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This article introduces a bio-inspired 3D flocking algorithm for a drone swarm, built upon a previously established 2D model, which has proven to be effective in promoting stability, alignment, and distance variation between agents within large groups of agents. The study highlights how the incorporation of a vertical interaction between agents and the acquisition by each agent of a minimal amount of information about their most influential neighbor impacts the collective behavior of the swarm. Additionally, we present a comprehensive investigation of the impacts of the intensity of alignment and attraction interactions on the collective motion patterns that emerge at the group level. These results, mostly conducted in a validated simulator, have significant implications for designing efficient UAV swarm systems and using collective patterns, or phases, in operational contexts such as corridor tracking, surveillance, and exploration. Further research will explore the effectiveness and efficiency of this UAV swarm flocking algorithm, as well as its ability to ensure safe transitions between collective phases in different operational contexts.

I. INTRODUCTION

Drones, or unmanned aerial vehicles (UAVs), have become increasingly popular in recent years and are being used in a wide range of applications, including surveillance, mapping, delivery, and search and rescue [START_REF] Tsouros | A Review on UAV-Based Applications for Precision Agriculture[END_REF], [START_REF] Tahir | Swarms of Unmanned Aerial Vehicles -A Survey[END_REF], [START_REF] Ayamga | Multifaceted applicability of drones: A review[END_REF]. One key challenge in operating a swarm of drones is guidance: how to coordinate the movements of multiple drones to achieve a desired task or objective. Swarm systems often implement agent and obstacle avoidance coupled with navigation toward an objective [START_REF] Zhou | Swarm of micro flying robots in the wild[END_REF] or structural formation within the group [START_REF] Alonso-Mora | Distributed multi-robot formation control in dynamic environments[END_REF]. However, bio-inspired algorithms, which are based on models of collective behaviors observed in groupliving animals (e.g., social insects, fish schools, and flocks of birds), have emerged as a promising approach to control a swarm of drones due to their ability to rapidly adapt to changing environments and self-organize into complex patterns [START_REF] Dorigo | Swarm Robotics: Past, Present, and Future [Point of View[END_REF]. In a previous work [START_REF] Verdoucq | Bio-inspired control for collective motion in swarms of drones[END_REF], we developed a 2D flocking algorithm for a swarm of drones based on a model describing the collective behavior of fish [START_REF] Calovi | Collective response to perturbations in a datadriven fish school model[END_REF], [START_REF] Calovi | Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors[END_REF], [START_REF] Escobedo | A data-driven method for reconstructing and modelling social interactions in moving animal groups[END_REF]. Here, we introduce a 3D version of this flocking algorithm, and we describe its implementation in a swarm of drones, its validation in an indoor flight arena, as well as in simulations.

In section III-B, we also discuss the impact of adding a vertical interaction between agents in the model on the resulting swarm behavior, and in particular, the emergence of vertical movement patterns. The potential applications and their benefits in an operational context are also discussed, through the exploitation of different collective phases during a mission. Except for the results presented in Fig. 4, all results presented here are produced in simulation, using the ROS2 [START_REF]ROS2 (Robotic Operating System 2.0[END_REF] framework, formerly validated on a swarm of drones inside an indoor flying arena in [START_REF] Verdoucq | Bio-inspired control for collective motion in swarms of drones[END_REF].

II. 3D FLOCKING ALGORITHM

Consider a swarm of N UAVs flying in a planar space. The instantaneous state of the UAV i is determined by the vector ⃗ U i (t) = (⃗ u i (t), ϕ i (t)), where ⃗ u i = (x i , y i , z i ) and ϕ i denote the UAV's position and heading angle, respectively. The velocity vector is

⃗ v i = (v x i , v y i , v z i ).
Then, the command vector can be written as ⃗

V i (t) = (v i (t), v z i (t), ω i (t)), where v i = ∥(v x i , v y i )∥
is the longitudinal speed and ω i the angular turning rate, both calculated with a PID controller according to the environmental and social interactions of the UAV and a given target heading. We have:

⃗ U i (t) = (⃗ v i (t), ω i (t) . (1) 
Agent's speed and heading variation δ ⃗ V i is updated at a fixed frequency and according to the social interactions with other agents (soc), the effect of the upper, lower and side borders of the cylindrical arena (border), and the operational goal that includes an attraction to a given altitude (nav):

δv i = δv soc i + δv border i + δv nav i , (2) 
δv z i = (δv z i ) soc + (δv z i ) border + (δv z i ) ∥ + (δv z i ) nav , (3) δϕ i = δϕ soc i + δϕ border i + δϕ nav i . (4) 
Social terms are δv soc i = j∈J δv ij , (δv z i ) soc = j∈J δv z ij , and

δϕ soc i = j∈J (ϕ Ali ij +ϕ Att ij )
, where J is the set of agents with which agent i interacts (typically 1 or 2). They are given by pairwise functions describing the effect of longitudinal speed, vertical speed, alignment, and attraction, respectively:

δv ij = γ Acc cos(ψ ij ) d v 0 -d c ij 1 + d c ij l Acc -1 , (5) 
δv z ij = γ z tanh d z ij a z + tanh d z ij -d z 0 a z × exp - d c ij L z2 2 , ( 6 
)
δϕ Ali ij = γ Ali (d c ij + d Ali 0 ) exp - d c ij l Ali 2 sin(ϕ ij ) × 1 + α Ali cos(ψ ij ) [1 -f w (r w )], (7) 
δϕ Att ij = γ Att (d c ij -d Att 0 ) 1 + d c ij l Att 2 -1 sin(ψ ij ) × 1 + α Att cos(ψ ij ) [1 -f w (r w )]q(d c ij ). ( 8 
)
These functions depend on five variables characterizing the geometrical state of pairs of agents ij: the coupling distance d c ij separating them, the angle ψ ij with which i perceives j, their heading difference ϕ ij =ϕ j -ϕ i , the vertical distance d z ij , and the distance to the wall in the horizontal plane r w . The parameters of these functions are their respective strength γ Acc , γ z , γ Ali , γ Att , their respective distance of equilibrium d v 0 , d z 0 , d Ali 0 , d Att 0 , and their respective range of action, determined respectively by l Acc , a z , L z2 , l Ali , and l Att . The function f w reduces the strength of the interaction when the agent is close to the wall, and q(d) = 2d/(4d -d Att 0 ), if d ≤ d Att 0 , and q(d) = 1, if d > d Att 0 . Finally, α Ali and α Att are normalization constants for the angular functions of interaction. The coupling distance between agents d c ij is a weighted distance, where the effective range of the interaction is larger by a factor σ z along the Z-axis (we used σ z = √ 2) to prevent collisions or failures between vertically aligned agents due to the columns of air perturbations that are produced by multirotors:

d c ij = (x i -x j ) 2 + (y i -y j ) 2 + (z i -z j ) 2 /σ 2 z . (9) 
Recent findings in social fish have shown that each individual acquires a minimal amount of information about a limited number of neighbors (typically one or two) to coordinate movements at the group level, thus facilitating decisionmaking processes and preventing cognitive overload [START_REF] Jiang | Identifying influential neighbors in animal flocking[END_REF], [START_REF] Lei | Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish[END_REF]. This feature is included in our model by selecting the number and identity of agents each drone interacts with, thus reducing the amount of information that has to be processed. The interacting neighbors are precisely those that exert the highest influence on the focal agent, where the influence that agent j exerts on agent i is given by the cost function

I ij (t) = (δv i ) 2 + (δv z i ) 2 + (δϕ i v i ) 2 . ( 10 
)
The operational terms δv nav i , (δv z i ) nav and δϕ nav i serve to determine the guiding strategy for the swarm to adopt a given position, speed, and heading. Here only (δv z i ) nav is used, to attract drones towards a specified altitude z alt :

(δv z i ) nav = -γ ⊥ tanh z -z alt a z . ( 11 
) (δv z i ) border = γ ⊥ 1+exp[dz border ] dz 0 (12) with d z border Finally, (δv z i ) ∥ = -γ ∥ × v z i / ∥v i ∥ , (13) 
is used to smooth abrupt changes in the vertical direction. Expressions ( 2)-( 13) are the generalization to a 3D framework of the interactions introduced in the 2D-model [START_REF] Verdoucq | Bio-inspired control for collective motion in swarms of drones[END_REF].

III. IMPACT OF THE VERTICAL INTERACTION ON COLLECTIVE BEHAVIORS

A. 3D collective behaviors

In fish schools, the collective motion patterns that emerge from social interactions are called phases, in analogy with physical matter states or phases (e.g., gas, liquid, solid...) [START_REF] Moussaid | Collective Information Processing and Pattern Formation in Swarms, Flocks, and Crowds[END_REF]. The flocking algorithm can generate a variety of identifiable 3D patterns of collective movements, depending on the value of the interaction strengths γ Ali and γ Att . We characterize these patterns by means of three observables quantifying the behavior and the spatial distribution of the agents:

• The group dispersion D(t), measuring the level of cohesion of the group and corresponding to the mean 3D distance of the UAVs to the barycenter of the swarm B:

D(t) = 1 N N i=1 ∥⃗ u i -⃗ u B ∥ 2 . ( 14 
)
• The polarization P (t) of the swarm, corresponding to the degree of alignment of the agents:

P (t) = 1 N N i=1 ⃗ e i (t) ∈ [0, 1], (15) 
with ⃗ e i = ⃗ v i /∥⃗ v i ∥ being the unit vector of agent's heading. High values of P mean that agents are aligned and point in the same direction. Small values of P mean that agents point in different directions, but polarization can be correlated to the number of agents if it is low (uncorrelated movement would result in P ∼ 1/ √ N ). • The milling index M (t) of the swarm, measuring how much the agents are turning around their barycenter, and in the same direction:

M (t) = 1 N N i=1 sin( θi w (t)) ∈ [0, 1], (16) 
with θi w = φiθi . Variables with a bar are defined in the barycenter system of reference. The milling index can also be defined with respect to a specific point other than the barycenter (e.g., characterizing the swarm behavior inside a circular arena). Removing the absolute value in [START_REF] Belkhouche | Reactive Path Planning in a Dynamic Environment[END_REF] shows the clockwise or anticlockwise direction of rotation.

We ran 100 simulations of 50 UAVs flying during 180 s for each value of γ Ali and γ Att and calculated the value of these three observables D, P , and M . Fig. 1 shows the density plots for each observable in the corresponding (γ Ali , γ Att )plane.

For each observable, we introduce a threshold allowing us to build a phase plane characterizing the different collective behaviors [START_REF] Wang | The impact of individual perceptual and cognitive factors on collective states in a data-driven fish school model[END_REF]. When attraction and alignment are sufficiently strong to prevent dispersion (D < 5.5), three behavioral phases can be identified:

I. Schooling: P > 0.75, M < 0.4 (red region in Fig. 2). Drones maintain a tight formation and fly in the same direction. Schooling behavior is useful for navigation along a given trajectory, or for keeping a compact swarm.

II. Swarming: P < 0.75, M < 0.4 (green). Drones are not polarized but remain cohesive. Swarming behavior serves for tasks such as mapping and delivery, in which the swarm must cover a large area in a distributed manner.

III. Milling: P < 0.75, M > 0.4 (blue). Drones describe a rotating pattern around an arbitrary point, regardless of the sense of rotation. This pattern is only observed in large swarms where agents interact only with very close neighbors, and not with agents moving in the opposite direction. Milling behavior is especially useful in non-stoppable vehicles, such as fixed-wing UAVs, for altitude gain or loss, with a limited horizontal dispersion.

Fig. 2 shows that the schooling phase occupies the upper 2/3 of the (γ Ali , γ Att )-plane, indicating that schooling occurs provided a minimal alignment force is given. If alignment is not sufficiently strong (with γ Ali larger than 0.25-0.5, depending on γ Att ), the swarm of drones adopts a swarming behavior unless the attraction is in a specific range of small values (γ Att ≈ 0.25-0.6). There, the swarm adopts a milling formation. In fact, the milling behavior is a specific motion pattern that is very close to the swarming behavior, but more coordinated in rotation around the barycenter of the group. If both interaction forces are weak, the swarm loses its cohesion and disperses (D > 5.5).

The phase diagram can change with the size of the swarm, the number of influential neighbors taken into account, or the parameters of the interaction functions [START_REF] Wang | The impact of individual perceptual and cognitive factors on collective states in a data-driven fish school model[END_REF]. Still, phase diagrams are a powerful tool for implementing phase transitions, either manually, or through a decision process.

B. Modulation of swarm cohesion along the vertical axis

The model presented in Section II allows the drones to fly at any altitude between 0 and 5 m (height of the upper limit of the arena). The vertical distance of separation d z 0 introduced in Eq. 3 leads the drones to stay at that vertical distance from each other. The model simulations shown in Section III-A were carried out with d z 0 = 1.25 m so that vertical interactions do not affect the 2D behavioral patterns. The model also makes it possible to produce other behaviors along the vertical axis. Fig. 3 shows that drones can be driven to split vertically or fly all at a given altitude. This flexibility in adopting different moving patterns can bring benefits in specific scenarios of drone swarm navigation, e.g., to release agents that are blocked in local minima (during a migration, or in front of non-convex obstacles), and therefore deserves a deeper exploration in a 3D volume.

Fig. 4 shows the distribution of the vertical position z of drones under different conditions, both during experimental tests and in simulations. When no target altitude is specified, both UAVs and agents self-organize at a vertical distance of about 1.25 m from each other: see the bumps at z = 1.5, 3, and 4.25 m, confined by the upper border at z = 5 m. On the other hand, when a target altitude is specified, here at z = 3 m, the two UAVs manage to stay at this altitude, while the three agents are forced to separate themselves horizontally because of the additional term (δv z i ) nav in Eq. 3. The choice to carry out experimental tests only with 2 drones with a specified altitude is due to the constraints imposed by the size of the flight arena (see Fig. 5), which confines drones horizontally, and therefore increases vertical repulsion when there are too many drones.

C. Using collective phases for an operational control of the swarm

In operational contexts, the main challenge consists in guiding the swarm. At any time, the operator must be able to change the navigation order, stop the swarm, or track its progress, while controlling its moving direction. The navigation terms in Eqs. ( 2)-( 4) allow the operator to guide the swarm toward a specified area by exploiting the selforganizing properties of the flocking model. These terms define a vector field whose direction and intensity are subject to dynamic changes in the environment (wind, obstacles) and to commands sent by the operator. Using vector fields allows for preserving the swarm formation while moving toward a desired location. Moreover, guidance by vector fields is readily applicable to border and obstacle avoidance [START_REF] Belkhouche | Reactive Path Planning in a Dynamic Environment[END_REF], [START_REF] Belkhouche | Modeling and controlling 3D formations and flocking behavior of unmanned air vehicles[END_REF], [START_REF] Bilgin | Panel method based path planning for fixed wing micro aerial vehicles[END_REF].

In a common case of flying within a navigation corridor, the field is often uniform (locally and within the corridor), thus creating additional alignment in the calculation of the agents' heading, and therefore between nearby drones. To what extent does this field influence the polarization of the swarm remains to be measured, but a pattern close to the frontier of the schooling domain will show a higher level polarization if the swarm is subject to an additional locally uniform guiding field.

Beyond the context of flying within a navigation corridor, where the swarm will mostly perform schooling (with a high level of polarization), the attraction to a specific area, the calculation of a dynamic field for obstacle avoidance, or even a constant arbitrary term to favor exploration of an unknown area, can be helped by adopting a specific phase. Keeping in mind that the model can be extended in terms of distances, we can find examples of motion patterns for a variety of scenarios. The exploration of an unknown zone, with an unspecified border ( [START_REF] Verdu | Flight patterns for clouds exploration with a fleet of UAVs[END_REF], [START_REF] Hattenberger | Field report: Deployment of a fleet of drones for cloud exploration[END_REF]), or a simple case of search and rescue can be favored by using a swarming pattern, scaled to the characteristic size of the environment, with an individual appeal to unexplored subareas, guaranteeing an optimal dispersion in the horizontal and vertical domains. While the algorithm has not been tested on fixedwings drones, the Milling phase could be used by those drones for staying in a wind updraft or just decreasing their altitude, while keeping a specific position in the horizontal plane. Moreover, the algorithms can ensure in such cases coordination with a varying number of agents. Ultimately, a reactive algorithm confers significant benefits in dynamic or unknown environments [START_REF] Li | Biologically inspired flocking of swarms with dynamic topology in uniform environments[END_REF]. By implementing perception at the local scale, agents can interact with the environment, and impact other agents by influencing their dynamics. The way information spreads across the swarm, from peer to peer, can be useful even without communication, the same way it allows biological flocks to perceive and collectively avoid a threat.

IV. REDUCING THE SEARCHING ZONE OF INFLUENTIAL

NEIGHBOR

In the biological model, fish interact with at most 1 or 2 neighbors [START_REF] Jiang | Identifying influential neighbors in animal flocking[END_REF], [START_REF] Lei | Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish[END_REF]. The social interaction strategy consists in selecting the neighbors to interact with according to the influence they exert on the focal fish. The influence of a neighbor is defined as the absolute value of its contribution to the instantaneous heading change of the focal fish, |δϕ(t)| [START_REF] Lei | Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish[END_REF]. Thus, the most influential neighbor is the one having the highest contribution. With the two additional interactions, the choice was made to measure the influence as the heading angle change weighted with the longitudinal and vertical speed change (Eq. 10). This formulation allows us to modulate the collective interactions between UAVs so that only one influential neighbor is required to produce an aligned and cohesive swarm.

By selecting the influential neighbors in terms of each interaction, the swarm tends to be more aligned and rigid, justifying the choice of only using one influential neighbor.

The following results show the importance of selecting the most influential neighbor. We focus our analysis on the schooling phase (see Part III for the description of the collective phases) in which the swarm is polarized, without specifying the flight altitude to the agents, or a direction to follow.

Figs. 6ABC show the density distribution of the position of the most influential neighbor of a focal UAV flying inside the swarm in its 3D reference system in the schooling phase (see the reference axes shown in Fig. 5). The central finding is the highly compact nature of this distribution in relation to proximity to the focal agent. Vertically, the most influential agent is located within a distance of 1 meter from the focal agent, while horizontally, at a comparable range on either side of the agent. This distribution is a direct consequence of the choice of the interaction parameters, as they have a strong impact on the relative positions between drones. Characteristic distances between drones can be set to a given value by simply adjusting the ranges and the distances of equilibrium defining the interactions functions [START_REF] Lei | Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish[END_REF]. Other parameters, such as the intensity of interactions γ Ali , γ Att , γ Acc , and γ z , also have a deep impact on the shape of the density map.

The density distribution of the most influential neighbor only reaches local maxima in two symmetrical points. The separation between the UAVs along the vertical axis is also ensured, and UAVs are rarely found directly above each other. This is necessary because of the columns of the air disturbances that multirotors generate at close range, and is the result of adjusting the parameters between the vertical interaction and the rest of the social interactions.

A prominent point of this distribution, and especially the one in Fig. 6, is that it can help in designing an effective swarm of UAVs. The fact that the most influential neighbor can be found in a restricted and localized zone has a clear impact on the choice of an onboard visual or closerange communication system. Moreover, if we consider the distribution of all neighbors around a focal agent, one can see that they rarely obstruct the line of sight between this focal agent and its most influential neighbor. A schooling pattern is essential in any UAV deployment scenario, as it guarantees the best stability, in terms of alignment and variation of distance between agents, as well as the adaptability of the swarm to a vector field. The other phases, as well as the tweaking of parameters that control the vertical interaction, can be adapted to an operational need, from corridor tracking to surveillance or exploration.

V. CONCLUSION

In this article, we presented a 3D bio-inspired flocking algorithm for a drone swarm, based upon a previously validated 2D model. This extension to 3D was proved to be effective, and after scaling it to the other interactions and the extra need for vertical separation in quadrotors, the resulting distribution around a focal agent satisfies safety needs in terms of coordination and separation. We also showed how the vertical interaction in the model affects the variables of observation and the way agents select their influential neighbor(s). Knowing where to look for an influential neighbor, and therefore acquiring important data to achieve coordinated collective motion, is key in designing an efficient swarm of UAVs. Finally, the collective motion patterns that can be obtained through the modification of a small amount of the model parameters were presented and can serve as indirect guiding strategies in various operational contexts. Future work will explore the ability of this UAV swarm flocking algorithm to ensure safe transitions between collective phases in different operational contexts and its deployment in a real swarm of dozens of UAVs, as in [START_REF] Vásárhelyi | Optimized flocking of autonomous drones in confined environments[END_REF].
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 1 Fig. 1. 3D-trajectories and their projections on the XY -plane of the collective states displayed by a swarm of 25 UAVs flying in free space without any specified altitude when each UAV only interacts with its most influential neighbor: A) schooling, (B) swarming, and (C) milling. (D) Dispersion D(t), (E) polarization P (t), and (F) milling M (t) for 50 UAVs, as a function of the intensity of the attraction γ Att and alignment γ Ali . The vertical interaction is present, but not modified between simulations. Each pixel value corresponds to a mean value of 100 simulations of 180 s with fixed interaction intensities.

Fig. 2 .

 2 Fig. 2. Phase diagram corresponding to the collective motion patterns shown in Fig. 1: (I) Schooling phase (red), where P > 0.75 and M < 0.4, (II) Swarming phase (green), where P < 0.75 and M < 0.4, and (III) Milling phase (blue), where P < 0.75 and M > 0.4. In the gray region (bottom-left corner) dispersion is very high (D > 5.5) and no collective patterns are observed. The parameter values for these simulations were: d Ali 0 = 1 m, l Ali = 2.5 m, d Att 0 = 1.25 m, l Att = 2.75 m, γ Acc = 0.25, d Acc 0 = 1 m, l Acc = 2.5 m, γz = 0.25, d z 0 = 1.25 m, Lz 2 = 1.75 m.

Fig. 3 .

 3 Fig. 3. 3D trajectories of a schooling swarm of 25 UAVs flying in an unbounded space, (A) vertically dispersed, and (B) with a specified altitude.

Fig. 4 .

 4 Fig. 4. Distribution of the vertical position of the UAVs inside a cylindrical arena of 5 m height in two conditions: without specifying a target altitude (3 UAVs, red lines), and with a target altitude d z 0 = 3 m (2 UAVs, blue lines). We performed 5 experiments of ∼8 min in the flight arena (solid lines) and 50 runs of 8 min in model simulations (dashed lines).

Fig. 5 .

 5 Fig. 5. (A) Experimental UAV (a Tello EDU®; www.ryzerobotics.com) used in our experiments. (B) Swarm of drones in the flight arena (a 3.25meter radius circle is added in simulation for wall interaction and safety).

Fig. 6 .

 6 Fig. 6. Density map of the relative position of the most influential neighbor in the system of reference of the focal agent defined by the longitudinal, lateral, and vertical axes X, Y , and Z respectively (Fig. 5A). (A) XY -plane, (B) XZ-plane, and (C) Y Z-plane. During 90% of the time, the most influential neighbor is found within 2 m around the focal agent in the XY -plane, and within 0.48 m above or below the focal agent in the Y Z-plane. Density map of all the agents in (D) the XY -plane, (E) the XZ-plane, and (F) the Y Z-plane. Note that the spatial scales used in (ABC) and (DEF) are different. In all figures, the density is normalized to 1, and contour lines are equispaced by 0.1. Results are based on 100 simulations of 300 s, with 50 agents flying in an unbounded arena, and no specified altitude. The parameter values for the simulations are: γ Ali = 0.8, d Ali 0 = 1 m, l Ali = 2.5 m, γ Att = 1.2, d Att 0 = 1.25 m, l Att = 2.75 m.
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