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Towards Proved Formal Specification and Verification of STL Operators as Synchronous Observers

Signal Temporal Logic (STL) is a convenient formalism to express bounded horizon properties of autonomous critical systems. STL extends LTL to real-valued signals and associates a non-singleton bound interval to each temporal operators. In this work we provide a rigorous encoding of non-nested discrete-time STL formulas into Lustre synchronous observers.

Our encoding provides a three-valued online semantics for the observers and therefore enables both the verification of the property and the search of counter-examples. A key contribution of this work is an instrumented proof of the validity of the implementation. Each node is proved correct with respect to the original STL semantics. All the experiments are automated with the Kind2 modelchecker and the Z3 SMT solver.

Introduction

In the context of autonomous critical systems, an undesirable behaviour can lead to significant material or human damage. Thus, the specification of properties and their formal verification play a paramount role in ensuring the safety, reliability and compliance of such systems.

Dynamical systems continuously respond to environmental changes. Signal Temporal Logic (STL) has emerged as a powerful formalism for expressing temporal properties within these systems [START_REF] Maler | Monitoring Temporal Properties of Continuous Signals[END_REF]. The main particularity of STL language is the association of each temporal operator with a finite, nonsingleton time interval, during which the operator is studied. Consider the temporal ◇ (Eventually) operator, which evaluates whether a property ϕ is satisfied or not at least once. A correct formalism for ◇ in STL is ◇ [a,b] ϕ, where a and b are times such that a < b. Most of the time, STL properties are assess offline: we execute the system from start to finish, and we observe after the end of the execution if the system behaviour and its outputs are compliant to specified requirements.

However, the complexity of certain autonomous dynamical systems may require runtime verification. This involves continuous assessment of the system's compliance to its specification throughout execution. Synchronous observers can be employed for this purpose. These specialized observers react when a property is satisfied or violated, providing instantaneous information about the system's state. This approach offers advantages such as consistent real-time information transmission and the ability to halt executions immediately upon property satisfaction or violation, without waiting for completion. Notably, this enables quicker reactions to external events, crucial for critical systems. For instance, let us admit that we wish to satisfy a property ϕ at least once during a time interval [a,b]. If the property is satisfied in the interval, then there is no need to wait for time b to affirm that the property is indeed verified.

This paper introduces preliminary works on the specification and verification of STL operators, using synchronous observers. The rest of the document focuses on discrete times, and non nested temporal Our main contribution concerns the formal verification of the correctness of STL operators. To this end, we provide a three-valued online STL semantics as well as the implementation of each STL operator in the synchronous language Lustre. The soundness of the implementation is expressed as a set of lemmas and automatically proved with the Kind2 model-checker.

(X ,t) ⊧ µ ⇔ µ(t) (1) (X ,t) ⊧ ¬ϕ ⇔ ¬((X ,t) ⊧ ϕ) (2) (X ,t) ⊧ ϕ 1 ∧ ϕ 2 ⇔ (X ,t) ⊧ ϕ 1 ∧ (X ,t) ⊧ ϕ 2 (3) (X ,t) ⊧ ϕ 1 ∨ ϕ 2 ⇔ (X ,t) ⊧ ϕ 1 ∨ (X ,t) ⊧ ϕ 2 (4) (X ,t) ⊧ ϕ 1 U [a,b] ϕ 2 ⇔ ∃t ′ ∈ t + [a,b] ∶ (X ,t ′ ) ⊧ ϕ 2 ∧ ∀t ′′ ∈ [t,t ′ ] ∶ (X ,t ′′ ) ⊧ ϕ 1 (5) (X ,t) ⊧ ◇ [a,b] ϕ ⇔ ∃t ′ ∈ t + [a,b] ∶ (X ,t ′ ) ⊧ ϕ (6) (X ,t) ⊧ ◻ [a,b] ϕ ⇔ ∀t ′ ∈ t + [a,b] ∶ (X ,t ′ ) ⊧ ϕ (7)
Section 2 covers the preliminary concepts, including the Signal Temporal Logic, the synchronous language Lustre, the model checker Kind2, and an introduction to three-valued logic. We formalise an online semantics for STL operators in Section 3, and detail its Lustre implementation in Section 4. Finally, Section 5 describes the formal correction of the operators implementation.

Preliminaries

Signal Temporal Logic

Let T denote a set of discrete times such that T = N and let X be a finite sets of signals. Let a,b ∈ T with a < b. Without loss of generality, we assume that all signals are defined as functions in T → R from time to real values. To simplify notations, we denote the set of time

[t + a,t + b] as t + [a,b].
Definition 1 (STL formal grammar). Let µ be an atomic predicate whose value is determined by the sign of a function of an underlying signal x ∈ X , i.e., µ(t) ≡ µ(x(t)) > 0. Let ϕ, ψ be STL formulas. STL formula ϕ is defined inductively as:

ϕ ∶∶= µ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ◻ [a,b] ψ | ◇ [a,b] ψ | ϕ U [a,b] ψ
Definition 2 (STL semantics). The semantics of a formula ϕ is defined at a time t ∈ T and for a set of signals X as (X ,t) ⊧ ϕ as described in the Figure 1.

µ is evaluated locally, at time t over the current values of the signals, Eq. (1). Equation (2) (Negation) is the logical negation of ϕ. Equation (3) (And) is the logical conjunction between ϕ 1 and ϕ 2 . Equation (4) (Or) is the logical disjunction between ϕ 1 and ϕ 2 .

It is worth mentioning that, in STL, all temporal operators have to be associated to a bounded, nonsingleton time interval. Equation (5) (Until) describes a temporal operator that is satisfied if Lustre [START_REF] Caspi | Lustre: A Declarative Language for Programming Synchronous Systems[END_REF] is a synchronous language for modeling systems of synchronous reactive components. A Lustre program L is a finite collection of nodes [N 0 ,N 1 ,...,N m ]. The nodes satisfy the grammar described in Table 1 in which td denotes type constructors, including enumerated types, and v either constants of enumerated types C or primitive constants such as integers i. Each node is declared by the grammar construct d of Table 1. A Lustre node N transforms infinite streams of input flows to streams of output flows, with possible local variables denoting internal flows. A notion of a symbolic "abstract" universal clock is used to model system progress. At each time step k, a node reads the value of each input stream and instantaneously computes and returns the value of each output stream. Note that all the equations of a node are computed at each time step. Therefore an if-then-else statement is purely functional and both of its branches are evaluated while only one of the computed value is returned.

Stateful constructs. Two important Lustre operators are the unary right-shift pre (for previous) operator and the binary initialization → (for followed-by) operator. Their semantics is as follows. For the operator Pre: at first step k = 0, pre p is undefined, while for each step k > 0 it returns the value of p at k -1. For the operator →: At step k = 0, p → q returns the value of p at k = 0, while for k > 0 it returns the value of q at k step.

For example, the Lustre equation y = x 0 → pre(u); will be defined for each time step k by:

y(k) = { x 0 (0) if k = 0 u(k -1) if k > 0

Specifying and verifying assume-guarantee contracts with Kind2

The annotation language CoCoSpec [START_REF] Champion | CoCoSpec: A Mode-Aware Contract Language for Reactive Systems[END_REF] was proposed for Lustre models to lift the notion of Hoare triple [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF] and Assume/Guarantee statements as dataflow contracts. A contract is associated to a node and has only access to the input/output streams of that node. The body of a contract may contain a set of assume (A) and guarantee (G) statements and mode declarations. First line of the contract (line 3) defines a local variable clk as an integer, which initially takes the value 0 and is then incrementing at each time. The assume at line 4 indicates to model checker that it has to prove the Lustre node only in the cases where the condition a ≥ 0 is satisfied. If another Lustre node is using timeab, Kind-2 also checks that this node could not provide an input a which runs counter to this assumption. Finally, Kind-2 must guarantee the equality, line 5, for all the inputs respecting the previous assumption, whatever the current time is. This equality compares the time output to value of the specification clock in a valid interval [a,b]. timeab shall calculate the same output with an internal clock bounded at time b. So here, we verify that bounding the clock has no effect on the provided output.

The Kind-2 model-checker [START_REF] Champion | The Kind 2 Model Checker[END_REF] implements various SMT-based model-checking algorithms such as k-induction [START_REF] Sheeran | Checking Safety Properties Using Induction and a SAT-Solver[END_REF] or IC3/PDR [START_REF] Bradley | IC3 and beyond: Incremental, Inductive Verification[END_REF] and allows to verify contracts with respect to nodes.

Three-valued logic

We present here the interest of three-valued logic, and introduce Kleene's three-valued logic, which we use in the next section to formalise an online version of STL operators.

For most tools, when performing monitoring of STL predicates, for a given value of simulation data, the trajectory is typically finite. It is produced by a simulation engine and stored in a data file. It is then loaded by the monitoring tool and analyzed with respect to the STL specification. In this offline setting, the final outcome indicates whether or not the input signal satisfies the specification. It is a boolean output.

Temporal operators are used to evaluate properties that change over time. Most of the time in these situations, we need to wait to decide whether a temporal property is satisfied or violated. Based on this observation, how to evaluate a property before being able to conclude, i.e. before the beginning of the time interval of a STL operator? Should we suppose that the operator is True or False before being able to decide?

Let us consider a property ◻ [0,10] P, a set of signals X and an initial time t 0 , e.g., t 0 = 0. We are interested in checking (X ,t 0 ) ⊧ ◻ [0,10] P. Let us assume that we are given with a trace for X of length

A and B B F U T A F F F F U F U U T F U T (a) AND Operation A or B B F U T A F F U T U U U T T T T T (b) OR Operation A ¬A F T U U T F (c) Negation Operation A ⇒ B B F U T A F T T T U U U T T F U T (d) Logical implication
Table 2: Truth Tables showing Kleene's 3-valued strong logic operations l < 10, e.g., l = 8, where the predicate P is valid along the whole trace. What is the validity of such a predicate? On the one hand, it is always valid, but on the other hand, it has no real definition within the time [l,10]. Indeed, P could be false at time t = 9 or t = 10 and the property would be violated.

Since STL semantics requires all temporal connectors to be associated with bounded intervals, any STL predicate has a bounded horizon limit, after which it is always possible to determine the validity of a formula. We can then use this limit to evaluate temporal operators from it, considering that the values returned before may be irrelevant. But, in some case, the validity of the predicate can already be determined. In the previous example, if P is not valid at time t = 2, we already know at this time that the operator will not be satisfied at the end of the time interval. Existing works regarding online semantics for STL [START_REF] Jyotirmoy | Robust online monitoring of signal temporal logic[END_REF] try to optimize the runtime evaluation of the predicate monitoring, detecting when one can conclude, positively or negatively.

Rather than optimizing execution time based on binary logic, Łukasiewicz proposed a three-valued logic [START_REF] Lukasiewicz | Selected Works[END_REF]. This logic introduces a third truth-value, Unknown (U), describing values for which we are not yet able to conclude if the property is satisfied or violated. Later, Kleene proposes a strong logic of indeterminacy [START_REF] Cole | Introduction to Metamathematics[END_REF] similar to Łukasiewicz logic. The main difference lies in the returned value for implication. Kleene's approach states that U ⇒ U is Unknown while Łukasiewicz considers that U ⇒ U should be True. In our use of three-valued logic, we base ourselves on Kleene strong logic.

Table 2 presents the truth tables showing the logical operations AND, OR, the logical implication, as well as the negation for Kleene's strong logic.

Online semantics for STL

To evaluate STL properties online, we rely on Kleene strong three-valued logic introduced in Table 2. In this section, we first introduce a way to obtain a three-valued output as proposed by Kleene, from two-valued outputs. Then, we provide an online and three-valued semantics for STL properties. Definition 3 (Positive, negative and indeterminacy logics). Each STL temporal operator can be expressed in a three-valued form. To implement it, we define three new concepts: 1. A Positive logic T returning True when the property is satisfied, and False when it is yet undetermined or negative. 2. A Negative logic F that acts like an alarm to underline a negative result, which means that a statement returns True when we are sure that the property is not satisfied, and it returns False otherwise (undetermined property or satisfied property situations). 3. An Indeterminacy logic U highlighting situations where it is not yet possible to conclude about the satisfaction or violation of the property. Definition 4. Let ϕ, ϕ 1 and ϕ 2 be STL properties. We denote by T t ϕ (resp. U t ϕ and F t ϕ ) the evaluation of (X ,t) ⊧ ϕ according to the positive (resp. indeterminacy and negative) logic. We denote by B ϕ the evaluation of ϕ according to the offline implementation introduced in Figure 1. Note that B ϕ does not depend on time instant t.

Property 1 (Complete and pairwise distinct). At any time instant t, exactly one of the three logic returns True for a given property.

T t ϕ ∨ U t ϕ ∨ F t ϕ (completeness) (10) ¬((T t ϕ ∧ F t ϕ ) ∨ (T t ϕ ∧ U t ϕ ) ∨ (U t ϕ ∧ F t ϕ )) (disjointness) (11) 
Remark 2 (Deduction of the output of the third logic). According to Property 1, we only need the output of a given property in two of these three logics to determine its output in the last one. For example, if a property ϕ returns False in positive and negative logic, it means that ϕ is still Unknown (True in the indeterminacy logic).

Remark 3 (Property determination).

There exists an instant t d from which we cannot satisfy U t≥t d ϕ . For a non-nested temporal operator evaluated on time interval [a,b], t d corresponds at the latest to t + b.

∃t d ≤ t + b ∶ ∀t ′ ≥ t d ,¬U t ′ ϕ (12)
Property 2. From a specific time instant t f , the offline and online results are similar. Thus, the outputs of the offline B ϕ and online T t f ϕ versions are equivalent. In the same way, the negation of the offline operator is equivalent to the online negative version F t f ϕ . For a non-nested temporal operator evaluated on time interval [a,b], this time instant corresponds at the latest to t + b:

τ ≥ t + b ⇒ ((B ϕ ⇐⇒ T τ ϕ ) ∧ (¬B ϕ ⇐⇒ F τ ϕ )) (13) 
Property 3 (Immutability: Positive and negative logics are final). If a property is satisfied in the positive (resp. negative) logic, it will remain so in the future.

∃t ∈ T ∶ T t ϕ ⇒ ∀t ′ ≥ t,T t ′ ϕ ( 14 
) ∃t ∈ T ∶ F t ϕ ⇒ ∀t ′ ≥ t,F t ′ ϕ ( 15 
)
From these three logics, we obtain easily a three-valued output. The property is: 1. True in threevalued logic if it is True in positive logic; 2. False in three-valued logic if it is True in negative logic; 3. Unknown in three-valued logic if it is True in indeterminacy logic.

Let us now characterize for each construct, the sufficient and necessary conditions to determine a positive, a negative, or a temporary indeterminate value.

In the case of a non-temporal property, the property validity can always be determined as either satisfied or violated. Let µ be an atomic proposition, ie. non temporal, and t ∈ T:

∀X ,∀t, (X ,t) ⊧ µ ⇐⇒ T t µ (X ,t) ⊧ ¬µ ⇐⇒ F t µ U µ = (16) 
If the property is a combination of multiple predicates based on logical operators (∧,∨, ⇒ ,¬ϕ,...), the validity is obtained using Kleene's three-valued strong logic presented in Table 2.

In the case of STL temporal operators as described in Figure 1, we define a three-valued semantics describing when each operator is True, False or Unknown. For positive and negative logics, we also provide an explicit version obtained by enumerating all the terms in the time horizon t + a and t + b. The unknown explicit version for a property P can be obtained by combining the positive and negative explicit versions :

U τ P (explicit) ⇐⇒ (¬T τ P (explicit)) ∧ (¬F τ P (explicit)) (17) 
Let us describe the positive, negative and indeterminate versions of each STL operator: Eventually ◇ [a,b] ϕ (Fig. 3) In the positive logic, Eq. ( 18), we need to wait for time t +a, the beginning of the time interval, to have a chance to conclude positively if a valid condition has been observed. From time t + b, if the condition was not yet valid, the positive eventually operator always returns False. For the negative logic, Eq. ( 19), invalidity requires to wait until the end of the time interval, otherwise one cannot conclude. Finally, the validity is unknown if we have not yet reached the end of the time interval but have not yet observed a suitable time, Eq. ( 20).

T τ P τ ≥ t + a ∧ ∃t ′ ∈ [t + a,min(τ,t + b)] ∶ (X ,t ′ ) ⊧ ϕ (18) 
F τ P τ ≥ t + b ∧ ∀t ′ ∈ [t + a,t + b],(X ,t ′ ) ⊧ ¬ϕ (19) 
U τ P (τ < t + a) ∨ (τ < t + b ∧ ∀t ′ ∈ [t + a,τ],(X ,t ′ ) ⊧ ¬ϕ) (20) 
T τ P (explicit) ((X ,t + a) ⊧ ϕ) ∨ ((X ,t + a + 1) ⊧ ϕ) ∨ ... ∨ ((X ,t + b -1) ⊧ ϕ) ∨ ((X ,t + b) ⊧ ϕ) (21) F τ P (explicit) ((X ,t + a) ⊧ ¬ϕ) ∧ ((X ,t + a + 1) ⊧ ¬ϕ) ∧ ...∧ ((X ,t + b -1) ⊧ ¬ϕ) ∧ ((X ,t + b) ⊧ ∧¬ϕ) (22) 
T τ P τ ≥ t + b ∧ ∀t ′ ∈ [t + a,t + b],(X ,t ′ ) ⊧ ϕ (23) 
F τ P τ ≥ t + a ∧ ∃t ′ ∈ [t + a,min(τ,t + b)] ∶ (X ,t ′ ) ⊧ ¬ϕ (24) 
U τ P (τ < t + a) ∨ (τ < t + b ∧ ∀t ′ ∈ [t + a,τ],(X ,t ′ ) ⊧ ϕ) (25) 
T τ P (explicit) ((X ,t + a) ⊧ ϕ) ∧ ((X ,t + a + 1) ⊧ ϕ) ∧ ... ∧ ((X ,t + b -1) ⊧ ϕ) ∧ ((X ,t + b) ⊧ ϕ) (26) F τ P (explicit) ((X ,t + a) ⊧ ¬ϕ) ∨ ((X ,t + a + 1) ⊧ ¬ϕ) ∨ ...∨ ((X ,t + b -1) ⊧ ¬ϕ) ∨ ((X ,t + b) ⊧ ¬ϕ) (27) 
The explicit positive version Equation ( 21) is obtained by considering each instant between t + a and t + b. One of these instants is supposed to satisfy the property. We use the disjunction between all the terms to check it. At the opposite, explicit negative version Equation ( 22) returns True if all the terms between t + a and t + b satisfy ¬ϕ. We therefore rely on the conjunction between all the terms.

Always ◻ [a,b] ϕ (Fig. 4) In the positive logic, Eq. ( 23), similarly to the negative case of the eventually operator, one needs to wait until the end of the interval to claim validity. For the negative logic. Eq. ( 24), we detect invalidity as soon as we observe an invalid time, within the proper time interval. Unknown cases are either before the time interval or within it, if the property ϕ is valid, up to now, Eq. (25).

The Always explicit positive version Equation (26) returns True if each instant between t + a and t + b satisfies ϕ. Similarly to the explicit negative version of Eventually, we use the conjunction to verify this point. For the explicit negative version to return True, it suffices that at one instant between t + a and t + b, the property ϕ is not satisfied. Thus, we check the disjunction of all the terms, searching if one of them violates ϕ.

T τ P (τ ≥ t + a) ∧ ( ∃t 1 ∈ [t + a,min(τ,t + b)] ∶ (X ,t 1 ) ⊧ ϕ 2 ∧ ∀t 2 ∈ [t,t 1 ],(X ,t 2 ) ⊧ ϕ 1 ) (28) F τ P (∃t 6 ∈ [t,min(τ,t + a)] ∶ (X ,t 6 ) ⊧ ¬ϕ 1 ) ∨ (τ ≥ t + a ∧ τ < t + b ∧ ∃t 7 ∈ [t + a,τ] ∶ (X ,t 7 ) ⊧ ¬ϕ 1 ∧ ¬(∃t 8 ∈ [t + a,τ] ∶ (X ,t 8 ) ⊧ ϕ 2 ∧ ∀t 9 ∈ [t,t 8 ],(X ,t 9 ) ⊧ ϕ 1 )) ∨ (τ ≥ t + b ∧ ¬(∃t 10 ∈ [t + a,t + b] ∶ (X ,t 10 ) ⊧ ϕ 2 ∧ ∀t 11 ∈ [t,t 10 ],(X ,t 11 ) ⊧ ϕ 1 )) (29) 
U τ P (τ < t + a ∧ ∀t 3 ∈ [t,τ],(X ,t 3 ) ⊧ ϕ 1 ) ∨ (τ ≥ t + a ∧ τ < t + b ∧ ∀t 4 ∈ [t,τ],(X ,t 4 ) ⊧ ϕ 1 ∧ ∀t 5 ∈ [t + a,τ],(X ,t 5 ) ⊧ ¬ϕ 2 )
(30) Until ϕ 1 U [a,b] ϕ 2 (Fig. 5) Until operator is the most complex. We conclude positively when an event ϕ 2 occurred within the proper time interval, and until this moment ϕ 1 was always satisfied, Eq. (28). For the negative logic, there are multiple conditions that can lead to a violation of the property. First before the time interval, if ϕ 1 is not satisfied. Then inside the time interval, if (X ,τ) ⊧ ¬ϕ 1 before the moment when (X ,τ) ⊧ ϕ 2 , or if it was false before. Finally from t + b, if ϕ 2 is never reached inside the time interval or if it was false before, Eq. ( 29). About indeterminacy, we cannot yet conclude on the validity of the formula, if, for the moment the formula is neither validated nor violated. A first condition is that ϕ 1 holds from time t until now. A second is that, at the current time τ, we have not reach yet t + a or we always have ¬ϕ 2 . These condition only apply before reaching the end of the time interval t + b, Eq. (30).

T τ P (explicit) (( a ⋀ n=0 (X ,n) ⊧ ϕ 1 ) ∧ ((X ,t + a) ⊧ ϕ 2 )) ∨ (( a+1 ⋀ n=0 (X ,n) ⊧ ϕ 1 ) ∧ ((X ,t + a + 1) ⊧ ϕ 2 )) ∨ ...∨ (( b-1 ⋀ n=0 (X ,n) ⊧ ϕ 1 ) ∧ ((X ,t + b -1) ⊧ ϕ 2 )) ∨ (( b ⋀ n=0 (X ,n) ⊧ ϕ 1 ) ∧ ((X ,t + b) ⊧ ϕ 2 )) (31)
F τ P (explicit) ( a ⋁ n=0 (X ,n) ⊧ ¬ϕ 1 ) ∨ ( b ⋁ n 1 =a+1 ((X ,n 1 ) ⊧ ¬ϕ 1 ∧ ( n 1 ⋀ n 2 =a (X ,n 2 -1) ⊧ ¬ϕ 2 )))∨ ( b ⋀ n=a (X ,n) ⊧ ¬ϕ 2 ) (32) 
As the Until operator depends at the same time to the satisfaction of a property inside the time interval, and the satisfaction of another one before and inside the time interval, the explicit versions are less trivial to obtain than for others operators. For the explicit positive version to return True, we need to satisfy the Until property at least once between t +a and t +b, so we proceed by disjunction. Each term of the disjunction is satisfied only if ϕ 1 is satisfied from time t until this time instant included (conjunction between all the terms between instant t and this time instant) and ϕ 2 is satisfied at this moment. Note that time t is represented by the 0 value in the Until temporal referential, in the same way that instants t + a or t + b correspond to time a or b inside Until. As there are several ways of violated the Until operator, explicit false version of Until is built differently as others explicit versions. Indeed, we have a disjunction between the three possibilities to not satisfy the Until operator, as described above. We verify if ϕ 1 is not satisfied before or at time t + a by relying on the disjunction between all the ϕ 1 terms from t until t + a. Then, inside the time interval after time t + a, the property is violated with certainty if there exist a moment where ϕ 1 is not True, and until the previous time, ϕ 2 was never satisfied. Indeed, if ϕ 2 was satisfied previously, either the property is satisfied, which means that explicit negative version must return False; either the property was already violated before, so there exist another anterior time where ϕ 1 was not satisfied before ϕ 2 was satisfied. Finally, explicit negative version must return True if ϕ 2 is never satisfy inside the time interval, which is studied by examining the conjunction of all the ¬ϕ 2 terms between t + a and t + b.

Operators implementation strategy

Based on this online semantics, we propose an implementation of Eventually, Always and Until in discrete time. We use the synchronous language Lustre. We recall that all the nodes are available at https://garoche.net/publication/2023_fmas_submission/.

Useful constructs for the implementation First, we define the basic nodes needed to implement the temporal operators. Node min returns the minimum value between two variables. Node exist(time :bool; prop: bool) returns True as soon as a property prop has been satisfied during the time interval represented by time. Node forall_a(time: bool ; prop: bool) returns True if a property prop has always been True during the time interval. All these nodes can easily be implemented in Lustre.

Regarding the implementation of the nodes detecting whether or not we are in the time slot t + [a,b], and since we work with finite intervals, we can optimize our clock, preventing it from incrementing to infinity. We can limit the counter until value b, ensuring the absence of overflow. We implement the node timeab, that returns True if the current time instant is inside the time interval, based on this bounded internal counter. As counter stops at b, end of the time interval is intercepted looking at the counter previous value. If it was already b, we know that we exceeded the end of the time interval.

We are now able to implement our nodes for each version of each operator. In the case of the Positive and Negative versions, we want to stay as close as possible to the definition proposed in the Section 3. We take two liberties in order to optimise the memory management. First, for each operator, we define a bounded internal clock as described above. The same strategy as for the counter is used to determine the end of the time interval, comparing the previous value of the internal node counter with b. Secondly, we want to have a bounded number of memories, not dependent on the trace-length or on the length of the time interval. We proceed as described in the literature [START_REF] Donzé | Robust Satisfaction of Temporal Logic over Real-Valued Signals[END_REF], by reusing the outputs obtained at the previous time instant to obtain the outputs at the current one. For example, here is the implementation of the Until False node: Figure 6. Others Positive and Negative versions are obtained based on the same principle. Last, we deduce the Unknown version from the Positive and Negative versions, as described in the Property 1. Remark 4. The case where both Positive and Negative versions of the operator are True at the same time is never supposed to happen and would result in an error. Indeed, it would mean that the property is both satisfied and violated, which is impossible. This result comes directly from Property 1.

Note that these implementations can only represent non-nested STL operators. That is to say that we only consider ◇ [a,b] ϕ, ◻ [a,b] ϕ and ϕ 1 U [a,b] ϕ 2 with ϕ, ϕ 1 and ϕ 2 being non-temporal predicates.

Formal verification of STL operators

In this section, we demonstrate by model checking that the operators implementation described in Section 4 corresponds to the given specification, as presented in Section 3. We first introduce the formalizing of each STL operator proof node for positive, negative and three-valued versions. Then, we present the use of Kind2 to concretely verify these proof nodes.

Induction on time interval size

To demonstrate the correctness of the positive and negative versions of the operators, we compare the outputs of our implementation proposition for each operator and an explicit equivalent, as provided in Equations ( 21), ( 22), ( 26), ( 27), ( 31) and (32). We remind that the explicit version is obtained by enumerating all the terms in the time horizon t + [a,b]. This allows to check directly the value of each term of the operator, and hence, to be sure to understand the obtained output. We have to show that our implementation and the explicit one are equivalent for any time interval. We prove this property by strong structural induction on the time interval size.

We proceed as follows. In a first time, we demonstrate that a statement is true for the smallest possible STL time interval, cf. base case of Eq. ( 33). Then, we demonstrate that if the statement is true for a given time interval size, it is also true when we increase the size interval by 1, cf. Eq. (35). By verifying these two properties, we demonstrate the correctness of our operators for all intervals [a,b] such that a,b ∈ T ∧ a < b.

Base case: [a,a + 1] Let Op be a version of a temporal operator, and Op exp its explicit representation as described in Section 3.

∀a ∈ T,Op [a,a+1] ϕ ⇐⇒ Op exp [a,a+1] ϕ (33) 
For the base case proof, we create a new Lustre node P_at_k, cf. Fig. 7 that checks if a property is satisfied at a specific time or was satisfied before. This allows us to implement the explicit case. Let us take the example of the Positive version of the Eventually. For the [a,a + 1] time interval, its explicit version is Eq. ( 34) and its implementation corresponds to the lines 13 and 14 of the Figure 8 ◇

[a,a+1] ϕ ≡ ((X ,a) ⊧ ϕ) ∨ ((X ,a + 1) ⊧ ϕ) (34) 
Inductive case: [a,b + 1] Let Op be a version of a temporal operator and Op exp its explicit representation as described in Section 3.

(Op [a,b] ϕ ⇐⇒ Op exp [a,b] ϕ) ⇒ (Op [a,b+1] ϕ ⇐⇒ Op exp [a,b+1] ϕ) (35) 
In our implementation, Op exp [a,b+1] is obtained thanks to the previous value of Op [a,b] , that we assume equivalent to Op exp [a,b] . For example, inductive case of the explicit version of Eventually 

Using Kind2 as a theorem prover

Each of the three temporal operators is defined in a separate file. They all rely on basic nodes mentioned in Sect. 4, in which only timeab is fitted with a contract. The following tables summarize all contract elements automatically proved by Kind2 model-checker. We recall that Kind2 relies on different model-checking algorithms that are executed in parallel. The method that succeeds first interrupt the proof process. In the table, PDR stands for Property-Direct-Reachability [START_REF] Bradley | IC3 and beyond: Incremental, Inductive Verification[END_REF] while k-induction specifies the number of steps of the k-induction process used to conclude. In both methods, Kind2 produces subproblems that are solved using Z3 [START_REF] Mendonc ¸a De Moura | Z3: An Efficient SMT Solver[END_REF].

As mentioned above, each operator op is defined using two underlying nodes op_false and op_true as well as a node op_3v that reconstruct the three-valued output. The nodes op_false and op_true are not directly associated to a contract but their soundness is expressed through the validity of another node: respectively proof_op_false and proof_op_true. These nodes are defining the base and inductive cases and associated to the main contract (cf. Fig. 8). Last, the final node op_3v is only fitted with an extra contract guarantying disjunctiveness of the output (cf. Fig. 9 encoding Eq. ( 11)).

Experiments were run with kind2 v2.0.0-7-gdcc7f6f on a 1,2 GHz Quad-Core Intel Core i7 with 16 GB of RAM. To build the table, each node is analyzed independently, but a quicker analysis of each file can be performed with all nodes analyzed at once. Note also results with the same execution time such as the elements of the node eventually_3v. Typically, in this case, they denote properties that were proved together k-inductive by the algorithm. We observe something similar with PDR for node proof_ev_false.

As a last remark, we have to say that, because of the parallel architecture of Kind2, it is difficult to obtain perfect reproductibility of the results. For example, one can observe that the runtime of the validity proof of the simple node timeab_tmp varies slightly between experiments while it is the exact same node. The difference can also appear in the number of unrolling of the k-induction engine. 

Discussions and conclusion

Related Works. The use of three-valued logic has already been explored in the context of temporal logic, particularly in LTL, with the same division used in this paper: one value indicating the certainty of satisfaction of a property, another indicating the certainty of violation of a property, and a final value representing indeterminacy [START_REF] Bauer | Monitoring of Real-Time Properties[END_REF][START_REF] Hsi | Online Monitoring of Metric Temporal Logic[END_REF]. Formal verification of STL properties has also been studied. Roehm et al. [START_REF] Roehm | STL Model Checking of Continuous and Hybrid Systems[END_REF] propose to check STL properties on reach sequences, using hybrid model checking algorithms such as Cora [START_REF] Althoff | An Introduction to CORA 2015[END_REF] or SpaceEx [START_REF] Frehse | SpaceEx: Scalable Verification of Hybrid Systems[END_REF]. A first step consists in the transformation of STL properties into their reachset temporal logic (RTL) equivalent. This transformation comes close to the explicit development of each operator that we described in Section 3, requiring potentially a large set of memories.

Moreover, several examples of algorithms and online implementation of STL properties have been produced, using a finite number of memories, cf [START_REF] Maler | Monitoring properties of analog and mixed-signal circuits[END_REF][START_REF] Donzé | Robust Satisfaction of Temporal Logic over Real-Valued Signals[END_REF]. Thus, [START_REF] Donzé | Robust Satisfaction of Temporal Logic over Real-Valued Signals[END_REF] proposes an algorithm for quantitative online STL implementation, and show on different examples the time-saving benefits of using their online method compared to the offline one. Balsini et al. [START_REF] Balsini | Generation of simulink monitors for control applications from formal requirements[END_REF] propose a qualitative online implementation of STL in Simulink, which nevertheless has some limitations. In particular, since three-valued logic is not used in this implementation, we cannot be sure whether a property has been satisfied or violated until the end of execution. These proposals go further than ours, allowing operators to be nested, sometime with some limitations like [START_REF] Balsini | Generation of simulink monitors for control applications from formal requirements[END_REF] that can only contain one operator inside another. However the soundness of the encoding is not formally proven.

Conclusion.

In this paper, we propose an online discrete implementation of the STL semantics, in the continuity of Balsini's work [START_REF] Balsini | Generation of simulink monitors for control applications from formal requirements[END_REF]. Our contribution is twofold. First, we proposed an implementation based on Kleene's three-valued logic in order to be able to represent indeterminacy. Second, we formally demonstrated the soundness of our implementation, proving the validity of each operator with respect to its semantics.

Our approach was the following: we first defined the online STL semantics, and used it to build each STL operator as a synchronous observer in the Lustre language. Finally, we formally demonstrated the correctness of their implementation, using the Kind2 model-checker. We proceed by induction on the size of temporal intervals. We succeed to demonstrate all the proof objectives for each temporal operator implemented.

Future Work. They are mainly two directions to continue this work. A first one is to apply these operators to models and see how model-checkers such as Kind2 can verify properties or produce counterexamples. For example revisiting the use case of Roehm et al. [START_REF] Roehm | STL Model Checking of Continuous and Hybrid Systems[END_REF]. The other direction is to extend the set of STL formulas that can be encoded in our framework. While Balsini et al. [START_REF] Balsini | Generation of simulink monitors for control applications from formal requirements[END_REF] proposed a similar encoding (but without proof) of nested operators with restricted form and up to two levels, we would like to lift the restrictions and deal with more general formulas. The notion of propagation delays introduced in Kempa et al. [START_REF] Kempa | Embedding Online Runtime Verification for Fault Disambiguation on Robonaut2[END_REF] could also lead to an efficient encoding with memories, also associated with proof of the implementation.
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 1 Figure 1: STL offline semantics
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 91 ϕ 1 holds from time t until ϕ 2 becomes True within the time horizon t + [a,b]. Equation (6) (Eventually) describes a temporal operator that is satisfied if ϕ is verified at least once within the time horizon t +[a,b]. Finally, Equation (7) (Always or Globally) describes a temporal operator that is satisfied if ϕ is always verified within the time horizon t + [a,b]. Note that the usual definitions of ◇ [a,b] and ◻ [a,b] based on U [a,b] still apply: ◇ [a,b] ϕ = True U [a,b] ϕ, and (8) ◻ [a,b] ϕ = ¬(◇ [a,b] ¬ϕ). (Remark While evaluation of predicates is performed at time t in (X ,t) ⊧ p ⇔ µ(t), all occurrences of time intervals [a,b] in the definitions of U [a,b] , ◻ [a,b] or ◇ [a,b] are used to delay the current time t: t + [a,b] = [t + a,t + b]. These times a and b are then relative times while t acts more as an absolute time. 2.2 Lustre td ::= type bt | type t = enum { C i ,...} bt ::= real | bool | int | enum ident d ::= node f (p) returns (p); vars p let D tel p ::= x ∶ bt;...;x ∶ bt D ::= pat = e;D | pat = e; pat ::= x | (pat,..., pat) e ::= v | x | (e,...,e) | e → e | op(e,...,e) | if e then e else e | pre e v ::= C | i
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 3 Figure 3: Three-valued semantics of Eventually operator: P = ◇ [a,b] ϕ
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 4 Figure 4: Three-valued semantics of Always operator: P = ◻ [a,b] ϕ
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 5 Figure 5: Three-valued semantics of Until operator: P = ϕ 1 U [a,b] ϕ 2
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 67 Figure 6: Until Lustre node for the False version of the operator

Table 1 :

 1 A subset of Lustre syntax

int) returns (time: bool);

  Modes are named and consist of require (R) and ensure (E) statements. Assumes, guarantees, requires, and ensures node timeab (const a,b: ′ ) if it satisfies Historically(A) ⇒ G ′ , where G ′ = G ∪ {R i ⇒ E i } and Historically(A) when A is true at all time. Contracts can also define local flows, acting as ghost variables. These potentially stateful flows can then be used in guarantees and ensure statements. The following is an example of function timeab in Lustre using a local contract Figure 2. timeab is a Lustre node indicating whether the current time is inside a given time interval [a,b]. It takes as inputs the integers a and b, and returns a boolean value time that is True if the current time is inside [a,b].

	( * @contract
	var clk : int = 0 -> 1 + pre clk;
	assume a >=0;
	guarantee time = (clk >= a and clk <= b);
	* )
	Figure 2: Example of a Lustre contract implementation
	are all Boolean expressions over streams. In particular, assumptions and requires are expressions over
	input streams, while guarantees and ensures are expressions over input/output streams. A synchronous
	observer corresponds to such a contract with only a guarantee statement. A node satisfies a contract
	C = (A,G

Table 3 :

 3 Experiments for operator Eventually.

	Node name	# Property	Method	Proof time
	timeab	assume	PDR	0.339s
		assume	induction	0.351s
		guarantee	PDR	2.618s
	eventually_true	-	-	-
	proof_ev_true	assume	PDR	0.653s
		assume	2-induction	0.713s
		guarantee 2-induction	26.778s
		guarantee 2-induction	29.631s
	eventually_false	-	-	-
	proof_ev_false	guarantee	PDR	37.215s
		guarantee	PDR	37.215s
	eventually_3v	assume	PDR	0.677s
		assume	2-induction	0.688s
		guarantee 2-induction	0.688s
		guarantee 2-induction	13.216s
		guarantee 2-induction	18.855s

Table 4 :

 4 Experiments for operator Until.

	Node name	# Property	Method	Proof time
	timeab	assume	PDR	0.432s
		assume	2-induction	0.454s
		guarantee	PDR	2.855s
	until_true	-	-	-
	proof_until_true	assume	PDR	0.537s
		assume	2-induction	0.595s
		guarantee 2-induction	6.347s
		guarantee 2-induction	93.526s
		guarantee 2-induction	161.614s
	until_false	-	-	-
	proof_until_false	assume	induction	0.898s
		assume	induction	0.898s
		assume	induction	0.898s
		guarantee 2-induction	606.067s
		guarantee	PDR	1605.403s
	until_3v	guarantee	PDR	34.530s
	Node name	# Property	Method	Proof time
	timeab	assume	PDR	0.400s
		assume	induction	0.425s
		guarantee	PDR	3.375s
	always_true	-	-	-
	proof_alw_true	guarantee 2-induction	76.633s
		guarantee 2-induction	96.686s
	always_false	-	-	-
	proof_alw_false	guarantee 2-induction	19.407s
		guarantee	PDR	27.540s
	always_3v	guarantee	PDR	12.854s

Table 5 :

 5 Experiments for operator Always.
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True operator is obtained as described in Eq. ( 36) and its implementation corresponds to lines 16 and 17 of Figure 8 ◇

To concretely check these basic and inductive cases, we use the Kind2 model checker, cf Section 2.3. For each positive and negative version of STL operators, we express the base and inductive case as two properties, ie. two lemmas inside a contract to guarantee basic and inductive case, cf. Figure 8.

Finally, to obtain a three-valued output, we need to encode the result on two booleans. We combine the positive and negative outputs -previously verified -to determine the state of the operator. According to Property 1, Unknown is obtained if Positive and Negative outputs return False at the same time. As a complementary check, we ensure inside a contract that Positive and Negative versions are mutually exclusive as mentioned in the Remark 4. Figure 9 summarizes the implementation of this final node in Lustre.