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Abstract

Aviation is one of the global warming contributors. Its impact is
due to CO2 and non-COg effects. Trajectory design is one of action
levers for minimizing the environmental impact of air transportation.
However, it affects the Air Traffic Management and should satisfy
airspace constraints, especially airspace capacities. This paper pro-
poses a climate-aware version of the Air Traffic Flow Management
(ATFM), focusing on CO2 and one particular non-COy effect: con-
densation trails (contrails), although other non-COq effects can be
integrated. An ATFM optimization model is proposed, solved by a
column generation approach. This problem is solved using different
metrics, from simple to more complex and realistic ones. Numeri-
cal experiments are conducted both in the lateral case and when the
cruise altitude becomes a decision variable. The impact of airspace
capacities is also evaluated. The problem instances that are studied
are built from realistic open-access data and made publicly available.

Keywords— Air Traffic Flow Management, Contrails, Column generation,
Climate impact, Contrail metrics

1 Introduction

Significant progress has been made over decades, but the aviation industry
is still investing in further improvements in the efficiency of flight opera-
tions, particularly about to climate change. When assessing the impact of



air transport, it is necessary to take into account both COy and non-CO,
effects. These non-CO, effects are estimated to be responsible for two-thirds
of the sector’s climate impact [1]. Among these effects, condensation trails
(contrails) can be cited. They are one of the most concerning effects of air
transport, but their impact is still the subject of many studies to improve
confidence in its prediction [1].

Based on meteorological and atmospheric parameters, some geographical
areas can be considered favorable for persistent contrails at some specific
times. These areas should be avoided, but not at the expense of an excessive
increase in CO5 emissions. In addition, flight safety must always be guar-
anteed. For example, contrail avoidance should not create conflicts between
aircraft.

Flows are organized to comply with airspace capacities, and to meet as
much as possible the demand. Indeed, after the COVID-19 crisis, the traf-
fic is growing again [2]. Air navigation service providers must organize the
expected traffic safely. The goal is to minimize delays or cancellations while
satisfying airspace capacity constraints and avoiding conflicts between air-
craft (loss of vertical and/or horizontal separation). A sustainable develop-
ment approach should focus on minimizing the environmental impact of air
traffic. In that case, the areas that are avoided due to contrails will be less
flown, while the surrounding areas are likely to be overloaded (because the
detour would be minimized as much as possible). Flight-path computations
are to be done well in advance of the flight (from several hours to several
weeks before). In this long term perspective, safety is then guaranteed by
satisfying airspace capacity constraints. In the shorter term, ensuring hor-
izontal and vertical separations between aircraft is necessary to guarantee
safety. Conflicts are not considered in the first case since there are too many
sources of uncertainties a long time in advance.

Therefore, this paper proposes the following contributions:

e adaptation of the classical Air Traffic Flow Management problem to
environmental, CO5 and non-CQOs,, issues;

e proposal of a solution to take into account contrails at the level of the
complete airspace network, trading off with CO4 emissions;

e numerical experiments with realistic airspace and traffic data above
France;

e numerical experiments considering various contrail metrics;

e software code associated with the proposed method and with the cre-
ation of the instances are made available.



The paper is organized as follows. Section 2 reviews the scientific litera-
ture on trajectory optimization for contrails mitigation and on air traffic flow
management problem. Our mathematical optimization model is introduced
in Section 3 together with details on contrail cost computation. Section 4
explains the resolution method. Section 5 presents some case studies and nu-
merical experiments, it also discusses the impact of the different parameters
of the problem. Finally, Section 6 details the conclusions of the study and
presents some perspectives.

2 Literature review

This section proposes a literature review on (Subsection 2.1) trajectory op-
timization for contrails mitigation, and (Subsection 2.2) on the Air Traffic
Flow Management problem.

2.1 Trajectory optimization for contrail mitigation

Trajectory optimization for contrail mitigation has become an important
topic in the literature. Indeed, contrails are becoming a major issue in the
computation of the impact of air transport. Different types of modeling have
been proposed, with various points of view, constraints, and costs associated
with contrails. Different resolution methods are also proposed.

The problem is addressed under the form of an optimal control problem
in [3]. It minimizes a weighted sum of total flight time, fuel burned, and flight
time in persistent-contrail areas under flight-mechanics constraints. Soler et
al. [4] propose also an approach with flight-mechanics constraints, consider-
ing several possible flight levels, and trade-offs between passenger travel time,
fuel, CO4 emissions, and contrail cost. In both cases, persistent contrail areas
are assumed to be supersaturated in ice. The resolution approach proposed
in [4] is based on multiphase mixed-integer optimal control techniques.

In [5], the problem is modeled as a Mixed-Integer Linear Program (MILP)
with a receding horizon framework. The authors’ analysis over 20 days shows
that 58% of persistent contrails can be avoided with an increase of 0.48% in
fuel consumption. Genetic algorithms are used in [6]. Based on an air traffic
simulation framework, an annual analysis of transatlantic flights is done,
showing the seasonal effects of contrails. The authors also show variability in
trade-offs between total flight time and flight time in contrail areas. Indeed,
when allowing an increase of 2% in total flight time, the reduction of the
distance in contrails varies from 20% to more than 80%. Graph-adapted
methods are also used, as in [7] with the A* algorithm [8] in a simulation



context to consider overall economic and environmental costs.

Interested readers can find in [9] more details about optimizing trajectory
taking into account contrails. This survey reveals that Air Traffic Manage-
ment (ATM) considerations are not covered extensively in the literature.
However, [10] shows that avoiding conflicts has a significant impact on the
environmental cost. Moreover, avoiding contrail zones means potentially sat-
urating adjacent airspace, and this has a definitive impact on the air traffic
controllers workload.

2.2 Air Traffic Flow Management problem

The Air Traffic Flow Management (ATFM) problem raised from the opera-
tional issues of maximizing the number of flights that can be accepted in a
given airspace. The problem of scheduling flights to minimize congestion was
first introduced in [11]. Then, [12] stated and modeled the ATFM problem.
It is designed to direct air flows from one sector to another, from departure
to arrival, with the possibility to act on several flight parameters, while satis-
fying air sector capacity constraints. The goal is then to minimize total delay
incurred by the considered flights. Different approaches have been developed
through the years, with different degrees of freedom and various levels of
operational realism. Moreover, some studies consider only the passage from
one sector to the next one, while other works take a closer look at the routes
taken.

In [13], an integer programming approach is proposed, considering aircraft
rerouting. It also includes speed modulation options and takes into account
flight phases. This model is efficient enough to solve national-size airspace
instances, as decisions for rerouting are made efficiently without auxiliary
variables. Another way to obtain an efficient model is to use pre-processing,
as done in [14]. In [15], the air traffic system is represented by a multi-agent
model and the ATFM problem is solved by specific methods.

Some other studies focus on combinatorial optimization techniques, adapted
for large-scale practical problems. For instance, in [16, 17, 18], Dantzig-Wolfe
decomposition and column generation are used to solve the ATFM problem.
Such approaches result in efficient resolution methods, taking into account
the complete 4D (space and time) trajectories.

A related study is proposed in [19] for CO, minimization. A previ-
ous study [20] introduced a subgraph capacity-constrained multiple shortest
path approach considering air-sectors capacities while mitigating contrail im-
pact. In the mentioned paper, the method allows computing two-dimensional
COy/contrail-safe trajectories for a set of flights using time window approach
for time dependence consideration and a simple metric for contrail consid-
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eration, the Global Warming Potential. This study introduces an ATFM
model adapted to environmental issues, taking into account CO5 and non-
COq effects. Here, we study the benefit of taking into consideration non-CO,
phenomena, such as contrails in terms of airspace capacity, and then we pro-
pose a rearrangement of the air traffic.

3 Problem formulation

The context of the problem is presented in Subsection 3.1, the mathematical
model is introduced in Subsection 3.2, and Subsection 3.3 focuses on envi-
ronmental cost computation (contrail cost computation and comparison with

CO,).

3.1 Context

Let us consider an airspace such as that above a country or a set of countries.
Aircraft fly in this airspace following a sequence of points (in 2D, or in 3D
when considering altitude), linked by straight-line segment routes. These
navigation points, or waypoints, define a set of vertices of a graph. The
segment routes, defined from one waypoint to another, define the (directed)
arcs of this graph (they generally cannot always be flown in both directions).
This study takes place in the context of Free Route Airspace (FRA), applied
in European countries upper airspace. FRA aims to replace the traditional
air route system with one based on freely flying from a waypoint to another.
Planning a trajectory then boils down to proposing a sequence of waypoints,
similar to the former system, but without airway requirements. This new
approach allows aircraft to use more direct routes, reducing thereby the dis-
tance flown and CO, emissions.

For the moment, rules are still established to regulate flights from way-
points to waypoints, but the aim is to relax such constraints. This study
models these rules via the construction of a graph arc set. More precisely,
the underlying graph G = (V) A), of our optimization process is built as
follows. The vertex set V' is the set of waypoints. An arc of the arc set
A connects two waypoints if the distance between these two waypoints is
less than some user-defined threshold distance, noted D, and greater than
another user-defined distance, D. The set of arcs is then:

A={(wv)|ueV,veV,D<d, <D}, (1)

where d,,, denotes the distance between nodes v and v. These minimum
and maximum distances can be defined so as to vary according to airspace



regions. For example, over areas without airports or above oceanic zones,
the allowed distances between two neighboring nodes may be greater, and
the graph be less dense.

The airspace is divided into unitary sectors combined into sectors to define
areas of responsibility for air traffic controllers. The sectors’ configuration

is defined for a day or a few hours and have an associated capacity. This

capacity limit ensures that air traffic controllers workload is acceptable to
guarantee safety. Typically, these sectors can be dynamically reconfigured, by
grouping or ungrouping them, but, in this study, for the sake of simplification,
they are considered fixed.

The airspace is partitioned into sectors, and each waypoint belongs to
one (and only one) sector:

V=|_Js (2)

seS

where S is the set of sectors. Moreover, it can be determined at any time in
which sector an aircraft is located. At each given time period t € T, each
sector s has a capacity Cs; given in terms of number of aircraft. This capacity
limit guarantees a certain level of safety at the strategic level. In practice,
this limit determines whether air traffic controllers will be able to manage
these aircraft in terms of workload. On a shorter timescale, one ensures
safety by considering conflicts (loss of sufficient distance separation between
aircraft). However, this study focuses on phase which involves several types of
uncertainty and conflicts cannot efficiently be taken into account to guarantee
safety, as such events are too tactical.

Our purpose is to direct each flight, over a time-window horizon, on the
graph, from a starting point, to a destination, minimizing the total environ-
mental impact while satisfying the sectors’ capacity constraints at each time
period.

3.2 Mathematical model

This subsection introduces our mathematical optimization model.
Let us first define the notation for the input data of the problem:

e F: the index set of flights (with corresponding departure and arrival
points, departure time, and aircraft type);

e S: the index set of sectors;

e 7: the index set of time periods, that are typically defined with a
constant time step;



e (,: the capacity of sector s at time period ¢, s € S, t € T;

e G = (V,A): the graph of waypoints (vertices) and free routes (arcs) on
which aircraft can be directed.

We shall use some further notation:
e Pr: the index set of the feasible paths for flight f € F;

e P,;: the index set of the paths passing through sector s € S during
time period t € T;

e psp: the (environmental) cost for flight f € F to fly path p € Py.

Details on environmental cost computation is given in Subsection 3.3.

The problem aims at finding a feasible path for each flight minimizing the
total environmental impact, while satisfying the capacity of sectors. Then,
it can be written as follows:

minimize IMP
Y JZ; Z PfpYfp ( )
pGPf
subject to Z Yrp =1, feF, (3a)
pEPf
Z Z Yfp < Cs,ty s € 87 t e T, (3b)
JE€F pePs 1Py
Yrp €10,1}, f € F, p€ Py, (3¢)

where yy, is equal to 1 if path p is chosen for flight f. Constraint (3a)
ensures that one and only one path is chosen for each flight. Constraint
(3b) stipulates that the capacity of the sectors must be satisfied. It ensures
that, for each time period, the number of aircraft flying through each sector
during this time period must not exceed the defined capacity. Indeed, the
set Ps; N Py represents the set of paths candidate for flight f crossing the
sector s during the time period ¢. The paths considered can be in 2D or
3D, depending on whether the altitude is taken into account as a decision.
The paths can also be time dependent. These different considerations do not
affect the proposed model as they simply involve larger sets of possible paths
to be considered.



3.3 Environmental cost computation

This subsection focuses on the computation of environmental cost of flying
a path for a given flight. This cost takes into account COy and non-COy
effects. A bi-objective approach could then have been implemented. Here,
however, it is desirable to reduce the total environmental impact, and so
we have implemented a single objective approach by summing the COy and

non-COy effects. Then py,, can be built as ps, = pfg,OQ + p?f;n'co? As only

contrails are considered in this study as non-CO; effect, py,, = p?% + p§oprails,

A path p is then a sequence of N, chosen nodes of the graph: p =
(u1,ug,...,un,), where u; € V, i = 1,2,..., N, respectively flown at times
(t1,...,tn,). Then the cost of this path is the sum of cost of flying this se-
quence of arcs. The order of arcs is important since it has an impact of the
time at which the arc is flown and then on the associated cost. Then, the
cost of a path can be written as follows:

Np—1
o COq contrails
Plp = Z W (uisuigr),(tistin) + W (uiuir),(ti tig1)? (4)
=1

where [t;, t;11] is the time interval over which arc (u;, u;11) € A is flown and
co . - ) .
Wy (o se ) (b tie) (respectively w;?ﬁ:,iil),(ti,ml)) is the cost for flight f to fly
arc (u;,u;y1) over [t;, t;11] associated to COy (respectively to contrails).
The time interval over which an arc is flown is only determined by the
sequence of nodes since aircraft’s speeds are not part of the decision variables

in this study. Then, we can rewrite:

Np—1
. COq contrails
Prp = Z Wi (wi i) ts + W (uuir) b (5)

i=1

since the time interval over an arc can be determined thanks to the arrival
time on the first node. In the sequel, all the cost are written as a function of
t; according to this remark.

First, balance between flight time and flight time in contrails areas is
presented before presenting the Global Warming Potential metric and the
Algorithmic Climate Change functions. In the sequel, persistent contrail
areas are considered to be ice supersaturated areas, determined thanks to
weather data.

Flight time balance with flight time in contrail areas

A straightforward approach is to use a weighting sum of the flight time
(fuel consumption) and the flight time in persistent contrail areas (named
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contrail areas in the sequel). Then, for a given flight f and a given path
p=(u1,...,un,) € Py, we have:

co
wf,(zi-,uz-ﬂ),ti =(1-a) Ot £, (s i) i (6)
il il
Wilutimat = @ O ) (7)
and thus
pro =L —a) Atp,+a- Mg, (8)
where 6t (y,u;.1), (respectively (5t§°(7‘1f%’lj1)t) is the flight time (respectively

flight time in contrail areas) for flight f over arc (u;, u;41) over time interval
[ti,tis1], Atyy (respectively At§2*45) is the total flight time (respectively
total flight time in contrail areas) for flight f over path p, and o € [0,1( a
user-defined weighting parameter.

Global Warming Potential

Various metrics have been developed to compare the impact of contrails
with that of CO,. This paper presents two main ones: the Global Warming
Potential (GWP) [21] and the algorithmic Climate Change Functions [22].

The GWP metric is a multiplicative factor that compares the impact of
various greenhouse gases to CO,. This metric depends on a time horizon
over which the impact is computed, and it is in general given per kg of
greenhouse effect gas. For the particular case of contrails which we consider
here, it is given on a per kg of COy emitted in contrail areas basis. More
details about GWP can be found in [21]. Table 1 gives different values of
GWP for contrails for various time horizons, H. In the sequel, the so-called
contrail-induced cirrus (CIC) GWP will be noted gy. Depending on the time
horizon, H, considered, contrails have a more or less weight. Notably, they
have less relative impact compared to CO; in the long term. The choice
of time horizon in a study generally depends on the lifetime of the gas,
political objectives, or comparability purposes (standard horizon). In the
following, only contrail induced cirrus clouds will be considered, since they
have the largest impact on the climate. However, other contrails can easily
be included in our model by a simple adjustment of the cost function.



Table 1: Global Warming Potential for contrails for various time horizons,
H, given on a per kg of CO, emitted basis.

H =20 years | H =100 Years | H = 500 years
GWP contrait (H) | 0.74 0.21 0.064
GWPcic(H) 2.2 0.63 0.19

The cost of a path is therefore computed as follows:

CO
wﬁ(iz‘,uiﬂ),ti = Cf(uwisuit1)tipi (9)
il
w??(rilfiritlz'LLQ = )\(“i’“i+1)7ti “YH * Cf (usuig1) tiop (1())
Prp =1+ Ay gu) - crp, (11)

where ¢, (u; s, )teps (espectively crp,) is the quantity of CO, emitted by
flight f when flying arc (u;,u;41) over time interval [t;,¢;,1] knowing that
the path flown until u; is p; = (ug, ..., u;) (respectively when flying path p),
Musuicn)ts € 10,1] (respectively A, € [0,1]) is the part of arc (u;, u;11) over
time interval [t;, t;11] (respectively path p) in contrail areas. Knowing the
path flown until u; is essential for CO, computation since it depends on the
aircraft mass which depends on the path flown until the considered point.
Remark that the quantity of COy emitted by flight f when flying path p is
directly proportional to the fuel consumed by flight f when flying path p.
Then, without loss of generality, ¢y, designates in the sequel the quantity of
fuel consumed by f on p.

Algorithmic Climate Change Functions

Algorithmic Climate Change Functions (aCCFs) [22, 23] are another possible
metric of the impact of contrails relative to that of CO,. They are based
on Average Temperature Response (ATR), which reflects the temperature
change over a time horizon due to a given phenomenon. It is a cumulative
measure on the long-term effect on the temperature. In the sequel, the time
horizon dependence is omitted for clarity of notations. ACCFs exist for
different effects, and this study focuses in particular on CO, and contrails.
Concerning CO,, the value of the associated aCCF is a constant, as it
is considered that the CO, emissions have the same impact over the world
and at any time. It is expressed in kelvin (K) per kg of fuel. Concerning
contrails, the value of the associated aCCF depends on the location and
the time of contrail creation, and is expressed in K per km flown. The
aCCF values are computed on a space-time grid according to weather and
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radiative data. Indeed, contrail existence depends on weather data, and
its impact depends on weather and solar radiative data. Remark that aCCF
values associated with contrails can be negative (cooling contrails) or positive
(warming contrails), depending on location and time.

When considering aCCF metrics, the cost of path p for flight f becomes:

COs B
wf,(umuiﬂ),ti - aCCfCO2 * Cf (uwistiv1),pisti (12)
contrails
W (wiui1)ts — aCCfCOH’DraﬂS((ui? ui-i-l)a ti) ) dul'7ui+1 (13)

Np—1

Pfp = accf002 *Cfp + Z aCCfcontrails((uia ui+1)a ti) : dui,ui_,_p (14)
i=1

where accfoo, is the constant aCCF value for COs, accleontrais((wi, wir1),t;)
is the aCCF value for contrails on arc (u;,u;+1) over time interval [t;,t;11],

du;u;., 18 the distance between nodes u; and u;y.

4 Resolution approach

To favor fairness between aircraft, it is not desirable to proceed sequentially
computing the best trajectory, aircraft by aircraft, and updating the sectors’
capacity as computations are done. The trajectories must rather be simul-
taneously computed. For this, considering the literature about the ATFM
problem [17, 18], we solve this problem using to the column generation tech-
nique, which is efficient for addressing problems involving a large number of
variables and parsimonious solutions (numerous variables are put to zero at
the optimum) [24].

This section presents the general process of column generation, and then
it details how it is adapted to the climate-aware application proposed in this
paper.

Figure 1 presents the general column generation algorithm. In the sequel,
the step numbers are those used in the figure.

For solving the Integer Main Problem (IMP), the linear relaxation, (LMP),
is solved. A set of decision variables is selected to form a feasible solution
(Step 1). Then, a restricted version of the problem (LMP) is solved by using
these variables (Step 2). Using the dual variables associated with the solution
found to this problem (RMP), subproblems are solved to find new variables
with negative reduced cost, expecting to be improving variables (Steps 3 to
5). Then, (RMP) is solved with these new variables added to the pool of
solutions (Step 2). This loop is repeated until no new variable is found (or a

11
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Figure 1: Generic column generation process.
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given stopping criterion). Finally, the last restricted problem is solved in an
integer version to obtain an integer solution to the problem (Step 6).

Let us now detail how it is used in our application.

First, the Integer Main Problem (IMP), introduced in Section 3, is relaxed
in a continuous version (LMP).

minimize Z Z PipYfp (LMP)
Y fE]-—pEPf
subject to Z yip=1, f€EF, (15a)
pEPf
ST Y Y <CuseS teT, (15D)
fEF pePs tNPy
Yip 20, peP feF, (15c¢)

where vy, becomes a continuous variable whose upper bound 1 is ensured by
constraints (15a).

During the process, at each iteration, one considers the following re-
stricted main problem version (RMP) continuous relaxation of our problem.
It is solved with only a subset of each of the path sets Py, P} (Step 2). The
restricted problem is initialized using big-M techniques [24], that is to say,
it is initialized with high-cost solutions that do not consume sector capacity
(Step 1). The rest of the process consists of adding interesting variables to
the restricted model, without adding all possible variables, but still having a
proof of optimality.

minimize Z Z PrpYtp (RMP)
<yf,p)f€}',p€P} fEF peP}
subject to Z yip=1, [f€F, (16a)
pEP}"
Z Z Ygp S Cs,t; s € 87 t e 7-; (16b)
JeF pePr NPy

yf,pzoa pepf7f€f7 (16C)
where P, is the restricted-set analogue of P,; and Py, C Py,

New variables are added thanks to the dual values obtained when solving
the problem (RMP) (Step 2). To obtain these new variables, the following

13



problem is solved for each considered flight f € F(Step 3):

¢t = min}zpize Z Z W, (u,w),t ﬂfﬁ,v,t —Hf Z Z Tsit vat

(u)EA tET seS teT (SPy)

subject to flow conservation constraints
where

e A is the set of arcs of the graph (free routes on which aircraft can be
directed);

® Wy (yv) is the cost to fly (u,v) € A at time slot ¢ € T (as defined in
Equation (5));

e /i is the dual variable associated to constraint (16a), f € F;
e 7, is the dual variable associated to constraint (16b), s € S, t € T;

° r;it is an auxiliary variable that indicates whether sector s is flown by
the considered aircraft during time slot ¢, s € S, t € T;

° xiw is the time-dependent shortest-path variable corresponding to arc
(u,v) € A and time slot t € T.

The time at which an arc is flown is only determined by the sequence of
nodes since aircraft’s speeds are not part of decision variables in this study.

The subproblem (SPy) is solved following a process similar to that of [17]:
it boils down to finding a shortest path in a space-time network defined for
each flight Gf = (V,/, A]). Tt is a time expansion of graph G = (V, A), where
the set of space-time vertices is defined as V;/ = {(v,t) |v € V and t € T},
and A; is the set of time-expanded arcs such that a space-time node (u, t,,) is
linked to another space-time node (v,t,) if (u,v) € A and t, — ¢, is between
the minimum and the maximum flight time for the considered aircraft from
u to v. Finally, the cost wy,, ,, of an arc (u; = (u,t,), v; = (v,t,)) is defined

as:
ty—1
’

Wi (ugvr) = W (u) b — Z T (0,80 b (17)
t=ty,
where s(,.),+ is the sector flown by the aircraft considered at time ¢ on the
arc (u,v).
A new decision variable for the restricted problem is found for the flight
f € F if the shortest path on the time-expanded network has a cost lower
than gy, and the process is done for all the flights. Thanks to powerful

14



techniques such as dynamic programming on time-expanded networks, we
shall see that the subproblem can be solved in a reasonable computation
time. Since it must be solved for all the flights at each iteration, it can be
directly parallelized.

When for some flight f € F a solution is found with ¢;* < 0, then it is
added to the restricted set of solutions in the problem RMP (Steps 4 and
5). Otherwise, no variable is candidate to be added in the main restricted
problem, and the process is stopped. The problem (LMP) is then solved as
an integer problem (Step 6).

5 Numerical experiments

This section presents some case studies considering the French airspace.
First, Subsection 5.1 describes the data used. Three instances are built to
illustrate the outcomes. The results obtained with different contrail metrics
are compared in Subsection 3. Then, Subsection 5.3 shows the impact of
capacity. Finally, Subsection 5.4 discusses the impact of altitude.

5.1 Data description

This subsection provides details about the data used for numerical exper-
iments. First, the aircraft data are detailed before focusing on the traffic
and airspace data used to build realistic instances. Then, weather data are
detailed and finally, the three illustrative instances used in the sequel are
detailed.

Aircraft data

Aircraft data such as airspeed and mass are extracted from the SKYbrary
website [25]. Fuel flow and emissions data are then extracted from the Ope-
nAP python library [26]. OpenAP has been used in this study since it is an
open-source library with accuracy in line with this study purposes.

Traffic and airspace data

Traffic data are extracted from Eurocontrol R&D data [27]. A day and a
time period are chosen, and only cruising points (from Flight Level (FL)
300 to FL 400) over France are kept. To obtain starting and destination
points, we select the vertices of the graph that are closest from the first
and the last points of the trajectory. The time of passage over the starting
point is considered to be the departure time of the flight concerned. Only
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long enough trajectories are kept (those with cruising phase longer than 150
Nautical Miles (NM)). The code to process these data and the code associated
with this paper are made publicly available at [28].

French airspace data are extracted from the French aeronautical infor-
mation (SIA) website [29]. Especially, upper airspace waypoints data and
unitary sectors are extracted. This is considered as the sector configuration
for the experiments. Removing waypoints from some areas that were too
dense in points yields the vertex set displayed on Figure 2. The vertex set is
then partitioned into sectors as shown by Figure 3.

Figure 3: The vertices used for numerical experiments, partitioned into sec-
tors, represented by different colors.

Other airspace instances, for other European countries and considering
several countries, are given with the code associated with this paper [28].
These instances are not based on real navigation databases but built ran-
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domly. Points and sectors are drawn randomly over the countries considered.
Their number and density can be adjusted through the code provided.

Weather and contrails data

Weather data are extracted from the ERA5 reanalysis dataset [30]. They are
directly used for wind, and processed thanks to the CLIMaCCF library [31]
to extract contrail areas and aCCF's values.

Then, aCCF's and contrail areas data are processed to evaluate the aCCF
above each graph arc, and to evaluate the percentage of each arc that lies
in contrail areas. The code to process these data is also given with the code
associated with this paper [28].

Instances description

Three instances are presented; they are named FRA_H1 M1, FRA_H2 M2,
and FRA_H3_M3. The arcs of the underlying graph of these instances are
constructed using the distance bounds D = 40 NM, and D = 130 NM and
the time discretization is based on a 5-minute time step. The initial mass
of each aircraft is set to 80% of its Maximum Take Off Weight (MTOW) as
this data was not available. Table 2 details the instances, in particular the
period used for weather and traffic data.

Table 2: Instances summary.

Instance Date for weather data Date for traffic data
name

FRA_H1 M1 | January 26, 2019, 14:00 UTC | March 5, 2019, 22:00 UTC (1
hour, 165 flights)

FRA_H2 M2 | January 17, 2019, 23:00 UTC | March 5, 2019, 15:00 UTC (1
hour, 474 flights)

FRA_H3_M3| April 25, 2019, 09:00 UTC March 5, 2019, 12:00 UTC (1
hour, 518 flights)

Instance FRA_H1 M1 will be used in Subsection 5.4 for illustrating al-
titude consideration, whereas instances FRA_H2_M2 and FRA_H3_M3 will
both be used for illustrating the impact of capacity (Subsection 5.3) and
metrics (Subsection 5.2).

5.2 Comparison of contrail metrics
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This subsection compares the results obtained when using different contrail
metrics. The last two instances, FRA_H2_M2 and FRA_H3_M3, are solved at
cruising altitude (FL310). Figures 4 and 5 display the contrail geographical
setup (aCCFs and persistent contrail areas) for both instances. Two ca-
pacity scenarios are considered for each instance: an unconstrained-capacity
scenario, noted Cp, and a constrained-capacity scenario, for which the capac-
ity of each sector s, at each time slot ¢ is set to Cs; = 15. The four metrics
studied are:

No contrail consideration: only the COy is minimized;

GWP with a 20-year time horizon (noted GWP20);

GWP with a 100-year time horizon (noted GWP20);
aCCFs.

Persistent
contrails

Persistent contrail areas, 2019-01-17T23:00, FL310 te-ig
11

P . R

Contrail aCCFs values, 2019-01-17T23:00, FL310
— =—
W [ o~
" <

(a) Contrail areas. (b) aCCFs values.

Figure 4: Contrail setup in instance FRA_H2 M2 at FL 310.

The presented results are obtained using the Java API of CPLEX [32]
to solve the main optimization problem and Java coding for the subproblem
resolution via dynamic programming. Computations are performed on a per-
sonal computer with an Intel Core i5-10210U, 1.60 Hz, with 8 Go RAM, and
a Debian Linux OS. The mean computation time for the presented instances
is 476 seconds.

Figure 6 shows the results obtained, on CO, emissions and flight time
in contrails, in total (summed over all the flights) in comparison to the case
where no contrails are considered. Figures 7 and 8 show the same indicators
in the form of distribution on all flights. Comparisons are done with the case
of no contrail consideration, with the same capacity scenario. Sensitivity of
the results with respect to the sector is studied in the next subsection.
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Persis tent

Persistent contrail areas, 2019-04-25T09:00, FL310 contrails Contrail aCCFs values, 2019-04-25T09:00, FL310 **™ &
= — = ]

None

(a) Contrail areas. (b) aCCFs values.

Figure 5: Contrail setup in instance FRA_H3_M3 at FL 310.

One first remarks that the GWP metric, which does not consider con-
trails with cooling effects, yields a strategy that is different from that one
obtained with aCCFs, which do consider cooling effect (as observed for in-
stance FRA_H3_M3). Indeed, aCCFs are more complex metrics, that yields
different results in some cases, contrail areas can become attractive, or it is
less imperative to avoid them. In some cases, GWP induces a high increase
in CO4 emissions. Nevertheless, one must keep in mind that the presented
results are always optimal with respect to the metric chosen. Post-processing
can be used to avoid undesirable situations, or a constraint can be added to
the model in order to impose a maximum acceptable increase in COs emis-
sions.

5.3 Impact of capacity

Capacity constraints can reduce the ability of the traffic to avoid contrail ar-
eas. In the last figures presented, results are compared for the same capacity
scenario. Then, the impact of capacity is not directly studied. This subsec-
tion focuses rather on comparing capacity scenarios with the same metric,
here aCCFs.

Figure 9 displays the evolution of total aCCFs (CO4 and contrails) when
solving instance FRA_H2_M2. Again, these experiments are done in the case
where for each sector s € S and each time slot ¢t € T, the capacity has the
same value Cs; = C.

Figure 9 shows that when the capacity decreases, the total environmen-
tal cost increases. However, the capacity constraints are hard constraints
that must be satisfied. It is therefore crucial to carry out the optimization
proposed in this paper to mitigate the impact of capacity constraints on the
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Figure 6: Results obtained summing over all flights with the four considered
metrics. Comparisons are relative to the case where no contrails are consid-
ered (COs minimization) and in the same capacity scenario.
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Figure 9: Evolution of total flight time and flight time in contrail areas
according to different values of the sector capacity C.

environmental cost of the considered traffic.

Another observation is that the computation time increases when the
capacity is reduced, since the number of iterations increases. In these exper-
iments, the computation time varies from 432 to 521 seconds.

5.4 Adding the altitude in decisions

As observed in [33], changing altitude can be an efficient complementary
mean of contrail mitigation. This subsection focuses on adding the choice of
the cruising altitude as a decision variable for each aircraft in the optimiza-

tion problem. First, the principle is explained before presenting results on
instance FRA_H1_M1.
General principle

As mentioned when modeling the problem (see Section 3), the proposed
model can be used for 2D or 3D paths, or even in 4D when considering time
dependency. Moreover, the resolution approach presented in Section 4 can
also be used in both cases, as solely the arc set of the underlying graph is
impacted. The sequel describes the instance of graph used in this study.

The choice of cruising altitude can be integrated into the presented prob-
lem by introducing artificial departure and ending vertices. For the sake of
simplification, the aircraft are assumed to fly by default at the highest pos-
sible altitude, and that the only possible decision consists in decreasing the
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altitude of one or two allowed flight levels compared to the default flight level.
Figure 10 illustrates the new arcs that are added to the 2D graph to take
into account the possible altitude decisions (here for one aircraft) in the case
where only one other flight level is allowed. Remark that the optimization
model takes into consideration the fact that the airspeed and fuel flow vary
with of the altitude.

/ 0 0 fO 0 !

i 5.2_ S Vi i € €;
+ — — ) —  ——  —
\ 2D-graph, with costs associated with level FL°
N /
\ . /
i Vi £ e;/

+FL™

2D-graph, with costs associated with level F'L~
Z|

Figure 10: New arcs for the 3D graph to take into account possible altitude
decisions for one aircraft ¢ € F when only one other flight level is allowed.
FL is the default flight level, FL~ is the first available flight level below FLP,
s, (respectively e}) is an artificial starting (respectively destination) node for
including the choice of level and graph between s{ and €? (respectively s; and
e; ) is the 2D graph considering the cost associated with FL? (respectively
FL7).

The choice of this 3D graph instance is driven by several operational con-
siderations. First, the choice of cruise altitude is driven by fuel consumption
concerns, and turbulence or weather hazard avoidance. Moreover, as men-
tioned before, the cruise altitude is generally chosen as high as possible. It is
a sensitive parameter which is difficult to modify by a large amount, and it is
nearly impossible to fly at a higher altitude. Then, since the point of view in
this study is the one of air traffic control, with no access to critical data such
as the current aircraft mass, aircraft performances are not known well enough
for the air traffic controller to issue large flight-level change instructions.
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Results on instance FRA _H1 _M1

The sequel of this subsection shows results when considering two possible
flight levels below the default flight level, for instance FRA_H1_M1, where
the default flight level is FL. 320. The graph instance is built similarly as the
one shown by Figure 10, but with two possible flight levels under the default
one. Following common practice [34], the airspeed is assumed to decrease by
2% when the altitude decreases by 1000 ft. Figure 11 displays the contrail
setup for this numerical experiment. It presents a day with a lot of contrails,
and with variability according to the altitude, especially in the south-east of
France.

2019-01-26T14:00

le-13

Persistent
FL 300 FL 310 FL 320 contrails

None

Figure 11: Contrail setup for instance FRA_H1_M1, at FL 300, 310, and 320.
The top of the figure shows the aCCFs values and the bottom shows the
persistent contrail areas for each flight level.

The optimization results are illustrated in figure 12 which shows, accord-
ing to each metric considered, the proportion of flights on each flight level,
in the capacity scenario C';. These results show that according to different
metrics, it can be chosen to fly lower to avoid contrails. This choice can
be done because avoiding contrail areas without altitude change can be too
COg-consuming. Flying higher is, in general, less COs-consuming. However,
if the cost of avoiding contrails areas is not too high, flying higher can be
judicious. Moreover, in some cases, it can be optimal to fly within a con-
trail area at the highest (default) flight level if this contrail area involves a
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moderate cost and if it is not worth avoiding it, by flying lower or laterally.
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Figure 12: Proportion of total simulation flights for each cruise flight level
selected as a result of the optimization process, for instance FRA_H1_M1 in
capacity scenario C;. For each metric considered, the proportion of flights
at FL300, 310 and 320 is shown in this order, from left to right.

This instance presents small differences in contrail distributions between
FL 320 and 310 but a significant reduction in south-east France for FL 300.
Then, flight level 310 is less chosen, because the reduction of contrails is
relatively small, but the fuel consumption is higher at this level than it is at
FL 320. Once again, there are differences in the proportion of flights at each
level depending on the metric. For instance, using GWP100 as an optimiza-
tion criterion yields a solution with flight level 310 for one flight. Finally, the
chosen instance studied here is capacity constraining. As a consequence, the
choice of flying lower can also be made when the lateral avoidance is likely
to violate capacity constraints.

6 Conclusions and future works

After presenting a literature review on trajectory computation for contrail
mitigation and the Air Traffic Flow Management problem, this paper pro-
poses to combine both issues into an original mathematical optimization
model. We solve it with methods for the ATFM problem adapted to the
case of specific environmental costs. In particular, this paper considers ob-
jective functions taking into account both CO; and non-CO, effects, and
more specifically contrails. This is crucial since avoiding contrail areas has
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an impact on the geographic traffic distribution. For example, when favor-
able areas are avoided in a zone, the corresponding capacity is not used,
which yields neighboring areas that are likely to be more congested. Since
this paper focuses on the air traffic control point of view, such capacity issues
are critical.

The proposed study relies on realistic instances and is applied to traffic
instances, extracted from historical flight databases, that are made publicly
available. The considered objective functions are based on different metrics
for contrails, from simple ones to more complex ones. We showed that results
are very sensitive to the choice of the particular metric. However, the pre-
sented optimization methodology can be easily adapted to any such metric.
Moreover, this study is limited to the phenomenon of contrails for non-CO,
effects, but other non-CO, effects could also be integrated into the proposed
model, using an appropriate metric. For example, aCCFs [22] related to
other effects can be considered. Finally, the case where the cruising altitude
can be chosen is studied, showing that in some cases, flying lower is worth
to minimize the total environmental impact.

The computational experiments conducted in this study is limited to the
national geographical scale, but an extension to the European scale could
be envisaged. This larger geographical scale means that more flights can be
considered in their entirety, reducing their environmental costs.

The range of possible decisions in the proposed optimization problem
could also be expanded. The proposed study only considers choosing one
cruising altitude per flight. Avoiding contrails by lowering the reference
altitude during the cruise phase can be efficient [33], but there are hard con-
straints on aircraft cruise altitude, so the way to model such constraints will
be crucial. In addition, here the configuration of the air sectors is fixed, but
it can be optimized to match better the contrail distribution of the day or pe-
riod under consideration. In particular, sectors can be grouped or ungrouped,
as it is done in dense traffic areas, in order to increase capacity in the sectors
that are adjacent to contrail areas, and to decrease it in the contrail areas.
Finally, given the uncertainties that are associated with weather forecasts
and the difficulty of predicting contrails [35], a promising future track of re-
search is to design an optimization model that takes such uncertainty into
account.
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