

Most mathematical optimization approaches of the literature involve mixed-
integer (either linear or nonlinear) formulations ([12, 13, 14, 15, 24, 27, 28]).
The only fully-continuous optimization approach, which is based on B-splines
to build aircraft conflict-free trajectories, is proposed in [25]. It relies on trans-
forming a semi-infinite programming formulation of the pairwise separation con-
straints into a single equality constraint. Only locally optimal solutions are ob-
tained. Moreover, the authors could not achieve computing explicit derivatives,
therefore resorting to finite-difference approximations.

As regards the possible types of separation maneuvers studied in the air-
traffic conflict avoidance literature, most works consider either only speed reg-
ulation ([12, 13, 14, 15, 24, 27]), or only heading angle changes ([2, 4, 24, 25]).
Combination of maneuvers is rarely considered, despite the interest of resorting
to complementary maneuvers in an operational context. A single type of ma-
neuver may indeed be insufficient to resolve all conflicts. Simply consider the
(extreme) situation of face-to-face aircraft: speed regulation cannot evidently be
enough. Moreover, it is possible to exhibit problem instances that sole heading-
angle deviations will not resolve. Combining speed and heading angle deviations
is considered in [4], leading to a formulation characterized by highly nonlinear
trigonometric constraints. Multiple types of maneuvers are considered in [22],
where the authors propose a maneuver-discretized approach, including altitude
(flight level) changes. However, such altitude changes are rarely employed in
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practice, as they are associated with several operational drawbacks. For this rea-
son, the present paper does not consider altitude changes. Another approach
based on discretization, combining speed and heading changes, is that of [23].
Speed and heading deviations are applied sequentially in a two-step solution
approach in [14]. In [26], the authors propose an approach combining speed
and heading angle deviations, that is extended in [17] to allow also flight level
changes. This approach leads to mixed-integer quadratically-constrained prob-
lems, solved through a sequence of convex relaxations. As a result, the authors
obtain global optima for several problem instances. In this paper, we consider
the same maneuver combination as in [26] (speed and heading angle deviations);
we propose two new models, allowing us to obtain globally optimal solutions for
instances not solved in [17, 26].

Note finally that, in an operational context, each aircraft needs to recover
its original trajectory after being deviated. This subsequent problem is out of
the scope of the present paper; let us simply refer the reader to [4] for a sim-
ple approach to trajectory recovery (it involves solving a convex unconstrained
quadratic problem for each pair of aircraft).

The main contribution of this paper is the introduction of two new models for
aircraft conflict resolution relying on both aircraft heading and speed deviations,
and stemming from two different ways to address the conditional separation
constraints characterizing the problem. The inherent combinatorics in conflict
avoidance problems leads naturally to conditional constraints: if two vehicles are
converging spatially, then their smallest inter-distance must be bounded below
at all time. Moreover, the separation constraint that must be imposed to avoid
conflicts often involves nonconvex, nonlinear constraints. We first introduce a
mixed-integer nonlinear programming (MINLP) formulation and a continuous
optimization model that is based on an original penalty-function strategy in-
troduced in [11] to deal with conditional constraints. The MINLP model has a
continuous relaxation that is not convex, and the continuous-optimization for-
mulation is a constrained non-convex problem. Both models involve a number
of variables and constraints that is quadratic in the number of aircraft.

As a second contribution, we propose an effective three-phase solution ap-
proach whose first phase is the solution of the continuous optimization problem,
and the other two phases rely on the MINLP, thus enabling us to obtain exact
global solutions.

The remainder of this paper is structured as follows. Section 2 presents the
aircraft conflict avoidance problem, and proposes a reformulation of the angle-
related functions involved in the two models we are introducing. Sections 3 and
4 introduce respectively these two models: a mixed-integer nonlinear optimiza-
tion formulation, and a continuous optimization model based on a penalty func-
tion. Section 5 reports numerical experiments on the aircraft conflict avoidance
problem, performed using each of the two models. Section 6 proposes an effec-
tive global-optimization approach combining the advantages of the two models
proposed above. Finally, conclusions are drawn in Section 7.
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2 Aircraft conflict avoidance: Towards new mod-
els

This section first briefly defines the problem to be solved and explains the im-
portant separation constraints, then it introduces some linearizations that will
be used in the two new optimization models that we are proposing.

2.1 Problem statement and separation constraints

This subsection defines the air traffic conflict avoidance problem, and presents
how we model the aircraft separation constraints in a continuous time interval.

In the sequel, for any given vector, x, the notation xi represents its ith

component. We assume that we are given an index set, A = {1, 2, . . . , n},
corresponding to aircraft flying at the same constant altitude (flight level), on
straight-line segment trajectories. The aim is to keep aircraft pairwise separated
during the time horizon these aircraft are monitored. Two aircraft are separated
if their relative distance is greater than or equal to a given standard separation
distance (commonly, 5 nautical miles (NM) for commercial en-route flights). A
conflict corresponds to the loss of such a separation. For each aircraft i ∈ A,
we know its initial position, (x0

i , y
0
i ) ∈ R2, and its velocity (i.e., its heading

angle, ϕi, and its speed, vi). Given this configuration, aircraft conflict avoidance
consists in issuing separation maneuvers (simultaneously, at time t = 0) so as
to ensure that the aircraft will remain separated.

The main difficulty in aircraft conflict avoidance problems comes from the
separation constraint that must hold for each pair i, j ∈ A (i < j) of aircraft:

||xij(t)|| ≥ d ∀ t ≥ 0, (1)

where d is the minimum required separation distance, xij(t) = xi(t)−xj(t) ∈ R2

is a vector representing the position of aircraft i relative to that of aircraft j
(position of aircraft i in the Cartesian coordinate system whose origin is the
position of aircraft j), and we use the Euclidean norm. This constraint repre-
sents in general a non-convex set. It is similar to the constraint requiring circles
not to overlap in packing / cutting problems (with a norm || · ||A, where A is
a positive definite matrix A different from the identity matrix, for the ellipse
case ([21])). A further difficulty here is that it must hold for all time t (our
objects are vehicles, and move). As mentioned in Section 1, the latter difficulty
has been addressed in various ways in the literature. Here we choose the simple
“parabola approach” of [13] to address this continuum of constraints. More pre-
cisely, assuming uniform motion law, the relative distance of aircraft i and j is
expressed as: xij(t) = x0

ij+vijt, for all t, where x
0
ij is the aircraft relative initial

position, and vij is their relative speed. Substituting into (1) and squaring, one
obtains, introducing the notation fij(t):

fij(t) = ∥vij∥2t2 + 2x0
ij · vijt+ ∥x0

ij∥2 − d2 ≥ 0, ∀ t ≥ 0. (2)

Hence, for each pair of aircraft i and j, satisfying constraint (1) amounts to en-
suring that the simple univariate quadratic separation function, fij(t), is always
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Figure 1: The separation function for two initially-separated, converging aircraft
and the forbidden set S

non-negative. Remark that the vectors x0
ij and vij will be straightforwardly

computable explicitly in terms of the decision variables and of the input data
of the problem. We assume that aircraft are separated at t = 0 (verified in a
pre-processing stage). Without loss of generality, we suppose vij ̸= 01. As in
[13], since the quadratic function fij is strictly convex, one can easily verify that
the condition (1) is equivalent to:

if tmij > 0, then fij(t
m
ij ) ≥ 0, (3)

where tmij is the minimizer of fij . As tmij =
−x0

ij · vij

∥vij∥2
, finally the separation

constraint (1) is equivalent to the following logical condition:

if tmij > 0, then ∥vij∥2(∥x0
ij∥2 − d2)− (x0

ij · vij)
2 ≥ 0. (4)

Figure 1 provides an intuitive interpretation of the separation condition (3): the
parabola gives, at every time t, the value of the separation function fij (which is
positive if and only if aircraft i and j are separated by a distance of at least d),
i.e., it gives the square of the distance between aircraft i and j plus d2, at any
time t. One observes that, in the displayed example, initially (at time t = 0) the
aircraft are separated (the curve goes through the green vertical half-line) but
are converging (their inter-distance is decreasing). The separation constraint
therefore requires the “lowest” point of the parabola, pm := (tmij , fij(t

m
ij )), to lie

outside the “forbidden” open fourth quadrant:

S = {(t, f) ∈ R2 : t > 0 and f < 0}, (5)

displayed in grey on Figure 1.

2.2 Towards new optimization models

We aim at proposing mathematical models involving decision variables control-
ling both speed and heading angle of each aircraft. We first present our main

1Otherwise, the fact that i and j are separated at t = 0 is equivalent to having i and j
separated for all t ≥ 0; equivalently, setting vij=0 in (2) boils down to the initial separation
∥x0

ij∥ ≥ d.
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decision variables and the (nonlinear) way they are related to express the sep-
aration conditions. Then, we propose some reformulations to avoid explicitly
handling trigonometric functions.

For each aircraft i ∈ A, let qi be its speed variation, and let θi be its heading-
angle variation. More precisely, qi is the proportion of variation of the aircraft
original speed, vi, so that the actual aircraft speed is qivi, and θi is added (its
value may be negative) to the original angle, ϕi. Both speed and angle variations
are assumed to be bounded. If we suppose that the speed can be decreased by
no more than 6% and increased by no more than 3%, (common operational
and cost constraints are even stricter), we have that the actual aircraft speed is
qivi ∈ [0.94vi, 1.03vi]. We shall assume that the heading angles, θi, are bounded
in the interval [θi, θi], where θi = −π/6 and θi = π/6, as it is common practice
in air traffic control for operational reasons.

Recall from Subsection 2.1 that in order to express the separation condition
for a pair of aircraft i, j∈A (i<j), we suppose that their relative initial position,
x0
ij ∈R2, is given

x0
ij :=

(
x0
i − x0

j

y0i − y0j

)
and, taking into account possible speed and heading angle variations, their
relative velocity, vij ∈ R2, is:

vij :=

(
cos(ϕi + θi)(qivi)− cos(ϕj + θj)(qjvj)
sin(ϕi + θi)(qivi)− sin(ϕj + θj)(qjvj)

)
. (6)

Here again, this is similar to rotating objects in packing / cutting problems,
when the speed variable qi is set to the constant value 1.

To avoid explicit trigonometric functions in our optimization models, we
define for each aircraft i ∈ A:

ci := cos(ϕi + θi) and si := sin(ϕi + θi). (7)

In order to linearize (6), we further define ωi and πi for each i ∈ A as follows:

ωi := ciqivi, (8)

πi := siqivi, (9)

so that

vij =

(
ωi − ωj

πi − πj

)
, i, j ∈ A : i < j. (10)

In both optimization models to be introduced in Sections 3 and 4, our main
decision-variable vectors will be: q, ω and π, (and v remains as an auxiliary
decision-variable vector). Let us consider a particular aircraft i ∈ A. The
variable qi controls the variation of the speed of aircraft i. The other two
variables, ωi and πi, although they both depend on qi, account for variations in
the heading angle of aircraft i. Note that, as c2i + s2i = 1, it follows that:

ω2
i + π2

i = (qivi)
2(c2i + s2i ) = (qivi)

2. (11)
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Thus, in fact we only have two degrees of freedom for each aircraft i ∈ A. Equa-
tion (11) is a nonlinear equality constraint that is included in our optimization
models for each i ∈ A.

Remark: Going from the pair of variables (qi, θi) to the triple (qi, ωi, πi)
is crucial. As already mentioned, it still involves only two degrees of freedom
for each aircraft i ∈ A, taking into account equation (11). Expressing our
optimization problem in terms of the above triple has the strong advantage
of avoiding trigonometric functions, and of removing the bilinear product ciqi
and siqi, thus linearizing (6) into (10), thereby enabling a more efficient use of
optimization solvers.

We introduce in the following two sections two new models for aircraft con-
flict avoidance based on the above setting: a mixed-integer non-linear formu-
lation and a continuous penalty-based nonlinear model. Both formulations are
constructed using the main decision variables, qi, ωi and πi, i ∈ A, and the
quadratic equality constraints (11) linking the above variables (together with
the auxiliary variables vij , i, j ∈ A (i < j), and their defining constraints). The
two formulations address differently the crucial issue of the logical separation
condition

if tmij > 0, then ∥vij∥2(∥x0
ij∥2 − d2)− (x0

ij · vij)
2 ≥ 0 (12)

that one must consider for every possible pair of aircraft, i, j ∈ A, i < j.

3 MINLP formulation

The first model that we introduce for aircraft conflict avoidance is an MINLP,
in which the separation constraint (12), for each i, j ∈ A, i < j, is modelled via
the complementary formulation (see, e.g., [6]) of logical constraints:

tmij (yij − 1) ≥ 0, (13)

yij
(
∥vij∥2

(
∥x0

ij∥2 − d2
)
− (x0

ij · vij)
2
)
≥ 0, (14)

yij ∈ {0, 1}, (15)

where yij is an extra auxiliary binary decision variable. Remark by the way
that constraint (12) is equivalent to the following implication (without a strict
inequality in the condition on the sign of tmij ):

if tmij ≥ 0, then ∥vij∥2(∥x0
ij∥2 − d2)− (x0

ij · vij)
2 ≥ 0, (16)

since by assumption, aircraft i and j are separated when tmij = 0 (it is rather
the form (16) that is seen in the literature on aircraft conflict avoidance).

Equations (13)-(15) model the crucial separation condition that character-
izes the conflict resolution problem. An optimization formulation comprises also
an appropriate objective to be defined. A natural objective is to minimize the
angle and speed variations with respect to the given initial conditions ϕi and
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vi (i ∈ A). However, this requires expliciting each angle change in the objec-
tive function through trigonometric functions, losing thereby the computational
benefit of our model for angle change. Note first that, as in air-traffic practice
the allowed angle deviation, θi, is a bounded variable, one has for each i ∈ A:

a ≤ cos(θi) ≤ 1 and −b̄ ≤ sin(θi) ≤ b̄, (17)

for some values of a ≥ 0 and b̄ ≤ 1. In practice, each |θi| is typically bounded

by π/6; so that one generally sets a =
√
3
2 and b̄ = 1

2 . Let us now introduce, for
each i ∈ A, an auxiliary variable, bi, defined as an upper bound on | sin(θi)|:

−b̄ ≤ −bi ≤ sin(θi) ≤ bi ≤ b̄. (18)

In order to minimize angle deviations, one then aims at minimizing the bi’s.
Thus, in order to minimize both speed and angle deviations, one may consider
the following objective function

(1− λ)
∑
i∈A

(1− qi)
2
+ λ

∑
i∈A

bi, (19)

where λ ∈ [0, 1] is a user-defined weighting parameter that can be adjusted to
reach a good compromise between speed and angle deviations.

Linking constraints
Introducing the auxiliary-variable vector b requires defining constraints to

link these new variables to the original decision-variable vectors q, ω and π. To
that aim, let i ∈ A, and let us consider the trigonometric identity:

cos(ϕi + θi) = cosϕi cos θi − sinϕi sin θi,

together with a ≤ cos(θi) ≤ 1 and −bi ≤ sin(θi) ≤ bi. Considering the four
cases that can arise, depending on the signs of sinϕi and cosϕi, and recalling
that each (given) heading angle, ϕi, satisfies −π ≤ ϕi < π, one obtains the
following relationship:

min (a cosϕi, cosϕi)−bi | sinϕi| ≤ ci ≤ max (a cosϕi, cosϕi)+bi | sinϕi| (20)

Similarly, the trigonometric identity:

sin(ϕi + θi) = sinϕi cos θi + cosϕi sin θi

yields:

min (a sinϕi, sinϕi)−bi | cosϕi| ≤ si ≤ max (a sinϕi, sinϕi)+bi | cosϕi|, (21)

where ci and si are the intermediate cosine and sine variables defined by (7).
From the definitions (8) and (9) of ωi and πi, we then obtain the following
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linking constraints:

ωi ≥ (min (a cosϕi, cosϕi)− bi | sinϕi|) qivi, (22)

ωi ≤ (max (a cosϕi, cosϕi) + bi | sinϕi|) qivi, (23)

πi ≥ (min (a sinϕi, sinϕi)− bi | cosϕi|) qivi, (24)

πi ≤ (max (a sinϕi, sinϕi) + bi | cosϕi|) qivi. (25)

Valid (bound-constraint) inequalities
Let us now determine lower and upper bounds for the decision variables ωi

and πi, i ∈ A, in order to render a branch-and-bound solution procedure more
efficient. Let us introduce the following notation, related to inequalities (20)
and (21):

ci(bi) := min (a cosϕi, cosϕi)− bi | sinϕi|, (26)

ci(bi) := max (a cosϕi, cosϕi) + bi | sinϕi|, (27)

si(bi) := min (a sinϕi, sinϕi)− bi | cosϕi|, (28)

si(bi) := max (a sinϕi, sinϕi) + bi | cosϕi|. (29)

Using the bounds on the variable qi, qi ≤ qi ≤ qi (where, as mentioned above,
commonly qi = 0.94 and qi = 1.03), and following the possible cases for the
signs of (the given data) cosϕi and sinϕi in the expressions of ci(bi) and ci(bi)
above, we obtain, for each aircraft i ∈ A, the bound-constraint valid inequality:

ωi ≤ ωi ≤ ωi, (30)

where

ωi =

{
ci(b̄) qi vi, if ci(b̄) ≥ 0,
ci(b̄) qi vi, otherwise,

and
ωi =

{
ci(b̄) qi vi, if ci(b̄) ≤ 0,
ci(b̄) qi vi, otherwise.

Recall that vi, ci(b̄) and ci(b̄) are constants (the latter will be denoted simply ci
and ci respectively in the sequel), and the speed bounds, qi and qi, are always
positive.

In an analogous manner, we obtain for πi:

πi ≤ πi ≤ πi, (31)

where

πi =

{
si qi vi, if si ≥ 0,
si qi vi, otherwise,

and πi =

{
si qi vi, if si ≤ 0,
si qi vi, otherwise,

(32)
with the notation: si := si(b̄), and si := si(b̄).
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The MINLP formulation can be summarized as follows:

min
q,ω,π,tm,v,b,y

(1− λ)
∑
i∈A

(1− qi)
2
+ λ

∑
i∈A

bi (33)

s.t.

yij
(
∥vij∥2

(
∥x0

ij∥2 − d2
)
− (x0

ij · vij)
2
)
≥ 0, i, j ∈ A : i < j (34)

tmij∥vij∥2 = −x0
ij · vij , i, j ∈ A : i < j (35)

tmij (yij − 1) ≥ 0, i, j ∈ A : i < j (36)

vij =

(
ωi − ωj

πi − πj

)
, i, j ∈ A : i < j (37)

ω2
i + π2

i = (qivi)
2, i ∈ A (38)

ωi ≥ (min (a cosϕi, cosϕi)− bi | sinϕi|) qivi, i ∈ A (39)

ωi ≤ (max (a cosϕi, cosϕi) + bi | sinϕi|) qivi, i ∈ A (40)

πi ≥ (min (a sinϕi, sinϕi)− bi | cosϕi|) qivi, i ∈ A (41)

πi ≤ (max (a sinϕi, sinϕi) + bi | cosϕi|) qivi, i ∈ A (42)

qi ≤ qi ≤ qi, i ∈ A (43)

ωi ≤ ωi ≤ ωi, i ∈ A (44)

πi ≤ πi ≤ πi, i ∈ A (45)

0 ≤ bi ≤ b̄, i ∈ A (46)

yij ∈ {0, 1}, i, j ∈ A : i < j. (47)

Remarks:

1. The number of variables is O( 3n
2

2 ) (among which n(n−1)
2 variables are

binary), and the number of constraints is O(2n2).

2. Constraints (39) to (42) are bilinear constraints since, as cos(ϕi) and
sin(ϕi) are known input data, their sign, and thereby the maxima and
minima involved, are known in advance.

3. Replacing constraints (35) and (36) with the equivalent constraints:

(x0
ij · vij)(yij − 1) ≤ 0 i, j ∈ A : i < j, (48)

one can eliminate the optimization variables tmij ’s and the highly non-linear
constraints (35) from the formulation.

4. In our implementation, we do not use the decision variables vij , but rather
auxiliary variables representing ∥vij∥2 and x0

ij · vij , i, j ∈ A : i < j, and
we adapt thereby constraints (37).

4 Penalty continuous-optimization formulation

This section introduces our second formulation, named NLP-Penalty in the
sequel, of the aircraft conflict avoidance problem. In the NLP-Penalty model,
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the logical separation constraint (12) is formulated in a different way from that
of the MINLP formulation. Whereas the latter models this logical constraint
via the complementary formulation, the NLP-Penalty model addresses it via
the continuous quadrant penalty formulation of logical constraints introduced
in [11].

The formulation we are proposing involves the decision variables:

qi, ωi, πi, i ∈ A and (tmij , f
m
ij ),vij , i, j ∈ A : i < j, (49)

where tmij = argminfij(t), using the notation (2), and letting fm
ij := fij(t

m
ij ).

The corresponding feasible domain is a subset of

Rn × Rn × Rn × (R2 \ S)(
n
2) × R(

n
2). (50)

Letting i, j be a pair of aircraft (i, j ∈ A, i < j), remark that the separation
condition (12) then simply reads:

if tmij > 0, then fm
ij ≥ 0. (51)

We reformulate the logical constraint (51) using the continuous quadrant
penalty function gβ : (t, f) ∈ R2 → R introduced in [11]:

gβ(t, f) =



0, if t ≤ 0 or f ≥ 0,

t2, if 0 < t ≤ −f

3
,

−(t2 + 6tf + f2)

8
, if −f

3
< t < −3f,

f2, if − t

3
≤ f < 0,

(52)

(setting β = 3 as proposed by the authors), and illustrated on Figure 2. Sum-
ming up over all pairs i, j ∈ A : i < j, this yields the penalty function∑

i,j∈A:i<j

gβ(t
m
ij , f

m
ij ) (53)

to be minimized.
Each of the term functions gβ is shown in [11] to be smooth. To give a

geometrical interpretation of the function (53), remark first that the logical
constraint (51) is equivalent to requiring: pm = (tmij , f

m
ij ) ∈ R2 \S, as illustrated

by Figure 1, and where S is defined by (5). Moreover, since vij , t
m
ij , and fm

ij

depend on qi, ωi, πi and qj , ωj , πj , these six optimization variables control the
location of the point pm on the graph of fij . Each term of the objective func-
tion (53) therefore guides a continuous optimization descent method towards
the subset of the feasible set where the corresponding separation constraint is
satisfied.

The NLP-Penalty formulation we are proposing penalizes constraint (51),
for i, j ∈ A : i < j, and preserves the other constraints.
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f
0

0

0

f2

− 1
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2 + 6 t f + f2)

t2

Figure 2: The piecewise quadratic penalty function gβ (left), and its 3D graph
(right), when β = 3 (from [11]).

Similarly to the MINLP formulation introduced in Section 3, a minimiza-
tion of the weighted function representing the deviations to aircraft speeds and
headings, can be considered. Combining such a function with the penalty func-
tion (53) would lead to a weighted function involving a further weight (penalty)
parameter to be tuned by the user. We choose in this study to focus solely on
the penalty function term (53), in order to investigate more easily the behaviour
of the penalty function in the context of conflict resolution. Moreover, the NLP-
Penalty model that we propose will constitute one of the phases of resolution of
the optimization problem minimizing maneuver deviations to global optimality
presented in Section 6.

To summarize, the (continuous)NLP-Penalty formulation we are propos-
ing reads as:

min
q,ω,π,tm,fm,v

∑
i,j∈A:i<j

gβ(t
m
ij , f

m
ij ) (54)

s.t.

fm
ij ∥vij∥2 = ∥vij∥2(∥x0

ij∥2 − d2)− (x0
ij · vij)

2, i, j ∈ A : i < j (55)

tmij∥vij∥2 = −x0
ij · vij , i, j ∈ A : i < j (56)

vij =

(
ωi − ωj

πi − πj

)
, i, j ∈ A : i < j (57)

ω2
i + π2

i = (qivi)
2, i ∈ A (58)

qi ≤ qi ≤ qi, i ∈ A

ωi ≤ ωi ≤ ωi, i ∈ A (59)

πi ≤ πi ≤ πi, i ∈ A. (60)

Remarks:

1. The number of (continuous) variables is O( 3n
2

2 ), and the number of con-

straints is O( 3n
2

2 ).
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2. In our implementation, the fm
ij ’s and the tmij ’s do not in fact appear as

auxiliary variables: they are explicitly replaced in the model using con-
straints (55) and (56). As for the MINLP model, we also do not use the
decision variables vij (but rather auxiliary variables representing ∥vij∥2
and x0

ij · vij , i, j ∈ A : i < j), and we adapt thereby constraints (57).

3. Since the objective function of the NLP-penalty formulation does not in-
volve angle-related deviations, the vector, b, of extra decision variables
introduced for the MINLP does not intervene in the calculation of the
bound constraints (59) and (60), but only its extreme values through b̄,
the upper bound on the | sin(θi)|’s.

4. This problem is bounded below (by zero). Moreover, it is feasible. Indeed,
for each i ∈ A one can choose qi = 1, and ωi, πi satisfying (58) and
corresponding to a null heading change (θi = 0) in (7), (8) and (9). Then,
for each pair i, j ∈ A, constraints (55) and (56) simply define the lowest
separation-function value, fm

ij , and its corresponding time, tmij (or they
yield the trivial equality 0 = 0 in the case where vij = 0).

As demonstrated in [11], the penalty function, gβ , features several desirable
properties in view of its use with a state-of-the-art local optimization solver.
However, the fact that each term function, gβ : R2 → R, leans outwards the
(open fourth quadrant) set S (which corresponds to a non-separated pair of air-

craft) does not imply that the objective function
∑

i,j∈A:i<j

gβ(t
m
ij , f

m
ij ) : R

2(n2) →

R leans outwards the Cartesian-product set S(
n
2) (⊆ R2(n2)). Indeed, remark

first that this objective function is not separable: each of the speed and angle-
related variables qi, ωi, πi corresponding to one aircraft i ∈ A intervenes in sev-
eral terms of the objective function (each aircraft i is involved in several pairs
of aircraft). Moreover, this objective function is not convex, and may thereby
feature local optima that do not satisfy the constraint(s) the penalty function
aims at modelling. Finally, one must also take into account the remaining con-
straints (all the ones that are not penalized), which include nonlinear equality
constraints such as (58), yielding thereby a nonconvex feasible domain.

The next two sections show that good results are obtained despite the above-
mentioned potential difficulties.

5 Numerical results

This section presents the performance of the MINLP and the NLP-Penalty
formulations of Sections 3 and 4, through numerical experiments.

We test our models on two types of benchmark instances: the Circle Problem
(CP), and the Random Circle Problem (RCP). In both cases, instances are
constructed as follows. Aircraft are uniformly positioned on the circumference
of a circle, representing the observed airspace portion, and are given an initial
speed and a heading to fly towards the opposite side of the circle. This kind
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of instances are widely used in the literature [13, 14, 15, 17, 26]. We use the
instances proposed by (and available via) [17, 26]. The radius of the circle is
200 nautical miles (NM). The CP instances are generated with initial identical
speeds (vi = 500 NM/h, i ∈ A), and with all aircraft heading towards the center
of the circle, thus resulting in a highly symmetric problem. The RCP instances
are such that aircraft initial speeds and headings are randomly deviated within
specified ranges (486–594 NM/h for the speed, and ±π/6 with respect to the
heading towards the center, for the angle), resulting thereby in more realistic and
less structured instances. The standard separation distance, d, to be respected
between aircraft, is equal to 5 NM. Aircraft speeds and heading angles are
bounded due to operational constraints. For each aircraft i ∈ A, we set the
bounds on variables qi to: qi = 0.94 and q̄i = 1.03, that correspond to a so-
called subliminal speed change (the original aircraft speed is allowed to vary only
between −6% and +3%). We allow heading angles, θi, to vary between −π/6
and +π/6, and compute bounds on variables ωi and πi accordingly (i ∈ A). The
β parameter of the continuous quadrant penalty function, gβ , is set to β = 3.

The proposed models are implemented using the AMPL ([20]) modeling lan-
guage. Numerical tests are performed on a 2.66 GHz Intel Xeon (octo core)
processor with 32 GB of RAM and Linux operating system.

We first present numerical results obtained by considering our MINLP model
(Section 3). The problem is solved by running the MINLP solver COUENNE

([7]), version 0.5, with all its default values, except for its feasibility tolerance
which we increase to 10−5. As this is recommended only for small problems, we
disable both the optimality-based bound tightening as well as the “aggressive”
feasibility-based bound tightening options, that are generally computationally
expensive. Tests are run with a time limit of 600 seconds.

Note that, in contrast with [26], whose objective function involves a fixed,
arbitrary nonlinear combination of the speed and angle deviations, our model
allows the user to decide a particular speed-angle trade off, expressed through
the weighting parameter, λ in (33), or to compensate any unfortunate choice of
units, for instance to scale the angle deviation (expressed in radiants, degrees,
etc.) with the speed deviation (which can be in percentage as here, in mile
per hour, or in knots). In our experiments, we set λ = 10−6. The recourse to
such a small value of λ is not surprising when one considers the difference in
the scales of the two criteria, speed and angle deviations, that constitute the
objective function (19). Indeed, a typical extreme speed deviation for an aircraft
i corresponds to accelerating it up to a fraction qi = 1.03 of its initial speed,
which yields a corresponding penalty term value of (1 − qi)

2 = 9
10,000 ; whereas

an extreme angle deviation involves a heading angle change of |θi| = π
6 which

yields a corresponding penalty term value of bi =
1
2 : the latter is 3 to 4 orders

of magnitude larger than the former.
Table 1 reports the results obtained solving our MINLP problem. The head-

ings of the table are as follows: Name, name of the instance; n, number of
aircraft; nc, number of initial conflicts (conflicts resulting from no speed change
and no heading deviation); nhthc, number of initial head-to-head conflicts; time,
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MINLP (λ = 10−6)

Name n nc nhth time (s) speed dev.
CP 4 4 6 2 0.056 3.4e-18
CP 5 5 10 0 0.080 4.5e-15
CP 6 6 15 3 0.232 4.5e-15
CP 7 7 21 0 0.256 4.5e-11
CP 8 8 28 4 0.248 8.5e-12
CP 9 9 36 0 0.224 4.1e-11
CP 10 10 45 5 0.408 2.5e-10
CP 11 11 55 0 0.420 9.2e-13
CP 12 12 66 6 0.372 4.0e-10
CP 13 13 78 0 1.096 2.8e-11
CP 14 14 91 7 1.012 1.9e-11
CP 15 15 105 0 2.764 1.4e-09
CP 16 16 120 8 1.700 5.1e-10
CP 17 17 136 0 2.304 8.1e-10
CP 18 18 153 9 2.788 4.7e-10
CP 19 19 171 0 3.672 2.7e-10
CP 20 20 190 10 tlim 0.00084

MINLP (λ = 10−6)

Name n nc nhth time (s) speed dev.
RCP 10 1 10 2 1 0.368 6.1e-12
RCP 10 2 10 3 1 0.276 4.6e-12
RCP 10 3 10 2 1 0.276 7.4e-13
RCP 10 4 10 1 1 1.172 1.2e-12
RCP 10 5 10 5 1 0.268 3.6e-11
RCP 10 6 10 4 1 0.488 5.6e-12
RCP 10 7 10 4 1 0.324 4.2e-12
RCP 10 8 10 4 1 0.512 8.4e-12
RCP 10 9 10 3 1 0.624 4.7e-12
RCP 10 10 10 0 0 0 0
RCP 20 1 20 8 2 2.320 1.1e-09
RCP 20 2 20 9 2 2.244 2.0e-10
RCP 20 3 20 13 2 3.860 3.5e-10
RCP 20 4 20 9 2 5.712 8.9e-06
RCP 20 5 20 12 3 2.264 5.5e-11
RCP 20 6 20 13 2 2.840 1.0e-11
RCP 20 7 20 9 2 2.476 2.8e-10
RCP 20 8 20 9 2 2.552 2.9e-11
RCP 20 9 20 19 4 2.100 7.4e-11
RCP 20 10 20 15 3 2.088 1.3e-10
RCP 30 1 30 35 1 25.02 5.1e-09
RCP 30 2 30 38 1 11.59 3.1e-09
RCP 30 3 30 46 1 47.13 8.5e-06
RCP 30 4 30 39 1 301.6 0.000214
RCP 30 5 30 36 2 10.31 3.6e-10
RCP 30 6 30 32 2 tlim 2.1e-05
RCP 30 7 30 18 1 13.89 8.4e-10
RCP 30 8 30 40 1 21.55 2.5e-10
RCP 30 9 30 41 2 24.42 6.5e-09
RCP 30 10 30 46 1 tlim 0.000776
RCP 30 11 30 34 2 tlim 0.000154
RCP 30 12 30 36 1 tlim 0.000914
RCP 30 13 30 30 1 tlim 7.7e-05
RCP 30 14 30 39 2 tlim 6.8e-05
RCP 30 15 30 30 1 tlim 0.000281

Table 1: Results on CP and RCP instances: MINLP, with λ = 10−6. Global
exact solutions.

computing time in seconds, and speed dev., value of the speed deviation in the
computed optimal solution (this later value will be useful in the tests of Sec-
tion 6). One observes that our MINLP model allows us to find global optima
for all the classical CP instances except for the largest one (n=20), including
the ones involving 11 ≤ n ≤ 19 aircraft for which only local optima could be
found in [17, 26]. The computing time is always less than 4 seconds for these
academic and highly symmetric instances, even when a large number of conflicts
are to be solved. Moreover, all the 10- and 20-aircraft RCP instances are solved
to global optimality, the computing time varying from 0 to a little more than 5
seconds (note that among the randomly-generated instances of [26], RCP 10 10
features no conflicts to be solved). For the, larger, 30-aircraft RCP instances, 7
out of 15 instances are solved to global optimality, while our MINLP ends with
a time limit (tlim in Table 1) for the remaining cases. In such cases, a feasible
solution is however always computed (no guarantee of global optimality).
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Let us now concentrate on the solution of the asymmetrical, and more re-
alistic, RCP instances using our NLP-Penalty model. We choose the IPOPT

solver for NLPs ([29]), version 3.12, to solve the optimization problem. The
inner linear algebra solver is MA57 ([18]), and we set the feasibility tolerance
to 10−5, exactly as for the MINLP solver. Note that if this local optimization
approach attains the lower bound zero, then global optimality is achieved with
respect to the penalty objective function (53). Such solutions correspond how-
ever only to feasible solutions for the MINLP problem (which aims at deciding
angle and speed for each aircraft so as to minimize their deviations from orig-
inal values). Recall moreover that our NLP-Penalty problem is a nonconvex
constrained NLP; it can thereby feature multiple local minima. Further, the
penalization approach is likely to yield local minima that violate the (penal-
ized) separation constraints (referred to as local infeasibility). The strategy we
propose to address these issues is to solve the problem (to local optimality),
using randomly-generated starting points through a simple multistart heuristic.
We first run the solver from the starting guess corresponding to no deviation in
speed and no deviation in heading angle (i.e., setting for all i ∈ A: qi = 1, and
values of ωi and πi corresponding to θi = 0). Then, within a maximum of N = 5
trials, we generate new starting guesses choosing randomly, for each i ∈ A: qi
uniformly in [0.94, 1.03], and ωi, πi such that the value of θi varies uniformly in
[−π/6, π/6]. A trial converging towards an optimum with zero penalty value is
said a successful run.

Table 2 reports the numerical results obtained using our NLP-Penalty model.
The first four columns report the characteristics of the test instances as for
Table 1; the following four columns report respectively the computing time,
in seconds, for the successful run (time success); the total time, in seconds,
obtained by summing up the computing times of all trials (total time); the
number of trials (nb trials); and the speed deviation that corresponds to the
computed solution (speed dev.). The speed deviation is computed a posteriori.
One first observes that this local-optimization approach always yields, on all
the considered test cases, global optimality with respect to the penalty objective
function (53) (since the lower bound zero is attained). Moreover, for 32 instances
out of 34 the solution is computed in one run only, while for the other ones no
more than 2 runs are needed. Computing times are always below 6 seconds,
except for one instance whose multiple starting-point runs yielded a total of 20
seconds. These results show the interest of the proposed continuous optimization
approach.

6 Three-phase solution method

The proposed NLP-Penalty and MINLP formulations yield solutions that are
not comparable: the former yields a locally-optimal solution while the latter
ends with a global minimizer and this, for objective functions that are different.
In this subsection, we propose an effective global optimization approach that
attempts at exploiting the advantages of both models. It is a three-phase method
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NLP-Penalty

Name n nc nhth time success (s) total time (s) nb trials speed dev.
RCP 10 1 10 2 1 0.132 0.132 1 0.00088
RCP 10 2 10 3 1 0.160 0.160 1 0.00077
RCP 10 3 10 2 1 0.104 0.104 1 0.00155
RCP 10 4 10 1 1 0.464 0.464 1 0.00144
RCP 10 5 10 5 1 0.936 0.936 1 0.00081
RCP 10 6 10 4 1 0.048 0.048 1 0.00063
RCP 10 7 10 4 1 0.100 0.100 1 0.00479
RCP 10 8 10 4 1 0.264 0.264 1 0.00105
RCP 10 9 10 3 1 0.108 0.108 1 0.00065
RCP 10 10 10 0 0 0 0 0 0
RCP 20 1 20 8 2 3.092 3.092 1 0.00432
RCP 20 2 20 9 2 0.904 1.708 2 0.00057
RCP 20 3 20 13 2 0.244 0.244 1 0.00115
RCP 20 4 20 9 2 0.372 0.372 1 0.00060
RCP 20 5 20 12 3 0.492 0.492 1 0.00097
RCP 20 6 20 13 2 0.192 0.192 1 0.00059
RCP 20 7 20 9 2 1.456 1.456 1 0.00283
RCP 20 8 20 9 2 0.520 0.520 1 0.00060
RCP 20 9 20 19 4 0.340 0.340 1 0.00418
RCP 20 10 20 15 3 2.136 2.136 1 0.01182
RCP 30 1 30 35 1 3.108 3.108 1 0.00703
RCP 30 2 30 38 1 1.072 1.072 1 0.00354
RCP 30 3 30 46 1 0.896 0.896 1 0.01184
RCP 30 4 30 39 1 2.624 2.624 1 0.00297
RCP 30 5 30 36 2 1.480 1.480 1 0.00583
RCP 30 6 30 32 2 2.204 2.204 1 0.00647
RCP 30 7 30 18 1 1.632 1.632 1 0.01872
RCP 30 8 30 40 1 1.424 1.424 1 0.00631
RCP 30 9 30 41 2 4.940 4.940 1 0.01273
RCP 30 10 30 46 1 5.912 5.912 1 0.00598
RCP 30 11 30 34 2 0.996 0.996 1 0.00665
RCP 30 12 30 36 1 1.556 1.556 1 0.00354
RCP 30 13 30 30 1 2.540 2.540 1 0.00925
RCP 30 14 30 39 2 10.09 20.06 2 0.00965
RCP 30 15 30 30 1 4.724 4.724 1 0.01018

Table 2: Results on RCP instances: NLP-Penalty problem.
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whose first phase solves the NLP-Penalty problem; the other two phases rely on
the MINLP to obtain an exact global minimizer.

The solution method we are proposing applies to the case of the minimization
of aircraft speed changes only (heading deviation changes remain however as
optimization variables). This choice is based on the observation that, in practice,
air traffic controllers (ATC) prefer handling aircraft heading deviation changes
rather than (subliminal) speed changes which cannot be easily visualized on air
situation displays. Thus, we consider λ = 0 in our MINLP model. This yields
an optimization problem where decisions are taken on both speed and heading
angle changes, and the objective is to minimize

∑
i∈A(1− qi)

2.
Here is a summary of our approach:
First, we solve the NLP-Penalty problem by a state-of-the-art local opti-

mization solver in order to find a conflict-free solution. In an attempt to avoid
convergence towards a point of local infeasibility, the same simple multistart
heuristic described above is applied. From the obtained solution, we then com-
pute the corresponding (angle-related) values of bi, for all aircraft i ∈ A, and of
the binary variables yij , for all pairs i, j, i < j (recall that the bi’s and yij ’s are
not optimization variables of the NLP-Penalty problem). We also compute, a
posteriori, the value of the speed deviation

∑
i∈A(1 − qi)

2. A speed deviation
that is zero up to a small tolerance, denoted tol and set to tol = 10−6, allows
us to stop the process: the computed feasible solution is globally optimal.

Second, we fix the variables yij for all i, j, i < j, to the values computed in the
first phase, and solve the problem (referred to, in the following, as MINLPfix)
starting from the initial solution corresponding to the values of qi, ωi, πi, bi and
yij computed in the first phase. The value of the speed deviation computed at
the end of the first phase is used as an upper bound (cutoff value) in the branch-
and-bound addressing MINLPfix, in order to remove sub-optimal regions from
the feasible set. This second phase consists therefore in a global optimization
on a continuous nonconvex problem. If the computed solution corresponds to
a null (up to the tolerance tol) speed deviation (which is the objective function
to be minimized, since we set λ = 0), then it is a globally optimal solution, and
we stop.

Third, if the speed deviation is positive (larger than tol), the value of the
binary variables yij are unfixed, and the MINLP is solved, starting from the last
computed solution, and using the corresponding speed deviation as an upper
bound.

This three-phase method is described in Algorithm 1.
We apply this three-phase solution method on the 30-aircraft RCP instances.

We use again IPOPT to solve the NLP-Penalty problem, and COUENNE to solve
the problems MINLPfix and MINLP. The solvers’ setting is the same as in the
previous tests, with again a time limit of 600 seconds. The values of the other
parameters involved in our models are also the same as in the previous tests.

Table 3 reports the results. The first four columns are the same as in previ-
ous tables, followed by two columns for each of the second and the third phases,
reporting the computing time in seconds, and the corresponding speed devia-
tions. The last column displays the total time in seconds, i.e., the sum of the
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Algorithm 1 Aircraft conflict avoidance: Three-phase method

Require: n, number of aircraft;
for each aircraft i: vi, initial speed; ϕi initial heading; (x

0
i , y

0
i ) initial position

tol, speed-deviation stopping criterion;
N , number of local-optimization starting points

- If (no initial pairwise conflicts), then stop
- Current iterate: qc := 1, and ωc, πc such that θ = 0; upper bound := +∞

Phase 1:

- Solve NLP-Penalty by local optimization, trials := 1

- While (non-zero penalty value and trials ≤ N) do

- Solve NLP-Penalty by local optimization, trials := trials+1

- If (zero penalty value), then update (qc, ωc, πc) {conflict-free solution}
else {local infeasibility} re-initialize qc := 1, and ωc, πc such that θ = 0

- If (trials > N) then compute bc, yc and go to Phase 3

- Compute bc, yc, and qdev :=
∑

i∈A(1− qci )
2

- If (qdev ≤ tol) then stop, else upper bound := qdev

Phase 2:

- Solve MINLPfix by continuous global optimization {with fixed y (= yc)}
using upper bound and starting from (qc, ωc, πc, bc, yc),
with λ = 0 {minimizing the speed deviation}
to get new (qc, ωc, πc, bc, yc). Compute qdev :=

∑
i∈A(1− qci )

2

- If (qdev ≤ tol) then stop, else upper bound := qdev

Phase 3:

- Solve MINLP by mixed-integer global optimization, using upper bound
and starting from (qc, ωc, πc, bc, yc),
with λ = 0 {minimizing the speed deviation}

computing time for solving the problem through the three phases of computa-
tion. The computing time for the first phase is the one reported in Table 2
and is therefore not repeated in Table 3. A dash (“-”) in the 3rd-phase columns
indicates that global optimality was already proved when exiting the 2nd phase.

One observes that all the instances, except RCP 30 5, are solved to global
optimality. At the exception of three instances, one does not need to go beyond
the second phase to obtain an optimal solution. For all tests, the speed deviation
computed through the second phase is at most 3.3 ×10−6. The third phase is
run for the three instances for which the speed deviation is not sufficiently small
(larger than tol). In two cases out of these three instances, the third phase then
reduces the speed deviation to 10−17, whereas for the remaining instance the
time limit is attained. The total computing time to obtain a globally-optimal
solution is lower than one minute for 8 out of the 15 instances. This is very
promising in view of the aircraft conflict avoidance application.
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2nd phase: MINLPfix 3rd phase: MINLP Total

Name n nc nhth time (s) speed dev. time (s) speed dev. time (s)
RCP 30 1 30 35 1 34.93 1.4e-06 7.900 4.22e-17 45.94
RCP 30 2 30 38 1 59.69 6.5e-15 – – 60.76
RCP 30 3 30 46 1 2.920 1.7e-16 – – 3.816
RCP 30 4 30 39 1 62.98 2.6e-16 – – 65.60
RCP 30 5 30 36 2 43.98 2.2e-06 tlim 2.24e-06 tlim
RCP 30 6 30 32 2 43.99 1.5e-16 – – 46.20
RCP 30 7 30 18 1 105.2 1.2e-16 – – 106.8
RCP 30 8 30 40 1 2.700 1.3e-17 – – 4.124
RCP 30 9 30 41 2 51.23 3.3e-06 20.38 1.89e-17 76.56
RCP 30 10 30 46 1 67.59 7.3e-07 – – 73.46
RCP 30 11 30 34 2 51.79 4.4e-16 – – 52.79
RCP 30 12 30 36 1 86.90 4.8e-15 – – 88.45
RCP 30 13 30 30 1 4.092 3.6e-16 – – 6.632
RCP 30 14 30 39 2 3.752 8.8e-18 – – 23.81
RCP 30 15 30 30 1 79.32 9.9e-16 – – 84.05

Table 3: Results for large RCP instances: three-phase method. Global exact
solutions (except for RCP 30 5)

7 Conclusion

This paper proposes two new mathematical optimization models for the air-
traffic conflict avoidance problem involving finding aircraft speed and heading
(angle) deviations. One model is a mixed-integer nonlinear optimization formu-
lation. The other model constitutes one of the only two continuous-optimization
formulations of the aircraft conflict avoidance problem; it relies on the con-
tinuous quadrant penalty formulation of logical constraints introduced in [11].
From the modeling point of view, both models benefit from reformulations of
trigonometric terms and valid bound inequalities. From the air traffic control
operational point of view, combining the speed and heading deviation maneu-
vers makes the introduced models more realistic than most models found in the
literature.

The three-phase approach that we propose takes advantage of the strengths
of both continuous local optimization (efficient computation of bounds), and
of the combinatorial branch-and-bound method (proof of global optimality).
In particular, the proposed NLP-Penalty model yields efficient computation of
good quality upper bounds. Since efficient exact global optimization relies on
bound computation, the NLP-Penalty turns out to have a significant impact
on the overall resolution. Ultimately, the efficiency of the three-phase approach
we introduce allows us to solve difficult instances of the complex problem of
aircraft conflict avoidance.

Future tracks of research include traffic conflict problems dealing with au-
tonomous vehicles involving for instance separation maneuvers applied not si-
multaneously, in a dynamic environment.
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