Elias Khalife
email: eliask@vt.edu

Pierre-Loic Garoche
email: pierre-loic.garoche@enac.fr

Mazen Farhood
email: farhood@vt.edu

Kevin T Crofton

Code-Level Formal Verification of Ellipsoidal Invariant Sets for Linear Parameter-Varying Systems ⋆

Keywords: Deductive Method, Static Analysis, Invariant Set, Linear Parameter-Varying System, Frama-C

This paper focuses on the formal verification of invariant properties of a C code that describes the dynamics of a discrete-time linear parameter-varying system with affine parameter dependence. The C code is annotated using ACSL, and the Frama-C's WP plugin is used to transform the annotations and code into proof objectives. The invariant properties are then formally verified in both the real and float models using the polynomial inequalities plugin of the theorem prover Alt-Ergo. The challenges of verifying the invariant properties in the float model are addressed by utilizing bounds on numerical errors and incorporating them into the real model.

Introduction

Ellipsoidal invariant sets constitute an important concept in the field of control theory, specifically in the context of dynamical systems and system stability analysis. These sets are defined by the property that all state trajectories starting from any point within the set remain inside the set for all future times. In other words, if the system's state lies initially inside an ellipsoidal invariant set, then the state evolution is guaranteed to stay within the boundaries of the set. Similarly, invariants in the field of formal methods refer to properties or conditions that hold true throughout the entire or part of the execution of a program, system, or algorithm [START_REF] Peled | Software reliability methods[END_REF]. The relationship between the two concepts is evident when considering that if a state is inside the ellipsoidal invariant set, then the next states will also be inside of this set. This situation is akin to an invariant property, where the current state being inside the ellipsoidal invariant set acts as a precondition that implies the next states will remain within the set. There has been a significant amount of research on ellipsoidal invariant sets in the literature. Early work in this area focused on the use of ellipsoidal invariant sets for analyzing the stability of linear systems [START_REF] Kurzhanski | Ellipsoidal techniques for reachability analysis[END_REF][START_REF] Blanchini | Set invariance in control[END_REF]. Several methods have been developed to construct invariant sets, including methods based on Lyapunov's stability theorem [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF], linear matrix inequality (LMI) techniques [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], and sumof-squares (SOS) programming [START_REF] Topcu | Local stability analysis using simulations and sum-of-squares programming[END_REF]. Each of these methods has its own benefits and limitations, and the choice of method depends on the specific characteristics of the system being analyzed. This paper focuses on the formal verification of some invariant properties of the C code describing the dynamics of a discrete-time linear parameter-varying (LPV) system with affine parameter dependence. Specifically, we formally verify that, if the state of the system lies in an ellipsoidal invariant set at the initial time, then it resides in this set at all time instants, and, further, the output of the system resides in another ellipsoid at all time instants as well for all permissible pointwise-bounded inputs and parameter trajectories. These sets are obtained by applying new results developed in [START_REF] Khalife | Computation of invariant sets for discrete-time uncertain systems[END_REF] for computing state-and outputbounding sets for discrete-time uncertain linear fractional transformation (LFT) systems using pointwise integral quadratic constraints (IQCs) to characterize the uncertainties and the S-procedure. Uncertainties that admit pointwise IQC characterizations include static linear time-invariant and time-varying perturbations, sector-bounded nonlinearities, and uncertain time-varying time-delays. An affine LPV system can be expressed as an LFT on static linear time-varying perturbations, and so the aforementioned results are applicable in our case. The positive definite matrices defining the ellipsoids are obtained by solving semidefinite programs [START_REF] Boyd | Convex optimization[END_REF]. These solutions of the semidefinite programs, obtained by applying the IQC-based analysis approach, serve as a certificate that proves that the system satisfies the desired properties at the algorithmic level. Moreover, these solutions can be employed to annotate the C code describing the system dynamics with logical expressions, which indicate the set of reachable program states. The annotations are done in ACSL (ANSI/ISO C Specification Language) [START_REF] Baudin | ACSL: ANSI/ISO C specification language ACSL version 1.18[END_REF], Frama-C's formal annotation language. Additionally, we utilize WP, a Frama-C plugin based on the weakest precondition calculus and deductive methods, to transform annotations and code into proof objectives. Thus, the software verification in our case focuses on translating the guarantees obtained at the algorithmic level, using the analysis results from [START_REF] Khalife | Computation of invariant sets for discrete-time uncertain systems[END_REF], and expressing them at the code level. Then, we revalidate the invariant properties at the code level using Alt-Ergo-Poly [START_REF] Roux | A non-linear arithmetic procedure for control-command software verification[END_REF], an extension of the SMT solver Alt-Ergo [START_REF] Conchon | A collaborative framework for non-linear integer arithmetic reasoning in alt-ergo[END_REF] with a sound Sum-of-Squares solver [START_REF] Roux | Formal proofs of rounding error bounds -with application to an automatic positive definiteness check[END_REF][START_REF] Martin-Dorel | A reflexive tactic for polynomial positivity using numerical solvers and floating-point computations[END_REF], to discharge positive polynomial constraints. Last, we instrument the contract to account for floating-point errors in the code, ensuring the validity of our contracts despite the noise caused by floating-point inaccuracy.

One of the motivations for this work is analyzing the C code of gain-scheduled controllers, for instance, the robustly stable LPV path-following controller designed in [START_REF] Muniraj | Path-following control of small fixed-wing unmanned aircraft systems with H ∞ type performance[END_REF] for a small, fixed-wing, unmanned aircraft system (UAS), where the scheduling parameter is the inverse of the radius of curvature of the path to be traversed. If the output-bounding ellipsoid in this case lies within the actuator saturation limits, then we have a guarantee that the actuators would not saturate for the considered pointwise-bounded measurements.

The paper is structured as follows. In Section 2, we introduce affine LPV systems and explain how to determine state and output invariant ellipsoids. In Section 3, we outline the steps for setting up the necessary Frama-C environment to formally verify the invariant properties at code level. In Section 4, we demonstrate the formal verification of these properties using the real model. In Section 5, we present the verification of these properties in the float model, which involves the use of bounds on numerical errors and their integration into the real model. The paper concludes with Section 6.

Affine LPV Systems and Ellipsoidal Invariant Sets

Consider a stable discrete-time LPV system G described by

x(k + 1) = A(δ(k))x(k) + B(δ(k))d(k), y(k) = C(δ(k))x(k) + D(δ(k))d(k), (1)
where

x(k) ∈ IR nx , y(k) ∈ IR ny , d(k) ∈ IR n d , and δ(k) = (δ 1 (k), . . . , δ n δ (k)) ∈ IR n δ
designate the values of the state, output, input, and scheduling parameters at the time instant k, respectively, where k is a nonnegative integer. The statespace matrix-valued functions of G are assumed to have affine dependence on the scheduling parameters; for instance, the state matrix A(δ(k)) can be expressed as

A(δ(k)) = A 0 + n δ i=1 δ i (k)A i , (2)
where the matrices A i are known and constant for i = 0, . . . , n δ , and the scheduling parameters δ i (k) ∈ [δ i , δi] for all integers k ≥ 0 and i = 1, . . . , n δ . The analysis results used in this paper also allow imposing bounds on the parameter increments dδ i (k) = δ i (k + 1) -δ i (k) for i = 1, . . . , n δ and all integers k ≥ 0. The analysis results in [START_REF] Khalife | Computation of invariant sets for discrete-time uncertain systems[END_REF] are used to determine the state-invariant and output-bounding ellipsoids of system G. To apply these results, system G is first expressed as a linear fractional transformation (LFT) on uncertainties, where the uncertainties in this case are the static linear time-varying perturbations δ i for i = 1, . . . , n δ . That is, system G is expressed as an interconnection of a stable nominal linear time-invariant (LTI) system and an uncertainty operator. The set of allowable uncertainty operators is described using the so-called IQC multipliers. Namely, an IQC multiplier is used to define a quadratic constraint that the input and output signals of the uncertainty operator must satisfy. In the work [START_REF] Khalife | Computation of invariant sets for discrete-time uncertain systems[END_REF], this quadratic constraint must be satisfied at every time instant and is hence referred to as a pointwise IQC. A pointwise IQC is more restrictive than the standard IQC [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF], which involves an infinite summation of quadratic terms. However, the uncertainty set in our problem admits a pointwise IQC characterization. The approach in [START_REF] Khalife | Computation of invariant sets for discrete-time uncertain systems[END_REF] allows representing the exogenous input d as a pointwise bounded signal, where its value lies in some closed, convex polytope Γ for all time instants or an ellipsoid E. While the analysis conditions provided in [START_REF] Khalife | Computation of invariant sets for discrete-time uncertain systems[END_REF] are generally nonconvex, they can be relaxed into convex conditions by applying the multiconvexity relaxation technique [START_REF] Apkarian | Parameterized LMIs in control theory[END_REF], along with gridding. Thus, the positive definite matrices defining the state-invariant and output-bounding ellipsoids can be obtained by solving semidefinite programs.

Let D be the set of admissible inputs of system G and X ∈ S n ++ , where S n ++ denotes the set of n × n positive definite matrices. With every X ∈ S n ++ , we associate an ellipsoid E X := {x ∈ IR n | x T Xx ≤ 1}, whose shape and orientation are determined by X. Let E P and E Q be the state-invariant and output-bounding ellipsoids, respectively, obtained by applying the results of [START_REF] Khalife | Computation of invariant sets for discrete-time uncertain systems[END_REF], where P ∈ S nx ++ and Q ∈ S ny ++ . This means that, if x(k) ∈ E P , then x(k + 1) ∈ E P and y(k) ∈ E Q for any integer k ≥ 0, all d(k) ∈ D, and all admissible δ(k). The objective of this paper is to formally verify that the ellipsoids E P and E Q are state-invariant and output-bounding, respectively, for the affine LPV system G under all admissible inputs D and all possible scheduling parameters. These properties will be referred to as the state and output invariant properties in the rest of the paper.

Frama-C Setup

Frama-C is a suite of tools for the analysis of the source code of software written in C. These tools can be used for tasks such as static analysis, automatic proof generation, testing, and more [START_REF] Cuoq | Frama-C[END_REF]. In the following, we will use ACSL (ANSI/ISO C Specification Language), Frama-C's formal annotation language, as well as WP, a Frama-C plugin that relies on weakest precondition calculus and deductive methods, to transform annotations and code into proof objectives that are later solved by SMT solvers such as Z3 [START_REF] De Moura | Z3: An efficient SMT solver[END_REF], CVC4 [START_REF] Barrett | CVC4[END_REF], or Alt-Ergo [START_REF] Conchon | A collaborative framework for non-linear integer arithmetic reasoning in alt-ergo[END_REF]. ACSL is a specification language that can be used to annotate C code and provide precise, machine-readable descriptions of the behavior of C functions and other code elements [START_REF] Baudin | ACSL: ANSI C specification language[END_REF]. These annotations can be used by Frama-C and other tools to perform various kinds of analysis. In Frama-C, ACSL annotations can be used to specify properties of C code, such as preconditions and postconditions for functions, invariants for loops, and more. These annotations can then be checked by the Frama-C tools to ensure that the code adheres to the specified properties. This can be especially useful for developing safety-critical software, where it is important to ensure the code behaves correctly under all possible circumstances.

C Code of System Dynamics

To express the dynamics of a discrete-time system G in C, we define the function "updateState" that updates the state vector of the system and the function "updateOutput" that computes the output vector at the current time-step. These functions use the state and output equations in (1).

In the following code, the "struct state" defines a new data type that represents the state vector of the system. It has n x fields: x 1 , . . ., x nx , which correspond to the n x state variables of the system. Similarly, the "struct output" defines a new data type that has n y fields: y 1 , . . ., y ny , which correspond to the n y output variables of the system. The updateOutput function takes in the current state of the system x, the current input variables d 1 , . . . , d n d , and the current values of the scheduling parameters δ 1 , . . . , δ n δ . It computes the output vector of the system and stores the result in a "struct output" called y, following the output equation in [START_REF] Apkarian | Parameterized LMIs in control theory[END_REF]. The updateState function takes in the same inputs as the previous function, stores the values of the current state variables in temporary variables (pre x 1 , . . . , pre x nx), and computes the next state of the system based on the difference state equation in [START_REF] Apkarian | Parameterized LMIs in control theory[END_REF]. The state vector at the next time-step is then stored in the "struct state" x. x->x1 = . . .;

x->xn x = . . .;} C

Invariant Set ACSL Annotation

Let X ∈ S n ++ , then a vector z ∈ IR n ∈ E X if and only if

z T Xz = n i=1 X ii z 2 i + 2 n-1 i=1 n j=i+1 X ij z i z j ≤ 1. (3)
The invariant properties of the state-invariant ellipsoid E P and the outputbounding ellipsoid E Q must be annotated in ACSL to enable Frama-C to ensure that the codes adhere to them. This is achieved by defining the predicates stateinv and outputinv in ACSL as follows: The predicate stateinv takes in the elements of the state vector at a given time instant along with a scalar λ. Similarly, outputinv takes in the elements of the output vector at a given time instant along with a scalar λ.

// @
For λ equal to 1, the stateinv and outputinv predicates correspond to (3) with X = P and X = Q, respectively. In this case, when true, these predicates imply that the vectors x = x 1 , . . . , x nx T and y = y 1 , . . . , y ny T belong to E P and E Q , respectively.

Remark 1. The ACSL language allows predicates to be defined directly on C structs or pointers, but doing so may make it more difficult for automated solvers to prove the generated proof obligations. Based on our observation, it is more effective to define the predicate in a parameterized form, using all of the state/output variables as parameters. This approach may be more amenable to automated proofs and may improve the ability of automated solvers to prove the proof obligations. Note, however, that this observation may change with future versions of the tool or improvements in the solvers.

Contract-Based Verification

A contract is a set of preconditions, postconditions, and other specifications that describe the expected behavior of a piece of software. Preconditions are conditions that must be met in order for the software to be used correctly, and postconditions are conditions that must be satisfied after the software has been used. Contract-based verification is important for ensuring that the software behaves correctly and that certain properties are maintained under different possible circumstances. In ACSL, preconditions are expressed using the requires and assumes commands, while postconditions are expressed using the ensures command. Consider the simplest contract // requires P; ensures E;. It is equivalent to the contract // requires \true; ensures \old(P)==>E;, where \old(P) denotes the evaluation of predicate P before the execution of the function.

/* @ requires P ; @ behavior b1 : @ assumes A1 ; @ ensures E1 ; @ behavior b2 : @ assumes A2 ; @ ensures E2 ; */ ACSL Fig. 1.

Behaviors in ACSL contracts

As outlined in the ACSL manual [3, §2.3.3], we can rely on named behaviors to structure requirements. For example, the contract sketched in Fig. 1 amounts to requiring property P to hold for all cases but only requiring property E1 to hold when the precondition A1 is valid. It is syntactic sugar to express // ensures \old(P)==> ((\old(A1) ==> E1)&& (\old(A2)==> E2));. This use of named behaviors allows to separate concerns and prevent a non-proven behavior from negatively impacting the analysis of other behaviors.

Remark 2 (Beware of pointers and use of \old()). \old() must be used with care since \old(x)->x 0 denotes the value of field x 0 for the previous value of the pointer x, while \old(x->x 0) denotes the previous value of the field x 0 .

In the upcoming contracts, we assume that the scheduling parameter δ i (k) belongs to [δ i , δi], for i = 1, . . . , n δ and a given time-step k. Now, we define the preconditions of our various contracts. Zero Input Contract: The input set D = {0}, i.e., for a given time In Frama-C, the real model is based on the mathematical model of real numbers. As a result, single and double precision floating-point numbers are mapped to real types in proof objectives. This simplification can make the proof process easier, but it does not take into account the actual computation that is performed using machine-code floating-point numbers. This means that the real model may not accurately reflect the behavior of the system when it is implemented in machine code. Nevertheless, in our setting, using the real model is a reasonable first step since the system analysis has been performed assuming real computation.

-step k, if d(k) ∈ D, then d i (k) = 0 for i = 1, . . . ,
The validity of the real model in our setting will be further addressed in the next section by taking into account the potential for numerical errors.

To validate the invariant properties of the system G, we combine the codes in Sections 3.1, 3.2, and 3.3, and we add the missing preconditions and postconditions.

C+ACSL

In this code, the \valid, \separated, and assigns annotations are used for expressing constraints on the memory layout of the program and specifying which variables or memory locations may be modified by the code. Precisely, the \valid annotation is used to specify that a certain pointer or array refers to a valid, allocated region of memory, the \separated annotation is used to specify that certain variables or memory locations must be separated from each other in order for the code to be executed, and the assigns annotation is used to specify which variables or memory locations may be modified by the code. As shown in the above script, it is generally recommended to place an annotation before the code it is associated with.

To formally verify the invariant properties, we use the polynomial inequalities plugin of Alt-Ergo in the WP framework of Frama-C. This plugin, unlike other solvers, can deal with the type of predicates considered. The following command runs the formal verification process and returns the verification results: frama-c -wp -wp-model real -wp-prover Alt-Ergo-Poly source_file.c Many options and arguments can be used with the frama-c -wp command to customize and control the analysis process. For example, the -wp-timeout option is used to set a time limit for the analysis, which can be helpful in cases where the analysis is expected to take a long time. In our experiment, Alt-Ergo-Poly (the SOS plugin) was the only solver able to discharge any of our proof objectives. For instance, running the above command returned the following result:

[wp] 51 goals scheduled [wp] Proved goals: 51 / 51 Qed:

18 (2ms-7ms-14ms) Alt-Ergo-Poly : 33 (5ms-150ms-843ms) (3290)

The goals associated with the memory-related annotation were validated using the simpler internal solver Qed, while all the ellipsoid-related goals required the use of Alt-Ergo-Poly.

Validating Contracts: Float Model

In C, floating-point numbers are represented using a binary floating-point format, which is a method for representing real numbers with a fixed number of bits allocated to the mantissa (the fractional part of the number) and the exponent (the power of 2 by which the mantissa must be multiplied). The floating-point model in Frama-C adheres to the IEEE 754 standard for floating-point representation. This standard defines various floating-point formats for representing real numbers, including single-precision (32-bit) and double-precision (64-bit) formats.

Issues with Deductive Methods and the Floating-Point Model

While the float model is a more accurate representation of computation, it can produce proof goals that are more difficult to solve. This can be illustrated with the following simple example:

/* @ requires x > 0 && x <= 10; @ ensures \result > 0; */ double f (double x) { return x + 0.25; } C+ACSL This contract is easily solved using the real model: % frama-c -wp -wp-model real -wp-prover z3,cvc4,alt-ergo simple.c [wp] Proved goals:

1 / 1 - -- ---However, if we analyze the same program using a more accurate encoding of floats, i.e., by omitting the option -wp-model real, we get Prove: .0 < of_f64(add_f64(x, to_f64((1.0/4)))). Prover Z3 4.11.2 returns Failed Unknown error Prover CVC4 1.8 returns Timeout (Qed:2ms) (10s) Prover Alt-Ergo returns Timeout (Qed:2ms) (10s)

Given the limitations of automated provers in handling simple verification conditions involving floats, there are two primary alternatives to consider. One approach involves using proof assistants, like Gappa [START_REF] Daumas | Certification of bounds on expressions involving rounded operators[END_REF], which require more manual intervention but offer precise axiomatization of floating-point computations. Alternatively, static analysis tools such as FPTaylor [START_REF] Solovyev | Rigorous estimation of floating-point round-off errors with symbolic taylor expansions[END_REF], Fluctuat [START_REF] Delmas | Towards an industrial use of FLUCTUAT on safety-critical avionics software[END_REF], and Rosa [START_REF] Darulova | Sound compilation of reals[END_REF], which employ techniques like Taylor expansion or affine arithmetic, provide more systematic error bounding solutions.

In the following, instead of using the float model, we rely on such a static analysis to bound the numerical imprecision of the computation. For instance, in this example, using interval arithmetic, which will be discussed in Section 5. ---Prover Alt-Ergo returns Valid (Qed:2ms) (9ms) (12) ---

enew = max         -fl-∞   min(fl-∞ (-ey1) , fl-∞ (-ey2) , fl-∞ (ey1) , fl-∞ (ey2)) + min(fl-∞ (-x1f) , fl-∞ (x1f) , fl-∞ (-x2f) , fl-∞ (x2f

Bounding Numerical Errors

We refer the reader to [START_REF] Martel | An overview of semantics for the validation of numerical programs[END_REF][START_REF] Goubault | Static analysis of finite precision computations[END_REF][START_REF] Goubault | Static analyses of the precision of floating-point operations[END_REF] for more details on means to bound floatingpoint accumulated rounding errors. We recall the characterization of floatingpoint values for addition and multiplication of floating-point numbers:

(u + e u) + (v + e v) = (u + v) + (e u + e v + e + (u, v)), (4)
(u + e u) * (v + e v) = (u * v) + (e u * v + e v * u + e * (u, v)), (5)
with |e + (u, v)| ≤ |u + v| eps and |e * (u, v)| ≤ |u * v| eps + eta.

In the following discussions, fl (e) denotes the floating-point approximation of value e using a "round to the nearest" mode. Rounding towards -∞ and +∞ are denoted by fl -∞ (•) and fl +∞ (•), respectively. The constants eps and eta denote the precision of the floating-point format and its precision in case of underflows, respectively. For single precision floating-point numbers, eps = 2 -22 ≈ 10 -7 and eta = 2 -149 ≈ 10 -45 , while for double precision, eps = 2 -52 ≈ 10 -16 and eta = 2 -1074 ≈ 10 -324 .

Equations (4) and (5) can be adapted to intervals, as detailed in Figure 2. The interval [a, b] with additional error ±e is denoted by ([a, b], e). This method allows to characterize both the actual values, obtained by floating-point computation in the value part, and a safe error term. In case of a deterministic loopless code computing an expression exp, one would obtain the abstract value [x, x] ± e where the singleton interval for the value part denotes exactly the value x that would have been obtained when computing fl (exp). Thanks to the handling of floating-point errors, the computation of exp with reals is guaranteed to lie within [fl -∞ (x -e) , fl +∞ (x + e)].

Error Hyper-rectangle Approach

For the analysis that follows, we will assume that the initial state of the system G is represented by a floating-point number that belongs to the state-invariant ellipsoid. The vector z ∈ IR n serves as a placeholder for both the updated state and output vectors of the system. The floating-point representation fl (z) of the exact vector z satisfies the following inequalities:

z -e ⪯ fl (z) ⪯ z + e, (6)
where ⪯ denotes the componentwise inequality and e = e 1 , . . . , e n T is the "error" vector whose i th element is an over-approximation of the accumulated error associated with the computation of the i th component of z using float model arithmetic. Consequently, it is clear that fl (z) belongs to a hyper-rectangle Γ that is symmetric about the exact vector z and that has 2 n vertices ẑi , where i = 1, . . . , 2 n . Assume that z ∈ E X is formally verified in the real model. Then, to prove that fl (z) ∈ E X , it is sufficient to verify that Γ ⊂ E X . This sufficient condition can be established using either of the following two methods.

Method 1: Checking All Points in the Hyper-rectangle. The first method to verify that Γ ⊂ E X is to formally verify that all the points in Γ belong to E X , i.e., for all z e ∈ Γ , z e ∈ E X . To express this condition in ACSL, we first need to know how to express all the vectors that belong to Γ . We notice that the i th component of any vector z e belonging to Γ can be expressed as z e,i = z + l i e i , where l i ∈ [-1, 1] for i = 1, . . . , n. This formulation of z e can be expressed in ACSL using the universal quantifier ∀ (\forall) and n bound variables (l 1 , . . ., l n), each belonging to [-1, 1]. For instance, in the case of formally verifying the state invariant property, the postcondition is the following:

ACSL

Method 2: Checking Each Vertex. The second method to verify that Γ ⊂ E X benefits from the convexity of the quadratic function z T Xz. Precisely, by leveraging the convexity of the quadratic function z T Xz, the following holds:

Γ ⊂ E X if and only if all the vertices ẑi , for i = 1, . . . , 2 n , of Γ belong to E X . Therefore, to formally verify that fl (z) ∈ E X , we must formally verify that the vertices of Γ belong to E X . The vertices ẑi , for i = 1, . . . , 2 n , of Γ can be expressed in ACSL using the universal quantifier ∀ (\forall) and n bound variables (l 1 , . . ., l n), each belonging to {-1, 1}. The postconditions for verifying the state and output invariant properties of the system using this method are similar to the ones used in the first method, with the exception that the bound variables' inequalities (-1<=l i <=1) are replaced by (l i ==-1 || l i ==1).

Assessment of Both Methods. While it is possible to formally verify that Γ ⊂ E X using the methods described before, the use of quantifiers may lead to a proliferation of variables or constraints, which can make it difficult for the automated prover to discharge the proof: this may either lead to an extended time to prove the goals or to a solver failure. For instance, in our experiments, it was possible to verify the invariant properties of an LTI system with 16 state variables, 10 inputs, and 4 outputs in the float model using Method 1, but it was not possible to do so for any of the considered affine LPV systems with 4 state variables, 2 inputs, 2 outputs, and up to 2 scheduling parameters. On the other hand, using Method 2, it was possible to verify the invariant properties of these affine LPV systems and corresponding LTI systems in the float model, but it was not possible to do so for the large LTI system verified using Method 1.

To address this issue, we present a different approach in the next section for formally verifying the invariant properties in the float model without the use of quantifiers.

Error Ball Approach

Consider the "error ball" B e centered around the exact vector z with a radius r such that B e covers the hyper-rectangle Γ .

z T e Xz e = (z + ru) T X(z + ru) = z T Xz + 2ru T Xz + r 2 u T Xu ≤ 1.
It is not difficult to prove that the following inequality holds [START_REF] Boyd | Convex optimization[END_REF]:

z T e Xz e ≤ z T Xz + 2r∥X∥ 2 ∥z∥ 2 + r 2 ∥X∥ 2 , (7)
where ∥X∥ 2 is the matrix 2-norm induced by the vector Euclidean norm, i.e., ∥X∥ 2 = λ max (X), where λ max (X) is the maximum eigenvalue of X. We recall that, by assumption, it is formally verified in the real model that the exact vector z belongs to E X . Based on this assumption, we can find the maximum 2-norm of z such that z ∈ E X by solving the following nonconvex optimization problem:

maximize z T z subject to z T Xz ≤ 1. (8)
This optimization problem is a special case of a nonconvex problem discussed in [7, Chapter 5.2.4], for which strong duality holds [START_REF] Nocedal | Numerical optimization[END_REF][START_REF] Boyd | Convex optimization[END_REF], i.e., the optimal value, ∥z * ∥ 2 2 , of the primal problem is equal to the optimal value of the following dual problem: minimize α subject to X -1 ⪯ αI.

The optimal value of the dual problem is α * = λ max (X -1) = 1 λmin(X) , where X -1 is the inverse of X and λ min (X) is the minimum eigenvalue of X. Accordingly, the optimal value of the primal nonconvex problem is ∥z * ∥ 2 2 = α * = (λ min (X)) -1 . Then, for all z ∈ E X , the following inequalities hold:

z T e Xz e ≤ z T Xz + 2r∥X∥ 2 ∥z∥ 2 + r 2 ∥X∥ 2 ≤ z T Xz + rλ max (X) 2 (λ min (X)) -1 2 + r . (10)
Therefore, it is sufficient to formally verify that

z T Xz ≤ 1 -rλ max (X) 2 (λ min (X)) -1 2 + r (11)
to conclude that z T e Xz e ≤ 1 for all z e ∈ B e , and that B e ⊂ E X . In other words, if (11) is formally verified, then fl (z) ∈ E X and the ellipsoidal invariant property is verified in the float model. To formally verify [START_REF] Daumas | Certification of bounds on expressions involving rounded operators[END_REF], we need to compute the radius r of B e such that Γ ⊂ B e , as well as the maximum and minimum eigenvalues of X. Since Γ is a symmetric hyper-rectangle about z, the smallest radius of B e such that B e covers Γ is r = ∥e∥ 2 [START_REF] Boyd | Convex optimization[END_REF], where e is the error vector satisfying [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. Then, for any r ≥ ∥e∥ 2 , B e covers Γ . One acceptable choice of r is r = n∥e∥ ∞ , where ∥e∥ ∞ = max i=1,...,n |e i | is the ∞-norm of e. This choice is valid because ∥e∥ 2 ≤ √ n ∥e∥ ∞ . For our analysis, it is a better choice to set r = n∥e∥ ∞ , as this computation only requires one operation compared to the 2n operations required for computing ∥e∥ 2 , which minimizes the accumulated floating-point error during the computation of r. The error vector e is computed outside of Frama-C and injected in the contract. As for the computation of the maximum and minimum eigenvalues of X, there are several algorithms that can be used to compute the eigenvalues of a matrix, such as the diagonalization, power iteration, and QR algorithms, and singular value decomposition (SVD) methods [START_REF] Golub | Matrix computations[END_REF][START_REF] Trefethen | Numerical linear algebra[END_REF]. These algorithms are generally reliable and can be expected to produce accurate results in most cases. For instance, iterative methods like the power iteration algorithm can be employed to compute the eigenvalues of a matrix, starting with a random initial vector [START_REF] Kuczyński | Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start[END_REF]. This approach allows for an over-approximation of the converged value by estimating it from above. The over-approximation is then fed back into the algorithm as input for subsequent iterations, which refines the approximation and helps ensure its validity.

Hence, to formally verify the state and output invariant properties of the system G in the float model, we add float model contracts to the code in Section 4 as follows:

C+ACSL

In this code, the implied expressions in the postconditions correspond to inequality [START_REF] Daumas | Certification of bounds on expressions involving rounded operators[END_REF]. The terms norm P, norm Q, r x, r y, norm x max, and norm y max correspond to ∥P ∥ 2 , ∥Q∥ 2 , the radii of the error balls centered around the updated state and output vectors x and y, (λ min (P)) -1 2 , and (λ min (Q)) -1 2 , respectively. This approach allows for the formal verification of the invariant properties of all considered affine LPV and LTI systems in the float model.

Conclusion

This paper demonstrates a process for formally verifying the invariant properties of a C code describing the dynamics of a discrete-time LPV system with affine parameter dependence. The ACSL language and the WP plugin in Frama-C are used to express the invariant properties and generate proof obligations, and the polynomial inequalities plugin in Alt-Ergo is used discharge these proof obligations. The invariant properties were successfully verified in both the real and float models, with the latter requiring the use of bounds on numerical errors and their incorporation into the real model. This process can be applied to other systems with similar properties. The installation instructions of the tools used in this work along with the experiments are available at https: //github.com/ploc/verif-iqc. Additionally, a dockerfile is also available at https://hub.docker.com/r/ekhalife/verif-iqc, and the instructions for using the dockerfile can be found in the same GitHub repository. In future work, we plan to extend this approach to more general classes of uncertain systems.

 -Prover Z3 4.11.2 returns Valid (Qed:0.81ms) (30ms) (21112) Prover CVC4 1.8 returns Valid (Qed:0.81ms) (40ms) (5926) Prover Alt-Ergo returns Valid (Qed:0.81ms) (8ms) (8) -

 2, we can bound the values of \result by [0.25, 10.25] + ±2.275958E-15, where the first interval denotes the interval of double [0.25, 10.25] and the term ±2.275958E-15 denotes the over-approximation of accumulated errors. The contract can then be instrumented, and the floating-point "noise" can be included in the \ensures statement as follows: /* @ requires x > 0 && x <= 10; @ ensures \forall real λ, -1 <= λ <= 1 ==> \result + λ * 2.275958 E-15 > 0; */ ACSL With this approach, we can use the real model for analysis to formally verify the postcondition in the float model: % frama-c -wp -wp-model real -wp-prover z3,cvc4,alt-ergo simple2.c [wp] Proved goals:

 -([x1, x2], e) + ([y1, y2], f) =   [fl (x1 + y1) , fl (x2 + y2)], enew with enew = max -fl-∞ -e -f -e + (x1, y1) , fl+∞ e + f + e + (x2, y2) , x2], e) * ([y1, y2], f) = min(fl (x1y1) , fl (x1y2) , fl (x2y1) , fl (y1y2)), max(fl (x1y1) , fl (x1y2) , fl (x2y1) , fl (y1y2)) , enew , where e + (a, b) is defined as (|a| + |b|)eps and e * (a, b) as |a * b| eps + eta and with

Fig. 2 .

 2 Fig. 2. Addition and multiplication on intervals with floating-point errors.

/

 * @ behavior c o n t r a c t _ na m e _ f l o a t _ m o d e l : assumes . . .; ensures stateinv (\old (x->x1) , . . ., \old (x->xn x) ,1) ==> outputinv (y->y 1 , . . .,y->y ny ,1 -2 * r_y * norm_Q * norm_y_max -r_y * r_y * norm_Q) ; */ void updateOutput (...) {...} /* @ behavior c o n t r a c t _ na m e _ f l o a t _ m o d e l : assumes . . .; ensures stateinv (\old (x->x1) , . . ., \old (x->xn x) ,1) ==> stateinv (x->x1 , . . .,x->xn x ,1 -2 * r_x * norm_P * norm_x_max -r_x * r_x * norm_P)) ; */ void updateState (...) {...}

 predicate stateinv (real x1 , . . ., real xn x , real λ) = (P11 * x1 * x1 + 2 * P12 * x1 * x2 + . . . + Pn x nx * xn x * xn x <= λ) ; // @ predicate outputinv (real y 1 , . . ., real y ny , real λ) = ACSL (Q 11 * y 1 * y 1 + 2 * Q 12 * y 1 * y 2 + . . .+ Q ny ny * y ny * y ny <= λ) ;

 n d . && . . . && dn d == 0; assumes δ 1 <= δ1 <= δ1 && . . . && δ n δ <= δn δ <= δn δ ; */ ++ . In this case, the predicate ellipinput must be defined similarly to the stateinv and outputinv predicates in Section 3.2, and the contract is expressed as follows:

	/* @ behavior zero_input_contract :
	assumes d1 == 0

ACSL Polytope Bounded Input Contract: The input set D is a polytope. Particularly, if D is a hyper-rectangle defined such that, given a time-instant k, d i (k) belongs to [d i , di] for i = 1, . . . , n d , we write the following contract: /* @ behavior po ly t op e _i np u t_ c on tr a ct : assumes d 1 <= d1 <= d1 && . . . && d n d <= dn d <= dn d ; assumes δ 1 <= δ1 <= δ1 && . . . && δ n δ <= δn δ <= δn δ ; */ ACSL Ellipsoid Bounded Input Contract: The input set D is an ellipsoid E M , where M ∈ S n d // @ predicate ellipinput (real d1 , . . ., real dn d , real λ) = (M11 * d1 * d1 + 2 * M12 * d1 * d2 + . . . + Mn d n d * dn d * dn d <= λ) ; /* @ behavior e ll i p s oi d _ in p u t _c o n t ra c t : assumes ellipinput (d1 , . . ., dn d , 1) ; assumes δ 1 <= δ1 <= δ1 && . . . && δ n δ <= δn δ <= δn δ ; */ ACSL 4 Validating Contracts: Real Model

 typedef struct { double x1 , . . ., xn x ; } state ; typedef struct { double y 1 , . . ., y ny ; } output ; // @ predicate stateinv (real x1 , . . ., real xn x , real λ) = (P11 * x1 * x1 + 2 * P12 * x1 * x2 + . . . + Pn x nx * xn x * xn x <= λ) ; // @ predicate outputinv (real y 1 , . . ., real y ny , real λ) = (Q 11 * y 1 * y 1 + 2 * Q 12 * y 1 * y 2 + . . .+ Q ny ny * y ny * y

	*/
	void updateOutput (...) {...}
	/* @ requires \valid (x) ;
	requires \separated (& (x->x1) , . . .,& (x->xn x)) ;
	assigns * x ;
	behavior contract_name :
	assumes . . .;
	ensures stateinv (\old (x->x1) , . . ., \old (x->xn x) ,1) ==>
	stateinv (x->x1 , . . .,x->xn x ,1) ;
	*/
	void updateState (...) {...}

ny <= λ) ; /* @ requires \valid (x) && \valid (y) ; requires \separated (& (x->x1) , . . .,& (x->xn x) ,& (y->y 1) , . . ., & (y->y ny)) ; assigns * y ; behavior contract_name : assumes . . .; ensures stateinv (\old (x->x1) , ... , \old (x->xn x) ,1) ==> outputinv (y->y 1 , . . .,y->y ny ,1) ;

 ACSLIn this code, n x bound variables are used with the universal quantifier \forall to represent all the vectors x e belonging to Γ . Similarly, when formally verifying the output invariant property, the following postcondition is used:

	// State Invariant Postcondition
	ensures \forall real l1 ; . . .; \forall real ln x ; -1 <= l1 <= 1
	==> . . . ==> -1 <= ln x <= 1 ==> stateinv (\old (x->x1) , . . .,
	\old (x->xn x) ,1) ==> stateinv (x->x1 +l1 *e1 , . . ., x->xn x +ln x *
	en x ,1) ;
	// Output Invariant Postcondition
	ensures \forall real l1 ; . . .; \forall real ln y ; -1 <= l1 <= 1
	==> . . . ==> -1 <= ln y <= 1 ==> stateinv (\old (x->x1) , . . .,
	\old (x->xn x) ,1) ==> outputinv (y->y 1 +l1 *e1 , . . ., y->y ny +ln y *
	en y ,1) ;

 The ball B e is defined as B e = {z e ∈ IR n | z e = z + ru, ∥u∥ 2 ≤ 1}, where ∥.∥ 2 is the standard Euclidean norm. Since fl (z) ∈ Γ , it follows that fl (z) ∈ B e as well. Therefore, to verify that fl (z) ∈ E X , it is sufficient to show that B e ⊂ E X . Clearly, B e ⊂ E X if and only if all the points belonging to B e also belong to E X . In other words, B e ⊂ E X if and only if, for all u ∈ IR n such that ∥u∥ 2 ≤ 1,

⋆ This work was supported by the Office of Naval Research under Award No. N00014-18-1-2627, the Army Research Office under Contract No. W911NF-21-1-0250, and the ANR-17-CE25-0018 FEANICSES project.