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Signal Temporal Logic (STL) is a convenient formalism to express bounded horizon properties of
autonomous critical systems. STL extends LTL to real-valued signals and associates a non-singleton
bound interval to each temporal operators. In this work we provide a rigorous encoding of non-nested
discrete-time STL formulas into Lustre synchronous observers.

Our encoding provides a three-valued online semantics for the observers and therefore enables
both the verification of the property and the search of counter-examples. A key contribution of
this work is an instrumented proof of the validity of the implementation. Each node is proved correct
with respect to the original STL semantics. All the experiments are automated with the Kind2 model-
checker and the Z3 SMT solver.

1 Introduction

In the context of autonomous critical systems, an undesirable behaviour can lead to significant material
or human damage. Thus, the specification of properties and their formal verification play a paramount
role in ensuring the safety, reliability and compliance of such systems.

Dynamical systems continuously respond to environmental changes. Signal Temporal Logic (STL)
has emerged as a powerful formalism for expressing temporal properties within these systems [16].
The main particularity of STL language is the association of each temporal operator with a finite, non-
singleton time interval, during which the operator is studied. Consider the temporal ◇ (Eventually)
operator, which evaluates whether a property ϕ is satisfied or not at least once. A correct formalism for
◇ in STL is ◇[a,b]ϕ , where a and b are times such that a < b. Most of the time, STL properties are assess
offline: we execute the system from start to finish, and we observe after the end of the execution if the
system behaviour and its outputs are compliant to specified requirements.

However, the complexity of certain autonomous dynamical systems may require runtime verifica-
tion. This involves continuous assessment of the system’s compliance to its specification throughout
execution. Synchronous observers can be employed for this purpose. These specialized observers react
when a property is satisfied or violated, providing instantaneous information about the system’s state.
This approach offers advantages such as consistent real-time information transmission and the ability
to halt executions immediately upon property satisfaction or violation, without waiting for completion.
Notably, this enables quicker reactions to external events, crucial for critical systems. For instance, let
us admit that we wish to satisfy a property ϕ at least once during a time interval [a,b]. If the property
is satisfied in the interval, then there is no need to wait for time b to affirm that the property is indeed
verified.

This paper introduces preliminary works on the specification and verification of STL operators, using
synchronous observers. The rest of the document focuses on discrete times, and non nested temporal
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(X ,t)⊧µ ⇔ µ(t) (1)

(X ,t)⊧¬ϕ ⇔ ¬((X ,t)⊧ϕ) (2)

(X ,t)⊧ϕ1∧ϕ2 ⇔ (X ,t)⊧ϕ1∧(X ,t)⊧ϕ2 (3)

(X ,t)⊧ϕ1∨ϕ2 ⇔ (X ,t)⊧ϕ1∨(X ,t)⊧ϕ2 (4)

(X ,t)⊧ϕ1 U[a,b] ϕ2 ⇔ ∃t′ ∈ t + [a,b] ∶ (X ,t′)⊧ϕ2∧∀t′′ ∈ [t,t′] ∶ (X ,t′′)⊧ϕ1 (5)

(X ,t)⊧◇[a,b]ϕ ⇔ ∃t′ ∈ t + [a,b] ∶ (X ,t′)⊧ϕ (6)

(X ,t)⊧ ◻[a,b]ϕ ⇔ ∀t′ ∈ t + [a,b] ∶ (X ,t′)⊧ϕ (7)

Figure 1: STL offline semantics

operators. For example, STL properties like ◻[a,b](◇[c,d]ϕ) with ϕ an atomic proposition and a, b, c
and d distinct times such that a < b and c < d, are excluded due to the nested ◇ operator.

Our main contribution concerns the formal verification of the correctness of STL operators. To
this end, we provide a three-valued online STL semantics as well as the implementation of each STL
operator in the synchronous language Lustre. The soundness of the implementation is expressed as a set
of lemmas and automatically proved with the Kind2 model-checker.

Section 2 covers the preliminary concepts, including the Signal Temporal Logic, the synchronous
language Lustre, the model checker Kind2, and an introduction to three-valued logic. We formalise
an online semantics for STL operators in Section 3, and detail its Lustre implementation in Section 4.
Finally, Section 5 describes the formal correction of the operators implementation.

2 Preliminaries

2.1 Signal Temporal Logic

Let T denote a set of discrete times such that T =N and let X be a finite sets of signals. Let a,b ∈T with
a < b. Without loss of generality, we assume that all signals are defined as functions in T→R from time
to real values. To simplify notations, we denote the set of time [t +a,t +b] as t + [a,b].
Definition 1 (STL formal grammar). Let µ be an atomic predicate whose value is determined by the
sign of a function of an underlying signal x ∈X , i.e., µ(t) ≡ µ(x(t)) > 0. Let ϕ , ψ be STL formulas. STL
formula ϕ is defined inductively as:

ϕ ∶∶= µ ∣ ¬ϕ ∣ ϕ ∧ψ ∣ ϕ ∨ψ ∣ ◻[a,b]ψ ∣ ◇[a,b]ψ ∣ ϕ U[a,b] ψ

Definition 2 (STL semantics). The semantics of a formula ϕ is defined at a time t ∈ T and for a set of
signals X as (X ,t)⊧ϕ as described in the Figure 1.

µ is evaluated locally, at time t over the current values of the signals, Eq. (1). Equation (2) (Nega-
tion) is the logical negation of ϕ . Equation (3) (And) is the logical conjunction between ϕ1 and ϕ2.
Equation (4) (Or) is the logical disjunction between ϕ1 and ϕ2.

It is worth mentioning that, in STL, all temporal operators have to be associated to a bounded, non-
singleton time interval. Equation (5) (Until) describes a temporal operator that is satisfied if ϕ1 holds
from time t until ϕ2 becomes True within the time horizon t + [a,b]. Equation (6) (Eventually) describes
a temporal operator that is satisfied if ϕ is verified at least once within the time horizon t+[a,b]. Finally,
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Equation (7) (Always or Globally) describes a temporal operator that is satisfied if ϕ is always verified
within the time horizon t + [a,b]. Note that the usual definitions of ◇[a,b] and ◻[a,b] based on U[a,b] still
apply:

◇[a,b]ϕ = True U[a,b] ϕ, and (8)

◻[a,b]ϕ = ¬(◇[a,b]¬ϕ). (9)

Remark 1. While evaluation of predicates is performed at time t in (X ,t)⊧ p ⇔ µ(t), all occurrences
of time intervals [a,b] in the definitions of U[a,b], ◻[a,b] or ◇[a,b] are used to delay the current time t:
t + [a,b] = [t +a,t +b]. These times a and b are then relative times while t acts more as an absolute time.

2.2 Lustre

td ::= type bt ∣ type t = enum {Ci, ...}
bt ::= real ∣ bool ∣ int ∣ enum ident
d ::= node f (p) returns (p);

vars p let D tel
p ::= x ∶ bt; ...;x ∶ bt
D ::= pat = e;D ∣ pat = e;

pat ::= x ∣ (pat, ..., pat)
e ::= v ∣ x ∣ (e, ...,e) ∣ e→ e ∣ op(e, ...,e)

∣ if e then e else e ∣ pre e
v ::= C ∣ i

Table 1: A subset of Lustre syntax

Lustre[5] is a synchronous language
for modeling systems of synchronous
reactive components. A Lustre pro-
gram L is a finite collection of nodes
[N0,N1, . . . ,Nm]. The nodes satisfy the
grammar described in Table 1 in which
td denotes type constructors, includ-
ing enumerated types, and v either con-
stants of enumerated types C or primi-
tive constants such as integers i. Each
node is declared by the grammar con-
struct d of Table 1. A Lustre node N
transforms infinite streams of input flows to streams of output flows, with possible local variables denot-
ing internal flows. A notion of a symbolic “abstract” universal clock is used to model system progress.
At each time step k, a node reads the value of each input stream and instantaneously computes and re-
turns the value of each output stream. Note that all the equations of a node are computed at each time
step. Therefore an if-then-else statement is purely functional and both of its branches are evaluated while
only one of the computed value is returned.

Stateful constructs. Two important Lustre operators are the unary right-shift pre (for previous)
operator and the binary initialization → (for followed-by) operator. Their semantics is as follows. For
the operator Pre: at first step k = 0, pre p is undefined, while for each step k > 0 it returns the value of p
at k−1. For the operator →: At step k = 0, p → q returns the value of p at k = 0, while for k > 0 it returns
the value of q at k step.

For example, the Lustre equation y = x0→ pre(u); will be defined for each time step k by:

y(k) = { x0(0) if k = 0
u(k−1) if k > 0

2.3 Specifying and verifying assume-guarantee contracts with Kind2

The annotation language CoCoSpec [6] was proposed for Lustre models to lift the notion of Hoare
triple [12] and Assume/Guarantee statements as dataflow contracts. A contract is associated to a node
and has only access to the input/output streams of that node. The body of a contract may contain a
set of assume (A) and guarantee (G) statements and mode declarations. Modes are named
and consist of require (R) and ensure (E) statements. Assumes, guarantees, requires, and ensures
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1 node timeab (const a,b: int) returns (time: bool);
2 (*@contract
3 var clk : int = 0 -> 1 + pre clk;
4 assume a >=0;
5 guarantee time = (clk >= a and clk <= b);
6 *)

Figure 2: Example of a Lustre contract implementation

are all Boolean expressions over streams. In particular, assumptions and requires are expressions over
input streams, while guarantees and ensures are expressions over input/output streams. A synchronous
observer corresponds to such a contract with only a guarantee statement. A node satisfies a contract
C = (A,G′) if it satisfies Historically(A)⇒G′, where G′ =G∪ {Ri⇒ Ei} and Historically(A) when A
is true at all time.

Contracts can also define local flows, acting as ghost variables. These potentially stateful flows can
then be used in guarantees and ensure statements.

The following is an example of function timeab in Lustre using a local contract Figure 2. timeab
is a Lustre node indicating whether the current time is inside a given time interval [a,b]. It takes as inputs
the integers a and b, and returns a boolean value time that is True if the current time is inside [a,b].
First line of the contract (line 3) defines a local variable clk as an integer, which initially takes the value
0 and is then incrementing at each time. The assume at line 4 indicates to model checker that it has to
prove the Lustre node only in the cases where the condition a ≥ 0 is satisfied. If another Lustre node
is using timeab, Kind-2 also checks that this node could not provide an input a which runs counter
to this assumption. Finally, Kind-2 must guarantee the equality, line 5, for all the inputs respecting the
previous assumption, whatever the current time is. This equality compares the time output to value of
the specification clock in a valid interval [a,b]. timeab shall calculate the same output with an internal
clock bounded at time b. So here, we verify that bounding the clock has no effect on the provided output.

The Kind-2 model-checker [7] implements various SMT-based model-checking algorithms such as
k-induction [20] or IC3/PDR [4] and allows to verify contracts with respect to nodes.

2.4 Three-valued logic

We present here the interest of three-valued logic, and introduce Kleene’s three-valued logic, which we
use in the next section to formalise an online version of STL operators.

For most tools, when performing monitoring of STL predicates, for a given value of simulation data,
the trajectory is typically finite. It is produced by a simulation engine and stored in a data file. It is then
loaded by the monitoring tool and analyzed with respect to the STL specification. In this offline setting,
the final outcome indicates whether or not the input signal satisfies the specification. It is a boolean
output.

Temporal operators are used to evaluate properties that change over time. Most of the time in these
situations, we need to wait to decide whether a temporal property is satisfied or violated. Based on this
observation, how to evaluate a property before being able to conclude, i.e. before the beginning of the
time interval of a STL operator? Should we suppose that the operator is True or False before being
able to decide?

Let us consider a property ◻[0,10]P, a set of signals X and an initial time t0, e.g., t0 = 0. We are
interested in checking (X ,t0) ⊧ ◻[0,10]P. Let us assume that we are given with a trace for X of length
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A and B B
F U T

A
F F F F
U F U U
T F U T

(a) AND Operation

A or B B
F U T

A
F F U T
U U U T
T T T T

(b) OR Operation

A ¬A

F T
U U
T F

(c) Negation Operation

A⇒ B B
F U T

A
F T T T
U U U T
T F U T

(d) Logical implication

Table 2: Truth Tables showing Kleene’s 3-valued strong logic operations

l < 10, e.g., l = 8, where the predicate P is valid along the whole trace. What is the validity of such a
predicate? On the one hand, it is always valid, but on the other hand, it has no real definition within the
time [l,10]. Indeed, P could be false at time t = 9 or t = 10 and the property would be violated.

Since STL semantics requires all temporal connectors to be associated with bounded intervals, any
STL predicate has a bounded horizon limit, after which it is always possible to determine the validity
of a formula. We can then use this limit to evaluate temporal operators from it, considering that the
values returned before may be irrelevant. But, in some case, the validity of the predicate can already be
determined. In the previous example, if P is not valid at time t = 2, we already know at this time that the
operator will not be satisfied at the end of the time interval. Existing works regarding online semantics
for STL [8] try to optimize the runtime evaluation of the predicate monitoring, detecting when one can
conclude, positively or negatively.

Rather than optimizing execution time based on binary logic, Łukasiewicz proposed a three-valued
logic [15]. This logic introduces a third truth-value, Unknown (U), describing values for which we are
not yet able to conclude if the property is satisfied or violated. Later, Kleene proposes a strong logic
of indeterminacy [14] similar to Łukasiewicz logic. The main difference lies in the returned value for
implication. Kleene’s approach states that U⇒U is Unknown while Łukasiewicz considers that U⇒U
should be True. In our use of three-valued logic, we base ourselves on Kleene strong logic.

Table 2 presents the truth tables showing the logical operations AND, OR, the logical implication, as
well as the negation for Kleene’s strong logic.

3 Online semantics for STL

To evaluate STL properties online, we rely on Kleene strong three-valued logic introduced in Table 2.
In this section, we first introduce a way to obtain a three-valued output as proposed by Kleene, from
two-valued outputs. Then, we provide an online and three-valued semantics for STL properties.

Definition 3 (Positive, negative and indeterminacy logics). Each STL temporal operator can be ex-
pressed in a three-valued form. To implement it, we define three new concepts: 1. A Positive logic T
returning True when the property is satisfied, and False when it is yet undetermined or negative. 2. A
Negative logic F that acts like an alarm to underline a negative result, which means that a statement
returns True when we are sure that the property is not satisfied, and it returns False otherwise (unde-
termined property or satisfied property situations). 3. An Indeterminacy logic U highlighting situations
where it is not yet possible to conclude about the satisfaction or violation of the property.

Definition 4. Let ϕ , ϕ1 and ϕ2 be STL properties. We denote by T t
ϕ (resp. U t

ϕ and F t
ϕ ) the evaluation

of (X ,t)⊧ϕ according to the positive (resp. indeterminacy and negative) logic. We denote by Bϕ the
evaluation of ϕ according to the offline implementation introduced in Figure 1. Note that Bϕ does not
depend on time instant t.
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Property 1 (Complete and pairwise distinct). At any time instant t, exactly one of the three logic returns
True for a given property.

T t
ϕ ∨U t

ϕ ∨F t
ϕ (completeness) (10)

¬((T t
ϕ ∧F t

ϕ)∨(T t
ϕ ∧U t

ϕ)∨(U t
ϕ ∧F t

ϕ)) (disjointness) (11)

Remark 2 (Deduction of the output of the third logic). According to Property 1, we only need the output
of a given property in two of these three logics to determine its output in the last one. For example, if a
property ϕ returns False in positive and negative logic, it means that ϕ is still Unknown (True in the
indeterminacy logic).
Remark 3 (Property determination). There exists an instant td from which we cannot satisfy Ut≥td

ϕ . For
a non-nested temporal operator evaluated on time interval [a,b], td corresponds at the latest to t +b.

∃td ≤ t +b ∶ ∀t′ ≥ td ,¬U t′
ϕ (12)

Property 2. From a specific time instant t f , the offline and online results are similar. Thus, the outputs
of the offline Bϕ and online T t f

ϕ versions are equivalent. In the same way, the negation of the offline
operator is equivalent to the online negative version F t f

ϕ . For a non-nested temporal operator evaluated
on time interval [a,b], this time instant corresponds at the latest to t +b:

τ ≥ t +b Ô⇒ ((Bϕ ⇐⇒ Tτ

ϕ)∧(¬Bϕ ⇐⇒ Fτ

ϕ)) (13)

Property 3 (Immutability: Positive and negative logics are final). If a property is satisfied in the positive
(resp. negative) logic, it will remain so in the future.

∃t ∈T ∶T t
ϕ Ô⇒ ∀t′ ≥ t,T t′

ϕ (14)

∃t ∈T ∶ F t
ϕ Ô⇒ ∀t′ ≥ t,F t′

ϕ (15)

From these three logics, we obtain easily a three-valued output. The property is: 1. True in three-
valued logic if it is True in positive logic; 2. False in three-valued logic if it is True in negative logic;
3. Unknown in three-valued logic if it is True in indeterminacy logic.

Let us now characterize for each construct, the sufficient and necessary conditions to determine a
positive, a negative, or a temporary indeterminate value.

In the case of a non-temporal property, the property validity can always be determined as either
satisfied or violated. Let µ be an atomic proposition, ie. non temporal, and t ∈T:

∀X ,∀t, (X ,t)⊧µ ⇐⇒ T t
µ (X ,t)⊧¬µ ⇐⇒ F t

µ Uµ = � (16)

If the property is a combination of multiple predicates based on logical operators (∧,∨,Ô⇒ ,¬ϕ, . . .),
the validity is obtained using Kleene’s three-valued strong logic presented in Table 2.

In the case of STL temporal operators as described in Figure 1, we define a three-valued semantics
describing when each operator is True, False or Unknown. For positive and negative logics, we
also provide an explicit version obtained by enumerating all the terms in the time horizon t +a and t +b.
The unknown explicit version for a property P can be obtained by combining the positive and negative
explicit versions :

Uτ

P (explicit) ⇐⇒ (¬Tτ

P (explicit))∧(¬Fτ

P (explicit)) (17)

Let us describe the positive, negative and indeterminate versions of each STL operator:
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Tτ

P τ ≥ t +a∧∃t′ ∈ [t +a,min(τ,t +b)] ∶ (X ,t′)⊧ϕ (18)

Fτ

P τ ≥ t +b∧∀t′ ∈ [t +a,t +b],(X ,t′)⊧¬ϕ (19)

Uτ

P (τ < t +a)∨(τ < t +b∧∀t′ ∈ [t +a,τ],(X ,t′)⊧¬ϕ) (20)

Tτ

P (explicit) ((X ,t +a) ⊧ ϕ)∨((X ,t +a+1) ⊧ ϕ)∨ ...∨((X ,t +b−1) ⊧ ϕ)∨((X ,t +b) ⊧ ϕ) (21)

Fτ

P (explicit) ((X ,t +a) ⊧ ¬ϕ)∧((X ,t +a+1) ⊧ ¬ϕ)∧ ...∧
((X ,t +b−1) ⊧ ¬ϕ)∧((X ,t +b) ⊧ ∧¬ϕ) (22)

Figure 3: Three-valued semantics of Eventually operator: P =◇[a,b]ϕ

Tτ

P τ ≥ t +b∧∀t′ ∈ [t +a,t +b],(X ,t′)⊧ϕ (23)

Fτ

P τ ≥ t +a∧∃t′ ∈ [t +a,min(τ,t +b)] ∶ (X ,t′)⊧¬ϕ (24)

Uτ

P (τ < t +a)∨(τ < t +b∧∀t′ ∈ [t +a,τ],(X ,t′)⊧ϕ) (25)

Tτ

P (explicit) ((X ,t +a) ⊧ ϕ)∧((X ,t +a+1) ⊧ ϕ)∧ ...∧((X ,t +b−1) ⊧ ϕ)∧((X ,t +b) ⊧ ϕ) (26)

Fτ

P (explicit) ((X ,t +a) ⊧ ¬ϕ)∨((X ,t +a+1) ⊧ ¬ϕ)∨ ...∨
((X ,t +b−1) ⊧ ¬ϕ)∨((X ,t +b) ⊧ ¬ϕ) (27)

Figure 4: Three-valued semantics of Always operator: P = ◻[a,b]ϕ

Eventually◇[a,b]ϕ (Fig. 3) In the positive logic, Eq. (18), we need to wait for time t+a, the beginning
of the time interval, to have a chance to conclude positively if a valid condition has been observed. From
time t +b, if the condition was not yet valid, the positive eventually operator always returns False. For
the negative logic, Eq. (19), invalidity requires to wait until the end of the time interval, otherwise one
cannot conclude. Finally, the validity is unknown if we have not yet reached the end of the time interval
but have not yet observed a suitable time, Eq. (20).

The explicit positive version Equation (21) is obtained by considering each instant between t +a and
t +b. One of these instants is supposed to satisfy the property. We use the disjunction between all the
terms to check it. At the opposite, explicit negative version Equation (22) returns True if all the terms
between t +a and t +b satisfy ¬ϕ . We therefore rely on the conjunction between all the terms.

Always ◻[a,b]ϕ (Fig. 4) In the positive logic, Eq. (23), similarly to the negative case of the eventually
operator, one needs to wait until the end of the interval to claim validity. For the negative logic. Eq. (24),
we detect invalidity as soon as we observe an invalid time, within the proper time interval. Unknown
cases are either before the time interval or within it, if the property ϕ is valid, up to now, Eq. (25).

The Always explicit positive version Equation (26) returns True if each instant between t +a and
t +b satisfies ϕ . Similarly to the explicit negative version of Eventually, we use the conjunction to verify
this point. For the explicit negative version to return True, it suffices that at one instant between t +a
and t +b, the property ϕ is not satisfied. Thus, we check the disjunction of all the terms, searching if one
of them violates ϕ .
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Tτ

P (τ ≥ t +a)∧( ∃t1 ∈ [t +a,min(τ,t +b)] ∶ (X ,t1)⊧ϕ2∧∀t2 ∈ [t,t1],(X ,t2)⊧ϕ1 ) (28)

Fτ

P (∃t6 ∈ [t,min(τ,t +a)] ∶ (X ,t6)⊧¬ϕ1) ∨
(τ ≥ t +a∧τ < t +b∧∃t7 ∈ [t +a,τ] ∶ (X ,t7)⊧¬ϕ1∧
¬(∃t8 ∈ [t +a,τ] ∶ (X ,t8)⊧ϕ2∧∀t9 ∈ [t,t8],(X ,t9)⊧ϕ1)) ∨
(τ ≥ t +b∧¬(∃t10 ∈ [t +a,t +b] ∶ (X ,t10)⊧ϕ2∧∀t11 ∈ [t,t10],(X ,t11)⊧ϕ1)) (29)

Uτ

P (τ < t +a∧∀t3 ∈ [t,τ],(X ,t3)⊧ϕ1) ∨
(τ ≥ t +a∧τ < t +b∧∀t4 ∈ [t,τ],(X ,t4)⊧ϕ1 ∧∀t5 ∈ [t +a,τ],(X ,t5)⊧¬ϕ2) (30)

Tτ

P (explicit) ((
a
⋀
n=0
(X ,n)⊧ϕ1)∧((X ,t +a)⊧ϕ2))∨((

a+1
⋀
n=0
(X ,n)⊧ϕ1)∧((X ,t +a+1)⊧ϕ2))∨ ...∨

((
b−1
⋀
n=0
(X ,n)⊧ϕ1)∧((X ,t +b−1)⊧ϕ2))∨((

b
⋀
n=0
(X ,n)⊧ϕ1)∧((X ,t +b)⊧ϕ2)) (31)

Fτ

P (explicit) (
a
⋁
n=0
(X ,n)⊧¬ϕ1)∨(

b
⋁

n1=a+1
((X ,n1)⊧¬ϕ1∧(

n1

⋀
n2=a
(X ,n2−1)⊧¬ϕ2)))∨

(
b
⋀
n=a
(X ,n)⊧¬ϕ2) (32)

Figure 5: Three-valued semantics of Until operator: P = ϕ1U[a,b]ϕ2

Until ϕ1U[a,b]ϕ2 (Fig. 5) Until operator is the most complex. We conclude positively when an event
ϕ2 occurred within the proper time interval, and until this moment ϕ1 was always satisfied, Eq. (28). For
the negative logic, there are multiple conditions that can lead to a violation of the property. First before
the time interval, if ϕ1 is not satisfied. Then inside the time interval, if (X ,τ) ⊧ ¬ϕ1 before the moment
when (X ,τ) ⊧ ϕ2, or if it was false before. Finally from t + b, if ϕ2 is never reached inside the time
interval or if it was false before, Eq. (29). About indeterminacy, we cannot yet conclude on the validity
of the formula, if, for the moment the formula is neither validated nor violated. A first condition is that
ϕ1 holds from time t until now. A second is that, at the current time τ , we have not reach yet t +a or we
always have ¬ϕ2. These condition only apply before reaching the end of the time interval t +b, Eq. (30).

As the Until operator depends at the same time to the satisfaction of a property inside the time
interval, and the satisfaction of another one before and inside the time interval, the explicit versions are
less trivial to obtain than for others operators. For the explicit positive version to return True, we need to
satisfy the Until property at least once between t+a and t+b, so we proceed by disjunction. Each term of
the disjunction is satisfied only if ϕ1 is satisfied from time t until this time instant included (conjunction
between all the terms between instant t and this time instant) and ϕ2 is satisfied at this moment. Note
that time t is represented by the 0 value in the Until temporal referential, in the same way that instants
t + a or t + b correspond to time a or b inside Until. As there are several ways of violated the Until
operator, explicit false version of Until is built differently as others explicit versions. Indeed, we have a
disjunction between the three possibilities to not satisfy the Until operator, as described above. We verify
if ϕ1 is not satisfied before or at time t +a by relying on the disjunction between all the ϕ1 terms from t
until t +a. Then, inside the time interval after time t +a, the property is violated with certainty if there
exist a moment where ϕ1 is not True, and until the previous time, ϕ2 was never satisfied. Indeed, if ϕ2
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was satisfied previously, either the property is satisfied, which means that explicit negative version must
return False; either the property was already violated before, so there exist another anterior time where
ϕ1 was not satisfied before ϕ2 was satisfied. Finally, explicit negative version must return True if ϕ2 is
never satisfy inside the time interval, which is studied by examining the conjunction of all the ¬ϕ2 terms
between t +a and t +b.

4 Operators implementation strategy

Based on this online semantics, we propose an implementation of Eventually, Always and Until in
discrete time. We use the synchronous language Lustre. We recall that all the nodes are available at
https://garoche.net/publication/2023_fmas_submission/.

Useful constructs for the implementation First, we define the basic nodes needed to implement the
temporal operators. Node min returns the minimum value between two variables. Node exist(time
:bool; prop: bool) returns True as soon as a property prop has been satisfied during the time
interval represented by time. Node forall_a(time: bool ; prop: bool) returns True
if a property prop has always been True during the time interval. All these nodes can easily be
implemented in Lustre.

Regarding the implementation of the nodes detecting whether or not we are in the time slot t +[a,b],
and since we work with finite intervals, we can optimize our clock, preventing it from incrementing to
infinity. We can limit the counter until value b, ensuring the absence of overflow. We implement the node
timeab, that returns True if the current time instant is inside the time interval, based on this bounded
internal counter. As counter stops at b, end of the time interval is intercepted looking at the counter
previous value. If it was already b, we know that we exceeded the end of the time interval.

We are now able to implement our nodes for each version of each operator. In the case of the Positive
and Negative versions, we want to stay as close as possible to the definition proposed in the Section 3.
We take two liberties in order to optimise the memory management. First, for each operator, we define
a bounded internal clock as described above. The same strategy as for the counter is used to determine
the end of the time interval, comparing the previous value of the internal node counter with b. Secondly,
we want to have a bounded number of memories, not dependent on the trace-length or on the length of
the time interval. We proceed as described in the literature [9], by reusing the outputs obtained at the
previous time instant to obtain the outputs at the current one. For example, here is the implementation
of the Until False node: Figure 6. Others Positive and Negative versions are obtained based on the same
principle. Last, we deduce the Unknown version from the Positive and Negative versions, as described in
the Property 1.
Remark 4. The case where both Positive and Negative versions of the operator are True at the same
time is never supposed to happen and would result in an error. Indeed, it would mean that the property
is both satisfied and violated, which is impossible. This result comes directly from Property 1.

Note that these implementations can only represent non-nested STL operators. That is to say that we
only consider ◇[a,b]ϕ , ◻[a,b]ϕ and ϕ1U[a,b]ϕ2 with ϕ , ϕ1 and ϕ2 being non-temporal predicates.

5 Formal verification of STL operators

In this section, we demonstrate by model checking that the operators implementation described in Sec-
tion 4 corresponds to the given specification, as presented in Section 3. We first introduce the formalizing

https://garoche.net/publication/2023_fmas_submission/
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1 node until_false (a,b: int ; phi1, phi2: bool)
2 returns (result_until_false: bool);
3 var until_time: int;
4 let
5 -- internal clock
6 until_time = min(0 -> pre until_time + 1, b);
7
8 -- init t=0 : until is violated if phi1 is false
9 result_until_false = not phi1 ->

10
11 -- violated if phi1 false before a
12 ((until_time <= a) and (not phi1)) or
13
14 -- violated if we are in the time interval,...
15 (until_time > a and until_time <= b and
16 exist(timeab(a,b), not phi1)
17 -- and before this moment we never had
18 and not (exist(timeab(a,b),
19 -- phi2 is true and until this moment phi1 is true.
20 ((phi2) and forall_a(timeab(0,b),phi1))))) or
21
22 -- violated if there is no instant in the time interval
23 ((until_time >= b) and not (exist(timeab(a,b),
24 -- where phi2 is true and until this moment
25 -- phi1 is true
26 ((phi2) and forall_a(timeab(0,b),phi1))))) or
27
28 -- still violated if it was violated once in the past
29 pre result_until_false;
30 tel

Figure 6: Until Lustre node for the False version of the operator
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1 node P_at_k (const k: int; clk:int; P:bool)
2 returns (ok: bool);
3 let
4 ok = if clk = k then P else (false -> pre ok);
5 tel

Figure 7: P at k Lustre node

of each STL operator proof node for positive, negative and three-valued versions. Then, we present the
use of Kind2 to concretely verify these proof nodes.

5.1 Induction on time interval size

To demonstrate the correctness of the positive and negative versions of the operators, we compare the
outputs of our implementation proposition for each operator and an explicit equivalent, as provided
in Equations (21), (22), (26), (27), (31) and (32). We remind that the explicit version is obtained by
enumerating all the terms in the time horizon t + [a,b]. This allows to check directly the value of each
term of the operator, and hence, to be sure to understand the obtained output. We have to show that
our implementation and the explicit one are equivalent for any time interval. We prove this property by
strong structural induction on the time interval size.

We proceed as follows. In a first time, we demonstrate that a statement is true for the smallest
possible STL time interval, cf. base case of Eq. (33). Then, we demonstrate that if the statement is true
for a given time interval size, it is also true when we increase the size interval by 1, cf. Eq. (35). By
verifying these two properties, we demonstrate the correctness of our operators for all intervals [a,b]
such that a,b ∈T∧a < b.

Base case: [a,a+1] Let Op be a version of a temporal operator, and Op exp its explicit representation
as described in Section 3.

∀a ∈T,Op
[a,a+1]ϕ ⇐⇒ Op exp

[a,a+1]ϕ (33)

For the base case proof, we create a new Lustre node P_at_k, cf. Fig. 7 that checks if a property
is satisfied at a specific time or was satisfied before. This allows us to implement the explicit case. Let
us take the example of the Positive version of the Eventually. For the [a,a+1] time interval, its explicit
version is Eq. (34) and its implementation corresponds to the lines 13 and 14 of the Figure 8

◇[a,a+1]ϕ ≡ ((X ,a) ⊧ ϕ)∨((X ,a+1) ⊧ ϕ) (34)

Inductive case: [a,b+1] Let Op be a version of a temporal operator and Op exp its explicit represen-
tation as described in Section 3.

(Op
[a,b]ϕ ⇐⇒ Op exp

[a,b]ϕ) Ô⇒ (Op
[a,b+1]ϕ ⇐⇒ Op exp

[a,b+1]ϕ) (35)

In our implementation, Op exp
[a,b+1] is obtained thanks to the previous value of Op

[a,b], that we
assume equivalent to Op exp

[a,b]. For example, inductive case of the explicit version of Eventually
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1 returns (base_case,ind_case: bool);
2 (*@contract
3 assume a<b and a>=0;
4 guarantee base_case;
5 guarantee ind_case;
6 *)
7 var clk : int;
8 output_ev_true, output_ev_true_bp1: bool;
9 let

10 clk = 0 -> 1 + pre clk;
11 output_ev_true = eventually_true (a,b,phi);
12 output_ev_true_bp1 = eventually_true (a,b+1,phi);
13 base_case = (b=a+1) =>
14 (output_ev_true = P_at_k(a,clk,phi) or P_at_k(a+1,clk,phi));
15
16 ind_case =
17 (output_ev_true_bp1 = (output_ev_true or P_at_k(b+1,clk,phi)));
18 tel

Figure 8: Eventually True proof node

1 node always_3v(const a,b:int; phi: bool)
2 returns (output_ev_true, output_ev_false: bool);
3 (*@contract
4 assume a<b and a>=0;
5 -- their are mutually exclusive
6 guarantee not (output_ev_true and output_ev_false);
7 *)
8 let
9 output_ev_true = eventually_true(a,b,phi);

10 output_ev_false = eventually_false(a,b,phi);
11 tel

Figure 9: Three-valued Eventually node in Lustre

True operator is obtained as described in Eq. (36) and its implementation corresponds to lines 16 and 17
of Figure 8

◇[a,b+1]ϕ ≡ (◇[a,b]ϕ)∨((X ,b+1) ⊧ ϕ) (36)

To concretely check these basic and inductive cases, we use the Kind2 model checker, cf Section 2.3.
For each positive and negative version of STL operators, we express the base and inductive case as two
properties, ie. two lemmas inside a contract to guarantee basic and inductive case, cf. Figure 8.

Finally, to obtain a three-valued output, we need to encode the result on two booleans. We combine
the positive and negative outputs - previously verified - to determine the state of the operator. According
to Property 1, Unknown is obtained if Positive and Negative outputs return False at the same time. As
a complementary check, we ensure inside a contract that Positive and Negative versions are mutually
exclusive as mentioned in the Remark 4. Figure 9 summarizes the implementation of this final node in
Lustre.
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Node name # Property Method Proof time
timeab assume PDR 0.339s

assume induction 0.351s
guarantee PDR 2.618s

eventually_true - - -
proof_ev_true assume PDR 0.653s

assume 2-induction 0.713s
guarantee 2-induction 26.778s
guarantee 2-induction 29.631s

eventually_false - - -
proof_ev_false guarantee PDR 37.215s

guarantee PDR 37.215s
eventually_3v assume PDR 0.677s

assume 2-induction 0.688s
guarantee 2-induction 0.688s
guarantee 2-induction 13.216s
guarantee 2-induction 18.855s

Table 3: Experiments for operator Eventually.

5.2 Using Kind2 as a theorem prover

Each of the three temporal operators is defined in a separate file. They all rely on basic nodes mentioned
in Sect. 4, in which only timeab is fitted with a contract. The following tables summarize all con-
tract elements automatically proved by Kind2 model-checker. We recall that Kind2 relies on different
model-checking algorithms that are executed in parallel. The method that succeeds first interrupt the
proof process. In the table, PDR stands for Property-Direct-Reachability [4] while k-induction speci-
fies the number of steps of the k-induction process used to conclude. In both methods, Kind2 produces
subproblems that are solved using Z3 [18].

As mentioned above, each operator op is defined using two underlying nodes op_false and
op_true as well as a node op_3v that reconstruct the three-valued output. The nodes op_false
and op_true are not directly associated to a contract but their soundness is expressed through the

validity of another node: respectively proof_op_false and proof_op_true. These nodes are
defining the base and inductive cases and associated to the main contract (cf. Fig. 8). Last, the final node
op_3v is only fitted with an extra contract guarantying disjunctiveness of the output (cf. Fig. 9 encoding
Eq. (11)).

Experiments were run with kind2 v2.0.0-7-gdcc7f6f on a 1,2 GHz Quad-Core Intel Core i7 with 16
GB of RAM. To build the table, each node is analyzed independently, but a quicker analysis of each
file can be performed with all nodes analyzed at once. Note also results with the same execution time
such as the elements of the node eventually_3v. Typically, in this case, they denote properties that
were proved together k-inductive by the algorithm. We observe something similar with PDR for node
proof_ev_false.

As a last remark, we have to say that, because of the parallel architecture of Kind2, it is difficult
to obtain perfect reproductibility of the results. For example, one can observe that the runtime of the
validity proof of the simple node timeab_tmp varies slightly between experiments while it is the exact
same node. The difference can also appear in the number of unrolling of the k-induction engine.
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Node name # Property Method Proof time
timeab assume PDR 0.432s

assume 2-induction 0.454s
guarantee PDR 2.855s

until_true - - -
proof_until_true assume PDR 0.537s

assume 2-induction 0.595s
guarantee 2-induction 6.347s
guarantee 2-induction 93.526s
guarantee 2-induction 161.614s

until_false - - -
proof_until_false assume induction 0.898s

assume induction 0.898s
assume induction 0.898s

guarantee 2-induction 606.067s
guarantee PDR 1605.403s

until_3v guarantee PDR 34.530s

Table 4: Experiments for operator Until.

Node name # Property Method Proof time
timeab assume PDR 0.400s

assume induction 0.425s
guarantee PDR 3.375s

always_true - - -
proof_alw_true guarantee 2-induction 76.633s

guarantee 2-induction 96.686s
always_false - - -
proof_alw_false guarantee 2-induction 19.407s

guarantee PDR 27.540s
always_3v guarantee PDR 12.854s

Table 5: Experiments for operator Always.
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6 Discussions and conclusion

Related Works. The use of three-valued logic has already been explored in the context of temporal
logic, particularly in LTL, with the same division used in this paper: one value indicating the certainty
of satisfaction of a property, another indicating the certainty of violation of a property, and a final value
representing indeterminacy [3, 11].

Formal verification of STL properties has also been studied. Roehm et al. [19] propose to check STL
properties on reach sequences, using hybrid model checking algorithms such as Cora [1] or SpaceEx [10].
A first step consists in the transformation of STL properties into their reachset temporal logic (RTL)
equivalent. This transformation comes close to the explicit development of each operator that we de-
scribed in Section 3, requiring potentially a large set of memories.

Moreover, several examples of algorithms and online implementation of STL properties have been
produced, using a finite number of memories, cf [17, 9]. Thus, [9] proposes an algorithm for quantitative
online STL implementation, and show on different examples the time-saving benefits of using their
online method compared to the offline one. Balsini et al. [2] propose a qualitative online implementation
of STL in Simulink, which nevertheless has some limitations. In particular, since three-valued logic is
not used in this implementation, we cannot be sure whether a property has been satisfied or violated until
the end of execution. These proposals go further than ours, allowing operators to be nested, sometime
with some limitations like [2] that can only contain one operator inside another. However the soundness
of the encoding is not formally proven.

Conclusion. In this paper, we propose an online discrete implementation of the STL semantics, in the
continuity of Balsini’s work [2]. Our contribution is twofold. First, we proposed an implementation
based on Kleene’s three-valued logic in order to be able to represent indeterminacy. Second, we formally
demonstrated the soundness of our implementation, proving the validity of each operator with respect to
its semantics.

Our approach was the following: we first defined the online STL semantics, and used it to build each
STL operator as a synchronous observer in the Lustre language. Finally, we formally demonstrated the
correctness of their implementation, using the Kind2 model-checker. We proceed by induction on the
size of temporal intervals. We succeed to demonstrate all the proof objectives for each temporal operator
implemented.

Future Work. They are mainly two directions to continue this work. A first one is to apply these
operators to models and see how model-checkers such as Kind2 can verify properties or produce counter-
examples. For example revisiting the use case of Roehm et al. [19]. The other direction is to extend the
set of STL formulas that can be encoded in our framework. While Balsini et al. [2] proposed a similar
encoding (but without proof) of nested operators with restricted form and up to two levels, we would like
to lift the restrictions and deal with more general formulas. The notion of propagation delays introduced
in Kempa et al. [13] could also lead to an efficient encoding with memories, also associated with proof
of the implementation.
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