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Abstract. This paper focuses on the formal verification of invariant
properties of a C code that describes the dynamics of a discrete-time
linear parameter-varying system with affine parameter dependence. The
C code is annotated using ACSL, and the Frama-C’s WP plugin is used to
transform the annotations and code into proof objectives. The invariant
properties are then formally verified in both the real and float models
using the polynomial inequalities plugin of the theorem prover Alt-Ergo.
The challenges of verifying the invariant properties in the float model
are addressed by utilizing bounds on numerical errors and incorporating
them into the real model.

Keywords: Deductive Method · Static Analysis · Invariant Set · Linear
Parameter-Varying System · Frama-C.

1 Introduction

Ellipsoidal invariant sets constitute an important concept in the field of control
theory, specifically in the context of dynamical systems and system stability
analysis. These sets are defined by the property that all state trajectories starting
from any point within the set remain inside the set for all future times. In
other words, if the system’s state lies initially inside an ellipsoidal invariant
set, then the state evolution is guaranteed to stay within the boundaries of the
set. Similarly, invariants in the field of formal methods refer to properties or
conditions that hold true throughout the entire or part of the execution of a
program, system, or algorithm [26]. The relationship between the two concepts
is evident when considering that if a state is inside the ellipsoidal invariant set,
then the next states will also be inside of this set. This situation is akin to an
invariant property, where the current state being inside the ellipsoidal invariant
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the ANR-17-CE25-0018 FEANICSES project.
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set acts as a precondition that implies the next states will remain within the set.
There has been a significant amount of research on ellipsoidal invariant sets in the
literature. Early work in this area focused on the use of ellipsoidal invariant sets
for analyzing the stability of linear systems [20, 5]. Several methods have been
developed to construct invariant sets, including methods based on Lyapunov’s
stability theorem [18], linear matrix inequality (LMI) techniques [6], and sum-
of-squares (SOS) programming [30]. Each of these methods has its own benefits
and limitations, and the choice of method depends on the specific characteristics
of the system being analyzed.

This paper focuses on the formal verification of some invariant properties of
the C code describing the dynamics of a discrete-time linear parameter-varying
(LPV) system with affine parameter dependence. Specifically, we formally verify
that, if the state of the system lies in an ellipsoidal invariant set at the initial
time, then it resides in this set at all time instants, and, further, the output of the
system resides in another ellipsoid at all time instants as well for all permissible
pointwise-bounded inputs and parameter trajectories. These sets are obtained
by applying new results developed in [17] for computing state- and output-
bounding sets for discrete-time uncertain linear fractional transformation (LFT)
systems using pointwise integral quadratic constraints (IQCs) to characterize
the uncertainties and the S-procedure. Uncertainties that admit pointwise IQC
characterizations include static linear time-invariant and time-varying pertur-
bations, sector-bounded nonlinearities, and uncertain time-varying time-delays.
An affine LPV system can be expressed as an LFT on static linear time-varying
perturbations, and so the aforementioned results are applicable in our case. The
positive definite matrices defining the ellipsoids are obtained by solving semidef-
inite programs [7]. These solutions of the semidefinite programs, obtained by
applying the IQC-based analysis approach, serve as a certificate that proves
that the system satisfies the desired properties at the algorithmic level. More-
over, these solutions can be employed to annotate the C code describing the
system dynamics with logical expressions, which indicate the set of reachable
program states. The annotations are done in ACSL (ANSI/ISO C Specification
Language) [3], Frama-C’s formal annotation language. Additionally, we utilize
WP, a Frama-C plugin based on the weakest precondition calculus and deduc-
tive methods, to transform annotations and code into proof objectives. Thus, the
software verification in our case focuses on translating the guarantees obtained
at the algorithmic level, using the analysis results from [17], and expressing
them at the code level. Then, we revalidate the invariant properties at the code
level using Alt-Ergo-Poly [28], an extension of the SMT solver Alt-Ergo [8] with
a sound Sum-of-Squares solver [27, 22], to discharge positive polynomial con-
straints. Last, we instrument the contract to account for floating-point errors
in the code, ensuring the validity of our contracts despite the noise caused by
floating-point inaccuracy.

One of the motivations for this work is analyzing the C code of gain-scheduled
controllers, for instance, the robustly stable LPV path-following controller de-
signed in [24] for a small, fixed-wing, unmanned aircraft system (UAS), where
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the scheduling parameter is the inverse of the radius of curvature of the path to
be traversed. If the output-bounding ellipsoid in this case lies within the actu-
ator saturation limits, then we have a guarantee that the actuators would not
saturate for the considered pointwise-bounded measurements.

The paper is structured as follows. In Section 2, we introduce affine LPV
systems and explain how to determine state and output invariant ellipsoids. In
Section 3, we outline the steps for setting up the necessary Frama-C environ-
ment to formally verify the invariant properties at code level. In Section 4, we
demonstrate the formal verification of these properties using the real model. In
Section 5, we present the verification of these properties in the float model, which
involves the use of bounds on numerical errors and their integration into the real
model. The paper concludes with Section 6.

2 Affine LPV Systems and Ellipsoidal Invariant Sets

Consider a stable discrete-time LPV system G described by

x(k + 1) = A(δ(k))x(k) +B(δ(k))d(k),

y(k) = C(δ(k))x(k) +D(δ(k))d(k),
(1)

where x(k) ∈ IRnx , y(k) ∈ IRny , d(k) ∈ IRnd , and δ(k) = (δ1(k), . . . , δnδ
(k)) ∈

IRnδ designate the values of the state, output, input, and scheduling parameters
at the time instant k, respectively, where k is a nonnegative integer. The state-
space matrix-valued functions of G are assumed to have affine dependence on the
scheduling parameters; for instance, the state matrix A(δ(k)) can be expressed as

A(δ(k)) = A0 +

nδ∑
i=1

δi(k)Ai, (2)

where the matrices Ai are known and constant for i = 0, . . . , nδ, and the schedul-
ing parameters δi(k) ∈ [δi, δ̄i] for all integers k ≥ 0 and i = 1, . . . , nδ. The
analysis results used in this paper also allow imposing bounds on the parameter
increments dδi(k) = δi(k + 1)− δi(k) for i = 1, . . . , nδ and all integers k ≥ 0.

The analysis results in [17] are used to determine the state-invariant and
output-bounding ellipsoids of system G. To apply these results, system G is first
expressed as a linear fractional transformation (LFT) on uncertainties, where
the uncertainties in this case are the static linear time-varying perturbations
δi for i = 1, . . . , nδ. That is, system G is expressed as an interconnection of a
stable nominal linear time-invariant (LTI) system and an uncertainty operator.
The set of allowable uncertainty operators is described using the so-called IQC
multipliers. Namely, an IQC multiplier is used to define a quadratic constraint
that the input and output signals of the uncertainty operator must satisfy. In the
work [17], this quadratic constraint must be satisfied at every time instant and
is hence referred to as a pointwise IQC. A pointwise IQC is more restrictive than
the standard IQC [23], which involves an infinite summation of quadratic terms.
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However, the uncertainty set in our problem admits a pointwise IQC charac-
terization. The approach in [17] allows representing the exogenous input d as a
pointwise bounded signal, where its value lies in some closed, convex polytope
Γ for all time instants or an ellipsoid E . While the analysis conditions provided
in [17] are generally nonconvex, they can be relaxed into convex conditions by
applying the multiconvexity relaxation technique [1], along with gridding. Thus,
the positive definite matrices defining the state-invariant and output-bounding
ellipsoids can be obtained by solving semidefinite programs.

Let D be the set of admissible inputs of system G and X ∈ Sn++, where Sn++

denotes the set of n × n positive definite matrices. With every X ∈ Sn++, we
associate an ellipsoid EX := {x ∈ IRn |xTXx ≤ 1}, whose shape and orientation
are determined by X. Let EP and EQ be the state-invariant and output-bounding
ellipsoids, respectively, obtained by applying the results of [17], where P ∈ Snx

++

and Q ∈ S
ny

++. This means that, if x(k) ∈ EP , then x(k+ 1) ∈ EP and y(k) ∈ EQ
for any integer k ≥ 0, all d(k) ∈ D, and all admissible δ(k). The objective of this
paper is to formally verify that the ellipsoids EP and EQ are state-invariant and
output-bounding, respectively, for the affine LPV system G under all admissible
inputs D and all possible scheduling parameters. These properties will be referred
to as the state and output invariant properties in the rest of the paper.

3 Frama-C Setup

Frama-C is a suite of tools for the analysis of the source code of software written
in C. These tools can be used for tasks such as static analysis, automatic proof
generation, testing, and more [9]. In the following, we will use ACSL (ANSI/ISO
C Specification Language), Frama-C’s formal annotation language, as well as
WP, a Frama-C plugin that relies on weakest precondition calculus and deductive
methods, to transform annotations and code into proof objectives that are later
solved by SMT solvers such as Z3 [12], CVC4 [2], or Alt-Ergo [8]. ACSL is a
specification language that can be used to annotate C code and provide precise,
machine-readable descriptions of the behavior of C functions and other code
elements [4]. These annotations can be used by Frama-C and other tools to
perform various kinds of analysis. In Frama-C, ACSL annotations can be used
to specify properties of C code, such as preconditions and postconditions for
functions, invariants for loops, and more. These annotations can then be checked
by the Frama-C tools to ensure that the code adheres to the specified properties.
This can be especially useful for developing safety-critical software, where it is
important to ensure the code behaves correctly under all possible circumstances.

3.1 C Code of System Dynamics

To express the dynamics of a discrete-time system G in C, we define the func-
tion “updateState” that updates the state vector of the system and the func-
tion “updateOutput” that computes the output vector at the current time-step.
These functions use the state and output equations in (1).
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In the following code, the “struct state” defines a new data type that
represents the state vector of the system. It has nx fields: x1, . . ., xnx

, which cor-
respond to the nx state variables of the system. Similarly, the “struct output”
defines a new data type that has ny fields: y1, . . ., yny

, which correspond to
the ny output variables of the system. The updateOutput function takes in the
current state of the system x, the current input variables d1, . . . , dnd

, and the
current values of the scheduling parameters δ1, . . . , δnδ

. It computes the output
vector of the system and stores the result in a “struct output” called y, fol-
lowing the output equation in (1). The updateState function takes in the same
inputs as the previous function, stores the values of the current state variables
in temporary variables (pre x1, . . . , pre xnx

), and computes the next state of
the system based on the difference state equation in (1). The state vector at the
next time-step is then stored in the “struct state” x.

typedef struct { double x1, . . ., xnx ; } state;

typedef struct { double y1, . . ., yny
; } output;

void updateOutput(state *x, output *y, double d1, . . .,
double dnd , double δ1, . . ., double δnδ ){

// Compute the output

y->y1 = . . .;
y->yny

= . . .;}

void updateState(state *x, double d1, . . ., double dnd , double

δ1, . . ., double δnδ ){

//Store the current state in temporary variables

double pre_x1 = x->x1, . . ., pre_xnx = x->xnx ;

// Compute the next state

x->x1 = . . .;
x->xnx = . . .;}

C

3.2 Invariant Set ACSL Annotation

Let X ∈ Sn++, then a vector z ∈ IRn ∈ EX if and only if

zTXz =

n∑
i=1

Xiiz
2
i + 2

n−1∑
i=1

n∑
j=i+1

Xijzizj ≤ 1. (3)

The invariant properties of the state-invariant ellipsoid EP and the output-
bounding ellipsoid EQ must be annotated in ACSL to enable Frama-C to en-
sure that the codes adhere to them. This is achieved by defining the predicates
stateinv and outputinv in ACSL as follows:

//@ predicate stateinv(real x1, . . ., real xnx , real λ) =

(P11 * x1 * x1 + 2 * P12 * x1 * x2 + . . . + Pnxnx * xnx * xnx

<= λ);
//@ predicate outputinv(real y1, . . ., real yny

, real λ) =

ACSL



6 E. Khalife et al.

(Q11 * y1 * y1 + 2 * Q12 * y1 * y2 + . . .+ Qnyny
* yny

* yny

<= λ);

The predicate stateinv takes in the elements of the state vector at a given time
instant along with a scalar λ. Similarly, outputinv takes in the elements of the
output vector at a given time instant along with a scalar λ.

For λ equal to 1, the stateinv and outputinv predicates correspond to (3)
with X = P and X = Q, respectively. In this case, when true, these predicates

imply that the vectors x =
[
x1, . . . , xnx

]T
and y =

[
y1, . . . , yny

]T
belong to EP

and EQ, respectively.

Remark 1. The ACSL language allows predicates to be defined directly on C
structs or pointers, but doing so may make it more difficult for automated
solvers to prove the generated proof obligations. Based on our observation, it
is more effective to define the predicate in a parameterized form, using all of the
state/output variables as parameters. This approach may be more amenable to
automated proofs and may improve the ability of automated solvers to prove the
proof obligations. Note, however, that this observation may change with future
versions of the tool or improvements in the solvers.

3.3 Contract-Based Verification

A contract is a set of preconditions, postconditions, and other specifications
that describe the expected behavior of a piece of software. Preconditions are
conditions that must be met in order for the software to be used correctly, and
postconditions are conditions that must be satisfied after the software has been
used. Contract-based verification is important for ensuring that the software be-
haves correctly and that certain properties are maintained under different pos-
sible circumstances. In ACSL, preconditions are expressed using the requires

and assumes commands, while postconditions are expressed using the ensures

command. Consider the simplest contract // requires P; ensures E;. It is
equivalent to the contract // requires \true; ensures \old(P)==>E;, where
\old(P) denotes the evaluation of predicate P before the execution of the func-
tion.

/*@ requires P;

@ behavior b1:

@ assumes A1;

@ ensures E1;

@ behavior b2:

@ assumes A2;

@ ensures E2; */

ACSL

Fig. 1. Behaviors in ACSL contracts

As outlined in the ACSL manual [3,
§2.3.3], we can rely on named behav-
iors to structure requirements. For ex-
ample, the contract sketched in Fig. 1
amounts to requiring property P to hold
for all cases but only requiring prop-
erty E1 to hold when the precondition
A1 is valid. It is syntactic sugar to ex-
press // ensures \old(P)==> ((\old(A1)

==> E1)&& (\old(A2)==> E2));. This use
of named behaviors allows to separate concerns and prevent a non-proven be-
havior from negatively impacting the analysis of other behaviors.
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Remark 2 (Beware of pointers and use of \old()). \old() must be used with
care since \old(x)->x0 denotes the value of field x0 for the previous value of
the pointer x, while \old(x->x0) denotes the previous value of the field x0.

In the upcoming contracts, we assume that the scheduling parameter δi(k)
belongs to [δi, δ̄i], for i = 1, . . . , nδ and a given time-step k. Now, we define the
preconditions of our various contracts.

Zero Input Contract: The input set D = {0}, i.e., for a given time-step k, if
d(k) ∈ D, then di(k) = 0 for i = 1, . . . , nd.

/*@ behavior zero_input_contract:

assumes d1 == 0 && . . . && dnd == 0;

assumes δ1 <= δ1 <= δ̄1 && . . . && δnδ
<= δnδ <= δ̄nδ ; */

ACSL

Polytope Bounded Input Contract: The input set D is a polytope. Partic-
ularly, if D is a hyper-rectangle defined such that, given a time-instant k, di(k)
belongs to [di, d̄i] for i = 1, . . . , nd, we write the following contract:

/*@ behavior polytope_input_contract:

assumes d1 <= d1 <= d̄1 && . . . && dnd
<= dnd <= d̄nd ;

assumes δ1 <= δ1 <= δ̄1 && . . . && δnδ
<= δnδ <= δ̄nδ ; */

ACSL

Ellipsoid Bounded Input Contract: The input set D is an ellipsoid EM ,
whereM ∈ Snd

++. In this case, the predicate ellipinputmust be defined similarly
to the stateinv and outputinv predicates in Section 3.2, and the contract is
expressed as follows:

//@ predicate ellipinput(real d1, . . ., real dnd , real λ) =

(M11 * d1 * d1 + 2 * M12 * d1 * d2 + . . . + Mndnd * dnd * dnd

<= λ);
/*@ behavior ellipsoid_input_contract:

assumes ellipinput(d1, . . ., dnd , 1);

assumes δ1 <= δ1 <= δ̄1 && . . . && δnδ
<= δnδ <= δ̄nδ ; */

ACSL

4 Validating Contracts: Real Model

In Frama-C, the real model is based on the mathematical model of real numbers.
As a result, single and double precision floating-point numbers are mapped to
real types in proof objectives. This simplification can make the proof process eas-
ier, but it does not take into account the actual computation that is performed
using machine-code floating-point numbers. This means that the real model may
not accurately reflect the behavior of the system when it is implemented in ma-
chine code. Nevertheless, in our setting, using the real model is a reasonable first
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step since the system analysis has been performed assuming real computation.
The validity of the real model in our setting will be further addressed in the next
section by taking into account the potential for numerical errors.

To validate the invariant properties of the system G, we combine the codes
in Sections 3.1, 3.2, and 3.3, and we add the missing preconditions and postcon-
ditions.

typedef struct { double x1, . . ., xnx ; } state;

typedef struct { double y1, . . ., yny
; } output;

//@ predicate stateinv(real x1, . . ., real xnx , real λ) =

(P11 * x1 * x1 + 2 * P12 * x1 * x2 + . . . + Pnxnx * xnx * xnx

<= λ);
//@ predicate outputinv(real y1, . . ., real yny

, real λ) =

(Q11 * y1 * y1 + 2 * Q12 * y1 * y2 + . . .+ Qnyny
* yny

* yny

<= λ);

/*@ requires \valid(x) && \valid(y);

requires \separated(&(x->x1), . . .,&(x->xnx ),&(y->y1), . . .,
&(y->yny

));

assigns *y;

behavior contract_name:

assumes . . .;
ensures stateinv(\old(x->x1),..., \old(x->xnx ),1) ==>

outputinv(y->y1, . . .,y->yny
,1);

*/

void updateOutput (...) {...}

/*@ requires \valid(x);

requires \separated(&(x->x1), . . .,&(x->xnx ));

assigns *x;

behavior contract_name:

assumes . . .;
ensures stateinv(\old(x->x1), . . ., \old(x->xnx ),1) ==>

stateinv(x->x1, . . .,x->xnx ,1);

*/

void updateState (...) {...}

C+ACSL

In this code, the \valid, \separated, and assigns annotations are used
for expressing constraints on the memory layout of the program and specifying
which variables or memory locations may be modified by the code. Precisely, the
\valid annotation is used to specify that a certain pointer or array refers to a
valid, allocated region of memory, the \separated annotation is used to specify
that certain variables or memory locations must be separated from each other in
order for the code to be executed, and the assigns annotation is used to specify
which variables or memory locations may be modified by the code. As shown in
the above script, it is generally recommended to place an annotation before the
code it is associated with.
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To formally verify the invariant properties, we use the polynomial inequalities
plugin of Alt-Ergo in the WP framework of Frama-C. This plugin, unlike other
solvers, can deal with the type of predicates considered. The following command
runs the formal verification process and returns the verification results:

frama-c -wp -wp-model real -wp-prover Alt-Ergo-Poly source_file.c

Many options and arguments can be used with the frama-c -wp command to
customize and control the analysis process. For example, the -wp-timeout option
is used to set a time limit for the analysis, which can be helpful in cases where the
analysis is expected to take a long time. In our experiment, Alt-Ergo-Poly (the
SOS plugin) was the only solver able to discharge any of our proof objectives.
For instance, running the above command returned the following result:

[wp] 51 goals scheduled

[wp] Proved goals: 51 / 51

Qed: 18 (2ms-7ms-14ms)

Alt-Ergo-Poly : 33 (5ms-150ms-843ms) (3290)

The goals associated with the memory-related annotation were validated using
the simpler internal solver Qed, while all the ellipsoid-related goals required the
use of Alt-Ergo-Poly.

5 Validating Contracts: Float Model

In C, floating-point numbers are represented using a binary floating-point for-
mat, which is a method for representing real numbers with a fixed number of bits
allocated to the mantissa (the fractional part of the number) and the exponent
(the power of 2 by which the mantissa must be multiplied). The floating-point
model in Frama-C adheres to the IEEE 754 standard for floating-point repre-
sentation. This standard defines various floating-point formats for representing
real numbers, including single-precision (32-bit) and double-precision (64-bit)
formats.

5.1 Issues with Deductive Methods and the Floating-Point Model

While the float model is a more accurate representation of computation, it can
produce proof goals that are more difficult to solve. This can be illustrated with
the following simple example:

/*@ requires x > 0 && x <= 10;

@ ensures \result > 0; */

double f(double x) { return x + 0.25; }

C+ACSL

This contract is easily solved using the real model:
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% frama-c -wp -wp-model real -wp-prover z3,cvc4,alt-ergo simple.c

[wp] Proved goals: 1 / 1

------------------------------------------------------------

Prover Z3 4.11.2 returns Valid (Qed:0.81ms) (30ms) (21112)

Prover CVC4 1.8 returns Valid (Qed:0.81ms) (40ms) (5926)

Prover Alt-Ergo returns Valid (Qed:0.81ms) (8ms) (8)

------------------------------------------------------------

However, if we analyze the same program using a more accurate encoding of
floats, i.e., by omitting the option -wp-model real, we get

Prove: .0 < of_f64(add_f64(x, to_f64((1.0/4)))).

Prover Z3 4.11.2 returns Failed Unknown error

Prover CVC4 1.8 returns Timeout (Qed:2ms) (10s)

Prover Alt-Ergo returns Timeout (Qed:2ms) (10s)

Given the limitations of automated provers in handling simple verification
conditions involving floats, there are two primary alternatives to consider. One
approach involves using proof assistants, like Gappa [11], which require more
manual intervention but offer precise axiomatization of floating-point computa-
tions. Alternatively, static analysis tools such as FPTaylor [29], Fluctuat [13],
and Rosa [10], which employ techniques like Taylor expansion or affine arith-
metic, provide more systematic error bounding solutions.

In the following, instead of using the float model, we rely on such a static anal-
ysis to bound the numerical imprecision of the computation. For instance, in this
example, using interval arithmetic, which will be discussed in Section 5.2, we can
bound the values of \result by [0.25, 10.25] + ±2.275958E−15, where the first
interval denotes the interval of double [0.25, 10.25] and the term ±2.275958E−15
denotes the over-approximation of accumulated errors. The contract can then be
instrumented, and the floating-point “noise” can be included in the \ensures
statement as follows:

/*@ requires x > 0 && x <= 10;

@ ensures \forall real λ, -1 <= λ <= 1 ==> \result + λ *

2.275958 E-15 > 0; */

ACSL

With this approach, we can use the real model for analysis to formally verify the
postcondition in the float model:

% frama-c -wp -wp-model real -wp-prover z3,cvc4,alt-ergo simple2.c

[wp] Proved goals: 1 / 1

Qed: 0 (2ms)

Alt-Ergo : 1 (9ms) (12)

------------------------------------------------------------

Prover Alt-Ergo returns Valid (Qed:2ms) (9ms) (12)

------------------------------------------------------------
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([x1, x2], e) + ([y1, y2], f) =

 [fl(x1 + y1) ,fl(x2 + y2)], enew

with enew = max

(
−fl−∞

(
−e− f − e+(x1, y1)

)
,

fl+∞
(
e+ f + e+(x2, y2)

) ) ,

([x1, x2], e) ∗ ([y1, y2], f) =
([

min(fl(x1y1) , fl(x1y2) ,fl(x2y1) , fl(y1y2)),
max(fl(x1y1) , fl(x1y2) , fl(x2y1) ,fl(y1y2))

]
, enew

)
,

where e+(a, b) is defined as (|a|+ |b|)eps and e∗(a, b) as |a ∗ b| eps+ eta and with

enew = max


−fl−∞

min(fl−∞ (−ey1) , fl−∞ (−ey2) , fl−∞ (ey1) , fl−∞ (ey2))
+min(fl−∞ (−x1f) ,fl−∞ (x1f) ,fl−∞ (−x2f) , fl−∞ (x2f))
−min(e∗(x1, y1), e

∗(x1, y2), e
∗(x2, y1), e

∗(x2, y2))

 ,

fl+∞

max(fl+∞ (−ey1) , fl+∞ (ey2) , fl+∞ (ey1) , fl+∞ (ey2))
+min(fl+∞ (−x1f) , fl+∞ (x1f) , fl+∞ (−x2f) , fl+∞ (x2f))
+min(e∗(x1, y1), e

∗(x1, y2), e
∗(x2, y1), e

∗(x2, y2))



 .

Fig. 2. Addition and multiplication on intervals with floating-point errors.

5.2 Bounding Numerical Errors

We refer the reader to [21, 16, 15] for more details on means to bound floating-
point accumulated rounding errors. We recall the characterization of floating-
point values for addition and multiplication of floating-point numbers:

(u+ eu) + (v + ev) = (u+ v) + (eu + ev + e+(u, v)), (4)

(u+ eu) ∗ (v + ev) = (u ∗ v) + (eu ∗ v + ev ∗ u+ e∗(u, v)), (5)

with |e+(u, v)| ≤ |u+ v| eps and |e∗(u, v)| ≤ |u ∗ v| eps+ eta.

In the following discussions, fl(e) denotes the floating-point approximation of
value e using a “round to the nearest” mode. Rounding towards −∞ and +∞ are
denoted by fl−∞(·) and fl+∞ (·), respectively. The constants eps and eta denote
the precision of the floating-point format and its precision in case of underflows,
respectively. For single precision floating-point numbers, eps = 2−22 ≈ 10−7

and eta = 2−149 ≈ 10−45, while for double precision, eps = 2−52 ≈ 10−16 and
eta = 2−1074 ≈ 10−324.

Equations (4) and (5) can be adapted to intervals, as detailed in Figure 2. The
interval [a, b] with additional error±e is denoted by ([a, b], e). This method allows
to characterize both the actual values, obtained by floating-point computation
in the value part, and a safe error term. In case of a deterministic loopless code
computing an expression exp, one would obtain the abstract value [x, x] ± e
where the singleton interval for the value part denotes exactly the value x that
would have been obtained when computing fl(exp). Thanks to the handling
of floating-point errors, the computation of exp with reals is guaranteed to lie
within [fl−∞(x− e) ,fl+∞ (x+ e)].
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5.3 Error Hyper-rectangle Approach

For the analysis that follows, we will assume that the initial state of the system
G is represented by a floating-point number that belongs to the state-invariant
ellipsoid. The vector z ∈ IRn serves as a placeholder for both the updated state
and output vectors of the system. The floating-point representation fl(z) of the
exact vector z satisfies the following inequalities:

z − e ⪯ fl(z) ⪯ z + e, (6)

where ⪯ denotes the componentwise inequality and e =
[
e1, . . . , en

]T
is the

“error” vector whose ith element is an over-approximation of the accumulated
error associated with the computation of the ith component of z using float model
arithmetic. Consequently, it is clear that fl(z) belongs to a hyper-rectangle Γ
that is symmetric about the exact vector z and that has 2n vertices ẑi, where
i = 1, . . . , 2n. Assume that z ∈ EX is formally verified in the real model. Then,
to prove that fl(z) ∈ EX , it is sufficient to verify that Γ ⊂ EX . This sufficient
condition can be established using either of the following two methods.

Method 1: Checking All Points in the Hyper-rectangle. The first method
to verify that Γ ⊂ EX is to formally verify that all the points in Γ belong to EX ,
i.e., for all ze ∈ Γ , ze ∈ EX . To express this condition in ACSL, we first need
to know how to express all the vectors that belong to Γ . We notice that the ith

component of any vector ze belonging to Γ can be expressed as ze,i = z + liei,
where li ∈ [−1, 1] for i = 1, . . . , n. This formulation of ze can be expressed in
ACSL using the universal quantifier ∀ (\forall) and n bound variables (l1, . . .,
ln), each belonging to [−1, 1]. For instance, in the case of formally verifying the
state invariant property, the postcondition is the following:

//State Invariant Postcondition

ensures \forall real l1; . . .;\forall real lnx ; -1 <= l1 <= 1

==> . . . ==> -1 <= lnx <= 1 ==> stateinv(\old(x->x1), . . .,
\old(x->xnx ),1) ==> stateinv(x->x1+l1*e1, . . ., x->xnx +lnx *

enx ,1);

ACSL

In this code, nx bound variables are used with the universal quantifier \forall
to represent all the vectors xe belonging to Γ . Similarly, when formally verifying
the output invariant property, the following postcondition is used:

// Output Invariant Postcondition

ensures \forall real l1; . . .;\forall real lny ; -1 <= l1 <= 1

==> . . . ==> -1 <= lny <= 1 ==> stateinv(\old(x->x1), . . .,
\old(x->xnx ),1) ==> outputinv(y->y1+l1*e1, . . ., y->yny

+lny *

eny ,1);

ACSL
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Method 2: Checking Each Vertex. The second method to verify that Γ ⊂
EX benefits from the convexity of the quadratic function zTXz. Precisely, by
leveraging the convexity of the quadratic function zTXz, the following holds:
Γ ⊂ EX if and only if all the vertices ẑi, for i = 1, . . . , 2n, of Γ belong to
EX . Therefore, to formally verify that fl(z) ∈ EX , we must formally verify that
the vertices of Γ belong to EX . The vertices ẑi, for i = 1, . . . , 2n, of Γ can
be expressed in ACSL using the universal quantifier ∀ (\forall) and n bound
variables (l1, . . ., ln), each belonging to {−1, 1}. The postconditions for verifying
the state and output invariant properties of the system using this method are
similar to the ones used in the first method, with the exception that the bound
variables’ inequalities (-1<=li<=1) are replaced by (li==-1 || li==1).

Assessment of Both Methods. While it is possible to formally verify that
Γ ⊂ EX using the methods described before, the use of quantifiers may lead
to a proliferation of variables or constraints, which can make it difficult for the
automated prover to discharge the proof: this may either lead to an extended
time to prove the goals or to a solver failure. For instance, in our experiments,
it was possible to verify the invariant properties of an LTI system with 16 state
variables, 10 inputs, and 4 outputs in the float model using Method 1, but it
was not possible to do so for any of the considered affine LPV systems with 4
state variables, 2 inputs, 2 outputs, and up to 2 scheduling parameters. On the
other hand, using Method 2, it was possible to verify the invariant properties of
these affine LPV systems and corresponding LTI systems in the float model, but
it was not possible to do so for the large LTI system verified using Method 1.
To address this issue, we present a different approach in the next section for
formally verifying the invariant properties in the float model without the use of
quantifiers.

5.4 Error Ball Approach

Consider the “error ball” Be centered around the exact vector z with a radius r
such that Be covers the hyper-rectangle Γ . The ball Be is defined as Be = {ze ∈
IRn| ze = z + ru, ∥u∥2 ≤ 1}, where ∥.∥2 is the standard Euclidean norm. Since
fl(z) ∈ Γ , it follows that fl(z) ∈ Be as well. Therefore, to verify that fl(z) ∈ EX ,
it is sufficient to show that Be ⊂ EX . Clearly, Be ⊂ EX if and only if all the
points belonging to Be also belong to EX . In other words, Be ⊂ EX if and only
if, for all u ∈ IRn such that ∥u∥2 ≤ 1,

zTe Xze = (z + ru)TX(z + ru) = zTXz + 2ruTXz + r2uTXu ≤ 1.

It is not difficult to prove that the following inequality holds [7]:

zTe Xze ≤ zTXz + 2r∥X∥2∥z∥2 + r2∥X∥2, (7)

where ∥X∥2 is the matrix 2-norm induced by the vector Euclidean norm, i.e.,
∥X∥2 = λmax(X), where λmax(X) is the maximum eigenvalue of X. We recall



14 E. Khalife et al.

that, by assumption, it is formally verified in the real model that the exact vector
z belongs to EX . Based on this assumption, we can find the maximum 2-norm
of z such that z ∈ EX by solving the following nonconvex optimization problem:

maximize zT z

subject to zTXz ≤ 1.
(8)

This optimization problem is a special case of a nonconvex problem discussed in
[7, Chapter 5.2.4], for which strong duality holds [25, 7], i.e., the optimal value,
∥z∗∥22, of the primal problem is equal to the optimal value of the following dual
problem:

minimize α

subject to X−1 ⪯ αI.
(9)

The optimal value of the dual problem is α∗ = λmax(X
−1) = 1

λmin(X) , whereX
−1

is the inverse ofX and λmin(X) is the minimum eigenvalue ofX. Accordingly, the
optimal value of the primal nonconvex problem is ∥z∗∥22 = α∗ = (λmin(X))−1.
Then, for all z ∈ EX , the following inequalities hold:

zTe Xze ≤ zTXz + 2r∥X∥2∥z∥2 + r2∥X∥2

≤ zTXz + rλmax(X)
(
2 (λmin(X))

− 1
2 + r

)
.

(10)

Therefore, it is sufficient to formally verify that

zTXz ≤ 1− rλmax(X)
(
2 (λmin(X))

− 1
2 + r

)
(11)

to conclude that zTe Xze ≤ 1 for all ze ∈ Be, and that Be ⊂ EX . In other words, if
(11) is formally verified, then fl(z) ∈ EX and the ellipsoidal invariant property is
verified in the float model. To formally verify (11), we need to compute the radius
r of Be such that Γ ⊂ Be, as well as the maximum and minimum eigenvalues
of X. Since Γ is a symmetric hyper-rectangle about z, the smallest radius of Be

such that Be covers Γ is r = ∥e∥2 [7], where e is the error vector satisfying (6).
Then, for any r ≥ ∥e∥2, Be covers Γ . One acceptable choice of r is r = n∥e∥∞,
where ∥e∥∞ = maxi=1,...,n |ei| is the ∞-norm of e. This choice is valid because
∥e∥2 ≤

√
n ∥e∥∞. For our analysis, it is a better choice to set r = n∥e∥∞, as

this computation only requires one operation compared to the 2n operations
required for computing ∥e∥2, which minimizes the accumulated floating-point
error during the computation of r. The error vector e is computed outside of
Frama-C and injected in the contract. As for the computation of the maximum
and minimum eigenvalues of X, there are several algorithms that can be used to
compute the eigenvalues of a matrix, such as the diagonalization, power iteration,
and QR algorithms, and singular value decomposition (SVD) methods [14, 31].
These algorithms are generally reliable and can be expected to produce accurate
results in most cases. For instance, iterative methods like the power iteration
algorithm can be employed to compute the eigenvalues of a matrix, starting with
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a random initial vector [19]. This approach allows for an over-approximation of
the converged value by estimating it from above. The over-approximation is then
fed back into the algorithm as input for subsequent iterations, which refines the
approximation and helps ensure its validity.

Hence, to formally verify the state and output invariant properties of the
system G in the float model, we add float model contracts to the code in
Section 4 as follows:

/*@ behavior contract_name_float_model:

assumes . . .;
ensures stateinv(\old(x->x1), . . ., \old(x->xnx ),1) ==>

outputinv(y->y1, . . .,y->yny
,1 - 2 * r_y * norm_Q *

norm_y_max - r_y * r_y * norm_Q);*/

void updateOutput (...) {...}

/*@ behavior contract_name_float_model:

assumes . . .;
ensures stateinv(\old(x->x1), . . ., \old(x->xnx ),1) ==>

stateinv(x->x1, . . .,x->xnx ,1 - 2 * r_x * norm_P *

norm_x_max - r_x * r_x * norm_P));*/

void updateState (...) {...}

C+ACSL

In this code, the implied expressions in the postconditions correspond to inequal-
ity (11). The terms norm P, norm Q, r x, r y, norm x max, and norm y max cor-
respond to ∥P∥2, ∥Q∥2, the radii of the error balls centered around the updated

state and output vectors x and y, (λmin(P ))−
1
2 , and (λmin(Q))−

1
2 , respectively.

This approach allows for the formal verification of the invariant properties of all
considered affine LPV and LTI systems in the float model.

6 Conclusion

This paper demonstrates a process for formally verifying the invariant prop-
erties of a C code describing the dynamics of a discrete-time LPV system with
affine parameter dependence. The ACSL language and the WP plugin in Frama-
C are used to express the invariant properties and generate proof obligations,
and the polynomial inequalities plugin in Alt-Ergo is used discharge these proof
obligations. The invariant properties were successfully verified in both the real
and float models, with the latter requiring the use of bounds on numerical er-
rors and their incorporation into the real model. This process can be applied
to other systems with similar properties. The installation instructions of the
tools used in this work along with the experiments are available at https:

//github.com/ploc/verif-iqc. Additionally, a dockerfile is also available at
https://hub.docker.com/r/ekhalife/verif-iqc, and the instructions for us-
ing the dockerfile can be found in the same GitHub repository. In future work,
we plan to extend this approach to more general classes of uncertain systems.

https://github.com/ploc/verif-iqc
https://github.com/ploc/verif-iqc
https://hub.docker.com/r/ekhalife/verif-iqc
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F.: Towards an industrial use of FLUCTUAT on safety-critical avionics

https://doi.org/10.1007/978-3-642-22110-1_14
http://www.stanford.edu/%7Eboyd/cvxbook/
https://doi.org/10.1109/SYNASC.2013.29
https://doi.org/10.1145/2578855.2535874
https://doi.org/10.1145/1644001.1644003


Code-Level Formal Verification of Ellipsoidal Invariant Sets 17

software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) Formal Meth-
ods for Industrial Critical Systems, 14th International Workshop, FMICS
2009, Eindhoven, The Netherlands, November 2-3, 2009. Proceedings. Lec-
ture Notes in Computer Science, vol. 5825, pp. 53–69. Springer (2009).
https://doi.org/10.1007/978-3-642-04570-7 6

[14] Golub, G.H., Van Loan, C.F.: Matrix computations. JHU press (2013)

[15] Goubault, E.: Static analyses of the precision of floating-point operations.
In: Proceedings of the 8th International Symposium on Static Analysis. pp.
234–259. SAS ’01, Springer-Verlag, London, UK, UK (2001)

[16] Goubault, E., Putot, S.: Static analysis of finite precision computations. In:
VMCAI. pp. 232–247 (2011)

[17] Khalife, E., Abou Jaoude, D., Farhood, M., Garoche, P.L.: Computation of
invariant sets for discrete-time uncertain systems. Submitted (2022)

[18] Khalil, H.K.: Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River,
NJ (2002), https://cds.cern.ch/record/1173048
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