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Abstract— This article introduces a bio-inspired 3D flock-
ing algorithm for a drone swarm, built upon a previously
established 2D model, which has proven to be effective in
promoting stability, alignment, and distance variation between
agents within large groups of agents. The study highlights
how the incorporation of a vertical interaction between agents
and the acquisition by each agent of a minimal amount of
information about their most influential neighbor impacts the
collective behavior of the swarm. Additionally, we present a
comprehensive investigation of the impacts of the intensity of
alignment and attraction interactions on the collective motion
patterns that emerge at the group level. These results, mostly
conducted in a validated simulator, have significant implications
for designing efficient UAV swarm systems and using collective
patterns, or phases, in operational contexts such as corridor
tracking, surveillance, and exploration. Further research will
explore the effectiveness and efficiency of this UAV swarm
flocking algorithm, as well as its ability to ensure safe transitions
between collective phases in different operational contexts.

Index Terms— 3D Flocking Algorithm, Collective Motion,
Distributed Control, Drone Swarm, Unmanned Aerial Vehicle
(UAV)

I. INTRODUCTION

Drones, or unmanned aerial vehicles (UAVs), have become
increasingly popular in recent years and are being used
in a wide range of applications, including surveillance,
mapping, delivery, and search and rescue [1], [2], [3]. One
key challenge in operating a swarm of drones is guidance:
how to coordinate the movements of multiple drones to
achieve a desired task or objective. Swarm systems often
implement agent and obstacle avoidance coupled with navi-
gation toward an objective [4] or structural formation within
the group [5]. However, bio-inspired algorithms, which are
based on models of collective behaviors observed in group-
living animals (e.g., social insects, fish schools, and flocks
of birds), have emerged as a promising approach to control
a swarm of drones due to their ability to rapidly adapt
to changing environments and self-organize into complex
patterns [6]. In a previous work [7], we developed a 2D
flocking algorithm for a swarm of drones based on a model
describing the collective behavior of fish [8], [9], [10]. Here,
we introduce a 3D version of this flocking algorithm, and
we describe its implementation in a swarm of drones, its
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validation in an indoor flight arena, as well as in simulations.
In section III-B, we also discuss the impact of adding a
vertical interaction between agents in the model on the
resulting swarm behavior, and in particular, the emergence
of vertical movement patterns. The potential applications and
their benefits in an operational context are also discussed,
through the exploitation of different collective phases during
a mission. Except for the results presented in Fig. 4, all
results presented here are produced in simulation, using the
ROS2 [11] framework, formerly validated on a swarm of
drones inside an indoor flying arena in [7].

II. 3D FLOCKING ALGORITHM

Consider a swarm of N UAVs flying in a planar space.
The instantaneous state of the UAV i is determined by the
vector U⃗i(t) = (u⃗i(t), ϕi(t)), where u⃗i = (xi, yi, zi) and ϕi
denote the UAV’s position and heading angle, respectively.
The velocity vector is v⃗i = (vxi , v

y
i , v

z
i ). Then, the command

vector can be written as V⃗i(t) = (vi(t), v
z
i (t), ωi(t)), where

vi = ∥(vxi , v
y
i )∥ is the longitudinal speed and ωi the angular

turning rate, both calculated with a PID controller according
to the environmental and social interactions of the UAV and
a given target heading. We have:

˙⃗
Ui(t) = (v⃗i(t), ωi(t)

)
. (1)

Agent’s speed and heading variation δV⃗i is updated at a fixed
frequency and according to the social interactions with other
agents (soc), the effect of the upper, lower and side borders
of the cylindrical arena (border), and the operational goal
that includes an attraction to a given altitude (nav):

δvi = δvsoci + δvborderi + δvnavi , (2)

δvzi = (δvzi )
soc + (δvzi )

border + (δvzi )∥ + (δvzi )
nav, (3)

δϕi = δϕsoci + δϕborderi + δϕnavi . (4)

Social terms are δvsoci =
∑

j∈J δvij , (δvzi )soc =
∑

j∈J δv
z
ij ,

and δϕsoci =
∑

j∈J(ϕ
Ali
ij +ϕAtt

ij ), where J is the set of agents
with which agent i interacts (typically 1 or 2). They are given
by pairwise functions describing the effect of longitudinal



speed, vertical speed, alignment, and attraction, respectively:

δvij = γAcc cos(ψij)
(
dv0 − dcij

)(
1 +

dcij
lAcc

)−1

, (5)

δvzij = γz

[
tanh

(
dzij
az

)
+ tanh

(
dzij − dz0
az

)]
× exp

[
−
(
dcij
Lz2

)2
]
, (6)

δϕAli
ij = γAli(d

c
ij + dAli

0 ) exp

[
−
(
dcij
lAli

)2
]
sin(ϕij)

×
(
1 + αAli cos(ψij)

)
[1− fw(rw)], (7)

δϕAtt
ij = γAtt(d

c
ij − dAtt

0 )

[
1 +

(
dcij
lAtt

)2
]−1

sin(ψij)

×
(
1 + αAtt cos(ψij)

)
[1− fw(rw)]q(d

c
ij). (8)

These functions depend on five variables characterizing the
geometrical state of pairs of agents ij: the coupling distance
dcij separating them, the angle ψij with which i perceives j,
their heading difference ϕij=ϕj−ϕi, the vertical distance dzij ,
and the distance to the wall in the horizontal plane rw. The
parameters of these functions are their respective strength
γAcc, γz, γAli, γAtt, their respective distance of equilibrium
dv0 , dz0, dAli

0 , dAtt
0 , and their respective range of action,

determined respectively by lAcc, az , Lz2 , lAli, and lAtt. The
function fw reduces the strength of the interaction when the
agent is close to the wall, and q(d) = 2d/(4d − dAtt

0 ), if
d ≤ dAtt

0 , and q(d) = 1, if d > dAtt
0 . Finally, αAli and

αAtt are normalization constants for the angular functions
of interaction. The coupling distance between agents dcij
is a weighted distance, where the effective range of the
interaction is larger by a factor σz along the Z-axis (we used
σz =

√
2) to prevent collisions or failures between vertically

aligned agents due to the columns of air perturbations that
are produced by multirotors:

dcij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2/σ2

z . (9)

Recent findings in social fish have shown that each individ-
ual acquires a minimal amount of information about a limited
number of neighbors (typically one or two) to coordinate
movements at the group level, thus facilitating decision-
making processes and preventing cognitive overload [12],
[13]. This feature is included in our model by selecting the
number and identity of agents each drone interacts with, thus
reducing the amount of information that has to be processed.
The interacting neighbors are precisely those that exert the
highest influence on the focal agent, where the influence that
agent j exerts on agent i is given by the cost function

Iij(t) =
√
(δvi)2 + (δvzi )

2 + (δϕivi)2. (10)

The operational terms δvnavi , (δvzi )
nav and δϕnavi serve

to determine the guiding strategy for the swarm to adopt a
given position, speed, and heading. Here only (δvzi )

nav is

used, to attract drones towards a specified altitude zalt:

(δvzi )
nav = −γ⊥ tanh

(
z − zalt
az

)
. (11)

(δvzi )
border =

γ⊥
1+exp[dzborder ]

dz0

(12)

with dzborder
Finally,

(δvzi )∥ = −γ∥ × vzi / ∥vi∥ , (13)

is used to smooth abrupt changes in the vertical direction.
Expressions (2)-(13) are the generalization to a 3D frame-

work of the interactions introduced in the 2D-model [7].

III. IMPACT OF THE VERTICAL INTERACTION ON
COLLECTIVE BEHAVIORS

A. 3D collective behaviors

In fish schools, the collective motion patterns that emerge
from social interactions are called phases, in analogy
with physical matter states or phases (e.g., gas, liquid,
solid...) [14]. The flocking algorithm can generate a variety of
identifiable 3D patterns of collective movements, depending
on the value of the interaction strengths γAli and γAtt. We
characterize these patterns by means of three observables
quantifying the behavior and the spatial distribution of the
agents:

• The group dispersion D(t), measuring the level of
cohesion of the group and corresponding to the mean 3D
distance of the UAVs to the barycenter of the swarm B:

D(t) =

√√√√ 1

N

N∑
i=1

∥u⃗i − u⃗B∥2. (14)

• The polarization P (t) of the swarm, corresponding to
the degree of alignment of the agents:

P (t) =
1

N

∥∥∥∥∥
N∑
i=1

e⃗i(t)

∥∥∥∥∥ ∈ [0, 1], (15)

with e⃗i = v⃗i/∥v⃗i∥ being the unit vector of agent’s heading.
High values of P mean that agents are aligned and point in
the same direction. Small values of P mean that agents point
in different directions, but polarization can be correlated to
the number of agents if it is low (uncorrelated movement
would result in P ∼ 1/

√
N ).

• The milling index M(t) of the swarm, measuring how
much the agents are turning around their barycenter, and in
the same direction:

M(t) =

∣∣∣∣∣ 1N
N∑
i=1

sin(θ̄iw(t))

∣∣∣∣∣ ∈ [0, 1], (16)

with θ̄iw = ϕ̄i − θ̄i. Variables with a bar are defined in the
barycenter system of reference. The milling index can also
be defined with respect to a specific point other than the
barycenter (e.g., characterizing the swarm behavior inside a



Fig. 1. 3D-trajectories and their projections on the XY -plane of the collective states displayed by a swarm of 25 UAVs flying in free space without any
specified altitude when each UAV only interacts with its most influential neighbor: A) schooling, (B) swarming, and (C) milling. (D) Dispersion D(t), (E)
polarization P (t), and (F) milling M(t) for 50 UAVs, as a function of the intensity of the attraction γAtt and alignment γAli. The vertical interaction is
present, but not modified between simulations. Each pixel value corresponds to a mean value of 100 simulations of 180 s with fixed interaction intensities.

circular arena). Removing the absolute value in (16) shows
the clockwise or anticlockwise direction of rotation.

We ran 100 simulations of 50 UAVs flying during 180 s for
each value of γAli and γAtt and calculated the value of these
three observables D, P , and M . Fig. 1 shows the density
plots for each observable in the corresponding (γAli, γAtt)-
plane.

For each observable, we introduce a threshold allowing
us to build a phase plane characterizing the different col-
lective behaviors [15]. When attraction and alignment are
sufficiently strong to prevent dispersion (D < 5.5), three
behavioral phases can be identified:

I. Schooling: P > 0.75, M < 0.4 (red region in Fig. 2).
Drones maintain a tight formation and fly in the same
direction. Schooling behavior is useful for navigation along
a given trajectory, or for keeping a compact swarm.

II. Swarming: P < 0.75, M < 0.4 (green). Drones are
not polarized but remain cohesive. Swarming behavior serves
for tasks such as mapping and delivery, in which the swarm
must cover a large area in a distributed manner.

III. Milling: P < 0.75, M > 0.4 (blue). Drones describe
a rotating pattern around an arbitrary point, regardless of
the sense of rotation. This pattern is only observed in large
swarms where agents interact only with very close neighbors,
and not with agents moving in the opposite direction. Milling
behavior is especially useful in non-stoppable vehicles, such
as fixed-wing UAVs, for altitude gain or loss, with a limited
horizontal dispersion.

Fig. 2 shows that the schooling phase occupies the upper
2/3 of the (γAli, γAtt)-plane, indicating that schooling occurs
provided a minimal alignment force is given. If alignment

Fig. 2. Phase diagram corresponding to the collective motion patterns
shown in Fig. 1: (I) Schooling phase (red), where P > 0.75 and M < 0.4,
(II) Swarming phase (green), where P < 0.75 and M < 0.4, and (III)
Milling phase (blue), where P < 0.75 and M > 0.4. In the gray region
(bottom-left corner) dispersion is very high (D > 5.5) and no collective
patterns are observed. The parameter values for these simulations were:
dAli
0 = 1m, lAli = 2.5m, dAtt

0 = 1.25m, lAtt = 2.75m, γAcc = 0.25,
dAcc
0 = 1m, lAcc = 2.5m, γz = 0.25, dz0 = 1.25m, Lz2 = 1.75m.

is not sufficiently strong (with γAli larger than 0.25–0.5,
depending on γAtt), the swarm of drones adopts a swarming
behavior unless the attraction is in a specific range of small
values (γAtt ≈ 0.25–0.6). There, the swarm adopts a milling
formation. In fact, the milling behavior is a specific motion
pattern that is very close to the swarming behavior, but more
coordinated in rotation around the barycenter of the group. If
both interaction forces are weak, the swarm loses its cohesion
and disperses (D > 5.5).

The phase diagram can change with the size of the swarm,
the number of influential neighbors taken into account,



or the parameters of the interaction functions [15]. Still,
phase diagrams are a powerful tool for implementing phase
transitions, either manually, or through a decision process.

B. Modulation of swarm cohesion along the vertical axis

The model presented in Section II allows the drones to
fly at any altitude between 0 and 5m (height of the upper
limit of the arena). The vertical distance of separation dz0
introduced in Eq. 3 leads the drones to stay at that vertical
distance from each other. The model simulations shown in
Section III-A were carried out with dz0 = 1.25m so that
vertical interactions do not affect the 2D behavioral patterns.
The model also makes it possible to produce other behaviors
along the vertical axis. Fig. 3 shows that drones can be driven
to split vertically or fly all at a given altitude.

Fig. 3. 3D trajectories of a schooling swarm of 25 UAVs flying in an
unbounded space, (A) vertically dispersed, and (B) with a specified altitude.

This flexibility in adopting different moving patterns can
bring benefits in specific scenarios of drone swarm naviga-
tion, e.g., to release agents that are blocked in local minima
(during a migration, or in front of non-convex obstacles), and
therefore deserves a deeper exploration in a 3D volume.

Fig. 4 shows the distribution of the vertical position z of
drones under different conditions, both during experimental
tests and in simulations. When no target altitude is specified,
both UAVs and agents self-organize at a vertical distance of
about 1.25m from each other: see the bumps at z = 1.5, 3,
and 4.25m, confined by the upper border at z = 5m. On the
other hand, when a target altitude is specified, here at z =
3m, the two UAVs manage to stay at this altitude, while the
three agents are forced to separate themselves horizontally
because of the additional term (δvzi )

nav in Eq. 3.
The choice to carry out experimental tests only with 2

drones with a specified altitude is due to the constraints
imposed by the size of the flight arena (see Fig. 5), which
confines drones horizontally, and therefore increases vertical
repulsion when there are too many drones.

C. Using collective phases for an operational control of the
swarm

In operational contexts, the main challenge consists in
guiding the swarm. At any time, the operator must be able
to change the navigation order, stop the swarm, or track
its progress, while controlling its moving direction. The
navigation terms in Eqs. (2)–(4) allow the operator to guide
the swarm toward a specified area by exploiting the self-
organizing properties of the flocking model. These terms

Fig. 4. Distribution of the vertical position of the UAVs inside a cylindrical
arena of 5m height in two conditions: without specifying a target altitude
(3 UAVs, red lines), and with a target altitude dz0 = 3m (2 UAVs, blue
lines). We performed 5 experiments of ∼8min in the flight arena (solid
lines) and 50 runs of 8min in model simulations (dashed lines).

Fig. 5. (A) Experimental UAV (a Tello EDU®; www.ryzerobotics.com)
used in our experiments. (B) Swarm of drones in the flight arena (a 3.25-
meter radius circle is added in simulation for wall interaction and safety).

define a vector field whose direction and intensity are subject
to dynamic changes in the environment (wind, obstacles) and
to commands sent by the operator. Using vector fields allows
for preserving the swarm formation while moving toward
a desired location. Moreover, guidance by vector fields is
readily applicable to border and obstacle avoidance [16],
[17], [18].

In a common case of flying within a navigation corridor,
the field is often uniform (locally and within the corridor),
thus creating additional alignment in the calculation of the
agents’ heading, and therefore between nearby drones. To
what extent does this field influence the polarization of the
swarm remains to be measured, but a pattern close to the
frontier of the schooling domain will show a higher level
polarization if the swarm is subject to an additional locally
uniform guiding field.

Beyond the context of flying within a navigation corridor,
where the swarm will mostly perform schooling (with a high
level of polarization), the attraction to a specific area, the
calculation of a dynamic field for obstacle avoidance, or
even a constant arbitrary term to favor exploration of an
unknown area, can be helped by adopting a specific phase.
Keeping in mind that the model can be extended in terms

www.ryzerobotics.com


Fig. 6. Density map of the relative position of the most influential neighbor in the system of reference of the focal agent defined by the longitudinal,
lateral, and vertical axes X , Y , and Z respectively (Fig. 5A). (A) XY -plane, (B) XZ-plane, and (C) Y Z-plane. During 90% of the time, the most
influential neighbor is found within 2 m around the focal agent in the XY -plane, and within 0.48m above or below the focal agent in the Y Z-plane.
Density map of all the agents in (D) the XY -plane, (E) the XZ-plane, and (F) the Y Z-plane. Note that the spatial scales used in (ABC) and (DEF) are
different. In all figures, the density is normalized to 1, and contour lines are equispaced by 0.1. Results are based on 100 simulations of 300 s, with 50
agents flying in an unbounded arena, and no specified altitude. The parameter values for the simulations are: γAli = 0.8, dAli

0 = 1m, lAli = 2.5m,
γAtt = 1.2, dAtt

0 = 1.25m, lAtt = 2.75m.

of distances, we can find examples of motion patterns for a
variety of scenarios. The exploration of an unknown zone,
with an unspecified border ([19], [20]), or a simple case
of search and rescue can be favored by using a swarming
pattern, scaled to the characteristic size of the environment,
with an individual appeal to unexplored subareas, guaran-
teeing an optimal dispersion in the horizontal and vertical
domains. While the algorithm has not been tested on fixed-
wings drones, the Milling phase could be used by those
drones for staying in a wind updraft or just decreasing their
altitude, while keeping a specific position in the horizontal
plane. Moreover, the algorithms can ensure in such cases
coordination with a varying number of agents. Ultimately, a
reactive algorithm confers significant benefits in dynamic or
unknown environments [21]. By implementing perception at
the local scale, agents can interact with the environment, and
impact other agents by influencing their dynamics. The way
information spreads across the swarm, from peer to peer,
can be useful even without communication, the same way it
allows biological flocks to perceive and collectively avoid a
threat.

IV. REDUCING THE SEARCHING ZONE OF INFLUENTIAL
NEIGHBOR

In the biological model, fish interact with at most 1 or 2
neighbors [12], [13]. The social interaction strategy consists
in selecting the neighbors to interact with according to the
influence they exert on the focal fish. The influence of a
neighbor is defined as the absolute value of its contribution
to the instantaneous heading change of the focal fish, |δϕ(t)|
[13]. Thus, the most influential neighbor is the one having the
highest contribution. With the two additional interactions, the
choice was made to measure the influence as the heading an-
gle change weighted with the longitudinal and vertical speed
change (Eq. 10). This formulation allows us to modulate
the collective interactions between UAVs so that only one
influential neighbor is required to produce an aligned and
cohesive swarm.

By selecting the influential neighbors in terms of each
interaction, the swarm tends to be more aligned and rigid,
justifying the choice of only using one influential neighbor.

The following results show the importance of selecting
the most influential neighbor. We focus our analysis on
the schooling phase (see Part III for the description of the
collective phases) in which the swarm is polarized, without



specifying the flight altitude to the agents, or a direction to
follow.

Figs. 6ABC show the density distribution of the position
of the most influential neighbor of a focal UAV flying inside
the swarm in its 3D reference system in the schooling phase
(see the reference axes shown in Fig. 5). The central finding
is the highly compact nature of this distribution in relation to
proximity to the focal agent. Vertically, the most influential
agent is located within a distance of 1 meter from the focal
agent, while horizontally, at a comparable range on either
side of the agent. This distribution is a direct consequence
of the choice of the interaction parameters, as they have
a strong impact on the relative positions between drones.
Characteristic distances between drones can be set to a given
value by simply adjusting the ranges and the distances of
equilibrium defining the interactions functions [13]. Other
parameters, such as the intensity of interactions γAli, γAtt,
γAcc, and γz , also have a deep impact on the shape of the
density map.

The density distribution of the most influential neighbor
only reaches local maxima in two symmetrical points. The
separation between the UAVs along the vertical axis is also
ensured, and UAVs are rarely found directly above each
other. This is necessary because of the columns of the air
disturbances that multirotors generate at close range, and is
the result of adjusting the parameters between the vertical
interaction and the rest of the social interactions.

A prominent point of this distribution, and especially the
one in Fig. 6, is that it can help in designing an effective
swarm of UAVs. The fact that the most influential neighbor
can be found in a restricted and localized zone has a
clear impact on the choice of an onboard visual or close-
range communication system. Moreover, if we consider the
distribution of all neighbors around a focal agent, one can see
that they rarely obstruct the line of sight between this focal
agent and its most influential neighbor. A schooling pattern
is essential in any UAV deployment scenario, as it guarantees
the best stability, in terms of alignment and variation of
distance between agents, as well as the adaptability of the
swarm to a vector field. The other phases, as well as the
tweaking of parameters that control the vertical interaction,
can be adapted to an operational need, from corridor tracking
to surveillance or exploration.

V. CONCLUSION

In this article, we presented a 3D bio-inspired flocking
algorithm for a drone swarm, based upon a previously
validated 2D model. This extension to 3D was proved to be
effective, and after scaling it to the other interactions and the
extra need for vertical separation in quadrotors, the resulting
distribution around a focal agent satisfies safety needs in
terms of coordination and separation. We also showed how
the vertical interaction in the model affects the variables of
observation and the way agents select their influential neigh-
bor(s). Knowing where to look for an influential neighbor,
and therefore acquiring important data to achieve coordinated
collective motion, is key in designing an efficient swarm of

UAVs. Finally, the collective motion patterns that can be
obtained through the modification of a small amount of the
model parameters were presented and can serve as indirect
guiding strategies in various operational contexts. Future
work will explore the ability of this UAV swarm flocking
algorithm to ensure safe transitions between collective phases
in different operational contexts and its deployment in a real
swarm of dozens of UAVs, as in [22].
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