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ABSTRACT Hyperbolic geometry has recently garnered considerable attention in machine learning due to
its capacity to embed hierarchical graph structures with low distortions for further downstream processing.
This paper introduces a simple framework to detect local outliers for datasets grounded in hyperbolic 2-
space referred to as Hyperbolic Local Outlier Probability (HLoOP). Within a Euclidean space, well-known
techniques for local outlier detection are based on the Local Outlier Factor (LOF) and its variant, the LoOP
(Local Outlier Probability), which incorporates probabilistic concepts to model the outlier level of a data vector.
The developed HLoOP combines the idea of �nding nearest neighbors, density-based outlier scoring with a
probabilistic, statistically oriented approach. Therefore, the method consists in computing the Riemmanian
distance of a data point to its nearest neighbors following a Gaussian probability density function expressed
in a hyperbolic space. This is achieved by de�ning a Gaussian cumulative distribution in this space. The
HLoOP algorithm is tested on the WordNet dataset yielding promising results. The code and data will be
made available on request for reproducibility.

INDEX TERMS Outlier Detection, Hyperbolic Embedding, LoOP, HLoOP

I. INTRODUCTION AND PRIOR WORK
From social interaction analysis in social sciences to sensor
networks in communication, machine learning has gained
in importance in the last few years for analyzing large and
complex datasets. Applying machine learning algorithms in
an Euclidean space is ef�cient when data have an underlying
Euclidean structure. However, in many applications such
as computer graphics or computer vision, data cannot be
embedded in a Euclidean space, which prevents the use of
conventional algorithms [1]. As an example, in datasets having
a hierarchical structure, the number of relevant features can
grow exponentially with the depth of the hierarchy; thus, these
features cannot be embedded without distortions in an Eu-
clidean space. In the quest for a more appropriate geometry of
hierarchies, hyperbolic spaces and their models (PoincarØ disk
or upper-half plane conformal models, Klein non-conformal
model, Beltrami hemisphere model and Lorentz hyperboloid
model among others [2]) provide attractive properties that
can lead to substantial performance and ef�ciency bene�ts
for learning representations of hierarchical and graph data.
Among several potential advantages, we can highlight [3]
1) a better generalization capability of the model, with less
over�tting, computational complexity, and requirement of

training data; 2) a reduction in the number of model parameters
and embedding dimensions; 3) a better model understanding
and interpretation. Empowered by these geometric properties,
hierarchical embeddings have recently been investigated for
complex trees with low distortions [4], [5], [6], [7]. This has led
to rapid advances in machine learning and data science across
many disciplines and research areas, including but not limited
to graph networks [8], [9], [10], [11], computer vision [12],
[13], [14], [15], [16], network topology analysis [17], [18],
[19], [20], quantum science [21], [22]. Finally, it is interesting
to mention the recent boom in hyperbolic neural networks and
hyperbolic computer vision, which has been reported in recent
reviews [23], [3].

Motivated by these recent advances, identifying and dealing
with outliers is crucial for generating trustworthy insights
and making data-driven decisions in hyperbolic spaces, e.g.,
providing information about which nodes are highly connected
(and hence more central) or which nodes correspond to
outliers such that embedding methods can realistically be
used to model real complex patterns. In this study, we focus
on local outlier detection, which describes local properties
of data, which is relevant in many applications involving
Euclidean spaces. An overview of local anomaly detection
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FIGURE 1: Illustration inspired from [24] of local outlier probabilities in a hyperbolic model: A hierarchical structure (left)
is embedded in a hyperbolic space with low-distortion (middle). Note the middle �gure illustrates that the metrics used in the
Euclidean space and a hyperbolic space are different, which results in a modi�cation of the distance between each point. The
right �gure illustrates the way the local outlier probabilities can be displayed in this hyperbolic space.

methods can be found in the literature from many surveys
or books [25], [26], [27], [28]. Initially, research related to
local outlier detection was focused on intrusion detection
[29], [30], [31], fraud detection [32], [33], [34], [35] and
medical applications [36], [37]. Intrusion detection consists of
detecting abnormal traf�c in networks due to suspicious data
or violations of network management policies. Fraud detection
detects unexpected activities in banking or insurance data, such
as fraudulent online payments by credit card or inconsistent
insurance claims. In the wake of other disciplines, local outlier
detection algorithms have been used for medical data, e.g., to
detect abnormal QRS complexes in electrocardiograms due to
certain diseases (such as premature ventricular contraction).

A well-known technique for local outlier detection is the
Local Outlier Factor (LOF) [38][39] and its variant the LoOP
(Local Outlier Probability)[40] with probabilistic concepts
allowing the outlier level of a data point to be de�ned. The
properties of these methods make the detection of historical
data attractive, particularly because they provide local outlier
scores based on the degree of isolation of each vector from
the neighborhood. While the LOF detects outlier data points
using the score of an outlier, the LoOP detects them by
providing for each data point p an outlier score (belonging
to the interval ]0; 1[) corresponding to the probability that p
is an anomaly. Because the distances have positive values,
the LoOP algorithm assumes a half-Gaussian distribution for
these distances. Based on Bayesian inference, the outlier score
is directly interpretable as an outlier probability.

Probabilistic inference for data embedding in hyperbolic
spaces is a young research area, in which the �rst main
contributions can be dated from the beginning of 2020 (see
[24], [41], [42], [43] and the references therein). These insights
led, for instance, to de�ne the so-called Souriau Gibbs in
the PoincarØ disk with its Fisher information metric coin-
ciding with the PoincarØ Riemannian metric [44]. A novel
parametrization for the density of Gaussian on hyperbolic
spaces is presented in [41]. This density can be analytically

calculated and differentiated using a simple random vari-
ate generation algorithm. An alternative is to use a simple
Gaussian distribution in hyperbolic spaces, e.g., [45], [46]
introduced Riemannian normal distributions for the univariate
normal model, with an application to the classi�cation of
univariate normal populations. Along with the wrapped normal
generalization used in [41], [47] studies a thorough treatment
of the maximum entropy normal generalisation. Meanwhile,
many applications combining hyperbolic geometry and Varia-
tional Auto-Encoders (VAEs) were investigated in [48], [47],
[49], [43] based on the fact that VAE latent space components
embedded in hyperbolic space help to represent and discover
hierarchies. This work introduces an original framework
to detect local outliers for datasets grounded in hyperbolic
2-space referred to as HLoOP (Hyperbolic Local Outlier
Probability). To the best of our knowledge, this is the �rst
existing algorithm allowing to detect outliers belonging to
data embedded within an hyperbolic space.

II. CONTRIBUTIONS AND PAPER ORGANIZATION
The key contributions of this paper are:
(1) We extend the Local Outlier Probabilities (LoOP) algo-

rithm to make it applicable to hyperbolic models, e.g, the
PoincarØ disk model, leading to Hyberbolic 2-space Local
Outlier probabilities (HLoOP). Figure 1 illustrates the
pipeline to obtain local outlier probability distributions
in hyperbolic geometry from hierarchical structures.

(2) We derive an expression of a Gaussian cumulative dis-
tribution in hyperbolic spaces which ensures that the
Probabilistic Local Outlier Factor (PLOF) is performed
by fully exploiting the information geometry of the
observed data.

The rest of this paper is structured as follows: section IV
brie�y outlines some concepts from Riemannian geometry
for univariate models. In Section V we introduce local outlier
probability detection in hyperbolic spaces and discuss how
this probability can be computed. Section VI evaluates the
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proposed approach on the benchmark dataset ‘‘taxonomy
embedding from WordNet’’.

III. MOTIVATION OF THIS WORK
The �rst question that may arise when reading this article is
Why perform outlier detection in hyperbolic space rather than
Euclidean space?

Simply because certain data are better analyzed within a
hyperbolic space (e.g., Google maps [50]) and often, there
is no rationale to convert this representation into Euclidian
space. For instance and without loss of generality, many
recent applications in computer networking are represented in
hyperbolic space, including :
� network topology : hyperbolic geometry can be used to

model complex networks with a hierarchical structure,
such as the internet or social networks. By representing
these networks as hyperbolic spaces, it is possible to
capture their underlying geometry and study their prop-
erties and dynamics. In [51], the authors illustrate how
heterogeneous degree distributions and strong cluster-
ing naturally arise from the negative curvature of the
underlying hyperbolic geometry. The authors show that
if a network has a metric structure and a heterogeneous
degree distribution, then it has an effective hyperbolic
geometry. This allows the authors to establish a map-
ping between the geometric framework and statistical
mechanics of complex networks;

� routing algorithms : hyperbolic geometry can also be
used to design ef�cient routing algorithms for large-scale
networks. In hyperbolic space, the distance between two
points grows exponentially as they move away from each
other, which can be exploited to design routing algorithms
that minimize the number of hops needed to transmit data
between two nodes. In [17], the author proposes a reliable
routing algorithm for wireless networks and sensor-nets,
able to assign virtual coordinates to each node in the
hyperbolic plane, allowing for successful and consistent
routing of packets to a destination point. Similarly, in
[18], the authors designed an algorithm for online greedy
graph embedding in the context of dynamic multihop
communication networks. Several other proposals exist
in the context of overlay networks [19] or satellites
networking [20];

� network visualization : hyperbolic geometry can be
used to visualize complex networks in two or three
dimensions, allowing researchers to explore the structure
and properties of these networks in a more intuitive way.
This can be especially useful for large-scale networks that
are dif�cult to visualize using traditional methods. As
shown in [50], the authors demonstrate that Google maps
on a cell phone is an example of hyperbolic geometry;

� distributed systems : �nally and as shown in [52], [53],
hyperbolic geometry can be used to design distributed
systems that are more fault-tolerant and scalable than
traditional systems. By representing the system as a
hyperbolic space, it is possible to distribute the load

across the network in a more ef�cient manner, thereby
reducing the risk of overload or failure.

These examples motivate the present study, which aims to
introduce a well-known and ef�cient outlier detection tool :
LoOP [40]), to the hyperbolic space.

IV. A UNIVARIATE NORMAL MODEL FOR HYPERBOLIC
SPACES
This section brie�y reminds some concepts of Riemannian
geometry [46], [54], [47] for the univariate normal model,
which are necessary to formally extend the LoOP detection
algorithm. Note that similarly to [45], the main assumptions
is that the data used, must belong to a hyperbolic space with a
well-de�ned hyperbolic geometry.

A. RIEMANNIAN GEOMETRY AND RAO DISTANCE
A Riemannian manifold is a real and smooth manifold denoted
asM equipped with a positive de�nite quadratic form gx :
TxM�TxM 7! R at each point x 2M, where TxM is the
tangent space de�ned at the local coordinates x = (x1; :::; xn)T .
Intuitively, it contains all the possible directions in which one
can tangentially pass through x. A norm is induced by the
inner product on TxM : k � kx =

p
< �; � >x . An in�nitesimal

volume element is induced on each tangent space TxM. The
quadratic form gx is called a Riemannian metric and allows
us to de�ne the geometric properties of spaces, such as the
angles and lengths of a curve. The Riemannian metric gx is
an n-by-n positive de�nite matrix such that an in�nitesimal
element of length ds2 is de�ned as:

ds2 =
�
dx1 � � � dxn

�
gx

0

B@

dx1
...

dxn

1

CA : (1)

The Riemannian metric is a well-known object in differential
geometry. For instance, the PoincarØ disk with a unitary
constant negative curvature corresponds to the Riemannian
manifold in the hyperbolic space (H, gH

x ), where H = fx 2
Rn : kxk < 1g is the open unit disk1. Its metric tensor
can be written from the Euclidean metric gE = In and the
Riemannian metric such that gH

x = �2
x gE , where �x = 2

1�kxk2

is the conformal factor. The Rao distance between two points
z1 = (x1; y1)T and z2 = (x2; y2)T in H is given as:

dH (z1; z2) = arcosh
�
1 + 2

jjz1 � z2jj2

(1� jjz1jj2)(1� jjz2jj2)

�
; (2)

where arcosh denotes the inverse hyperbolic cosine and k � k
is the usual Euclidean norm. Unlike the Euclidean distance,
the hyperbolic distance grows exponentially fast as we move
the points toward the boundary of the open unit disk. There
exists many models of hyperbolic geometry including the
Klein non-conformal model, the Beltrami hemisphere model
and the Lorentz hyperboloid model among others. One model

1A d-dimensional hyperbolic space, denoted Hd , is a complete, simply
connected, d-dimensional Riemannian manifold with constant negative
curvature c.
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of hyperbolic geometry can be transformed into another one
by using a one-to-one mapping, which yields an isometric
embedding [55].

B. RIEMANNIAN PRIOR ON THE UNIVARIATE NORMAL
MODEL
A Gaussian distribution in H, denoted as NH (�; �), depends
on two parameters, the FrØchet mean � 2 H (i.e., the center
of mass) and the dispersion parameter � > 0, similar to
the Gaussian density in the Euclidean space. The Gaussian
probability density function (pdf) in the hyperbolic space,
denoted as pH (xj�; �) is de�ned as follows [45]:

pH (xj�; �) =
1

Z(�)
exp

�
�

d2
H (x; �)
2�2

�
: (3)

Several remarks can be made from (3): (i.) the main difference
between the hyperbolic density pH (�) and the Gaussian density
in the Euclidean space is the use of the squared distance
d2

H (x; �) in the exponential (referred to as Rao distance) and
a different dispersion-dependent normalization constant Z(�)
which reduces to

p
2��2 in the Euclidean case. Note that

the constant Z(�) is linked to the underlying geometry of
the hyperbolic space (ii.). To de�ne a Gaussian distribution
NH (�; �), through its pdf, it is necessary to have an exact
expression of the normalizing constant Z(�). This constant
can be determined using hyperbolic polar coordinates r =
dH (x; �) (i.e, a pulling-back) to calculate Z(�) using an
integral depending on the Riemannian volume element include
a reference here (iii.). By introducing the parametrization z =
(x; y)T where x = �=

p
2, y = � and the Riemannian metric for

the univariate Gaussian model ds2(z) = (dx2 +dy2)=y2, since
H is of dimension 2, the Riemannian area is dA(z) = dxdy=y2

or dA(z) = sinh(r)drd’ in polar coordinates. For a two-
dimensional parameter space, the normalization constant Z(�)
was computed in [45]:

Z(�) =
Z

H
exp

�
�

r2

2�2

�
dA(z)

= 2��
r
�
2

exp
�
�2

2

�
erf
�
�
p

2

�
; (4)

where erf is the error function. This expression of Z(�)
completes the de�nition of the Gaussian distributionNH (�; �).
The authors of [47] have shown that when � get smaller (resp.
bigger), the Riemannian normal pdf is closer (resp. further) to
the wrapped normal pdf [47].

V. HYPERBOLIC 2-SPACE LOCAL OUTLIER PROBABILITY
A. DENSITY-BASED OUTLIER SCORE USING A
PROBABILISTIC APPROACH
This subsection brie�y presents the main theoretical principles
of some research studies dealing with local outlier probability
concepts. A local outlier is a data point that is different or far
from most elements of the entire dataset compared to its local
neighborhood, which is measured by the k-Nearest Neighbors
(kNN) algorithm [56]. Therefore, local outlier detection covers
a small subset of data points at a given time (Figure 2a). To

p1

p2

p6

p3

p5

p4

dk (o)
o

Reachdist( p 4 ,o)
= d k ( o )

Reachdist( p 6 ,o)

(a) Example of reachability distance.

(b) Example of LOF algorithm.

FIGURE 2: (a) Examples of reachability distances for different
data points p with respect to o, when k = 5. (b) Examples of
detected anomalies using local density deviations of a given
dataset, where the white and red points indicate the normal
points and the anomalies.

compute the degree of outlier of a point p in a dataset D,
several distances must be introduced [57]. The k-distance
of a point p 2 D denoted as dk(p) is the distance between
p 2 D and its k-nearest neighbor. The notion of k-distance
must be used to delimit a neighborhood that contains the k-
nearest neighborhood of p. This neighborhood denoted as
Nk(p) is de�ned as Nk(p) = fq 2 Dnfpgjd(q; p) � dk(p)g.
The reachability distance denoted as reachdistk(p; o) of
a point p 2 D with respect to a point o is de�ned as
reachdistk(p; o) = max fdk(p); d(p; o)g. Based on these
de�nitions, the LOF (Local Outlier Factor) algorithm has
been introduced in [38] to improve the kNN approach in the
scenario where, e.g., in a two-dimensional dataset, the density
of one cluster is signi�cantly higher (resp. lower) than another
cluster. To do this, it calculates the local reachable density of
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the data, and calculates the local outlier factor score according
to the local reachable density. Figure 2b illustrates the local
density-based outlier scoring for a given dataset. LOF values
are converted into circle radius so that it is possible to set a
threshold (e.g., 0.1) to detect outlier samples. In this work,
we introduce the HLOF (Hyperbolic Local Outlier Factor)
algorithm by replacing d(q, p) with the Rao distance (2).

While the LOF (Local Outlier Factor) algorithm detects
outlier data points using the reachability distance, the Local
Outlier Probability (LoOP) algorithm introduces the proba-
bilistic distance of o 2 D to a context set S � D, referred to
as pdist(o;S) with the following property:

8s 2 S : P[d(o; s) � pdist(o;S)] � ’: (5)

This probabilistic distance corresponds to the radius of a
disk that contains a data point of S, obtained from the kNN
algorithm, with a certain probability, denoted as ’. The
reciprocal of the probabilistic distance can be considered as
an estimation of the density of S, i.e, pden(S) = 1

pdist(o;S) .
Assuming that o is the center of S and the local density is
approximately a half-Gaussian distribution, the probabilistic
set distance of o to S can be de�ned as

pdist(o;S) = ��(o;S); (6)

where �(o;S) = (
P

s2S d2(o; s)= jSj)1=2 is the standard
Euclidean distance of o in S. The parameter � is linked to
the selectivity of detection through the quantile function of the
normal distribution via the relation � =

p
2er�nv(’), where

er�nv is the inverse error function.
To be detected as an anomaly for the set S, a data point

should deviate from the center of S for more than � times the
standard distance. For instance, � = 3 means that a circle of
radius pdist(o;S) and center o contains any data point of S
with a probability ’ � 99:7%. The resulting probability is the
Local Outlier Probability (LoOP) given by

LoOPS(o) = max
�

0; erf
�

PLOF�;S(o)
nPLOF

p
2

��
; (7)

where the Probabilisitic Local Outlier Factor (PLOF) is de�ned
as PLOF�;S(o) = (pdist(�; o;S))=(Es2S [pdist(�; s;S)])�
1 and a normalization factor nPLOF is such that nPLOF =
�(E[PLOF2])1=2. The LoOP value is directly interpretable as
the probability of o being an outlier, i.e, close to 0 for points
within dense regions and close to 1 for density-based outliers.

B. HLOOP ALGORITHM
This subsection presents the main contribution of this study,
which is an adaptation of the LoOP algorithm to data lying in a
hyperbolic 2-space. As mentioned above, the LoOP algorithm
in an Euclidean space exploits a probabilistic set distance,
called pdist(o;S) (see 6), to pick the density around o in the
context set S with a probability of ’. To de�ne a local outlier
probability adapted to hyperbolic geometry, it is necessary to
calculate a new parameter �H , which ensures that pdist(o;S)
is performed considering the hyperbolic geometry. To come
up with such a solution, the key idea is to derive a new quantile

function through an expression of a Gaussian cumulative
distribution function (cdf) that can be obtained by integrating
the pdf (3) in H. Using polar coordinates (see subsection
IV-B, remark iii.), it is possible to calculate this Gaussian
cdf explicitly. To �nd the parameter �H , we consider the
probabilistic distance of o 2 D to a context set S � D using
a Riemannian distance dH (o; s) and the following statistical
property:

8s 2 S : ’ = P[0 < dH (o; s) � �H�r ] = GH (�H�r); (8)

whereGH is the cdf of dH (o; s). Assuming that o is the center of
S and the set of distances of s 2 S to o is approximately half-
Gaussian in a hyperbolic space, one can compute the standard
deviation �r using the Riemannian distance r = dH (o; s) with
a mean dH (o; o) = 0. Note that the standard deviation of r
denoted as �r and its pdf can be determined from the function
GH , e.g., pH (r ; �r) = G0H (r ; �r). Theorem 1 presents the main
result of this paper.

Theorem 1. Given r 2 H, �r > 0, the Riemannian
geometry of the Gaussian cumulative model associated with
the distribution de�ned in (3) is given by

GH (r ; �r) =
�
p

2��re
�2

r
2

2Z(�r)

�
�
2erf

� �rp
2

�
+ erf

� r � �2
r

�r
p

2

�
� erf

� r + �2
r

�r
p

2

��
:

(9)

Proof. Let P[0 < r � R] and dA(z) = sinh(r)drd’ such
that:

GH (R) =
Z 2�

0

Z R

0

1
Z(�r)

exp
�
�

r2

2�2
r

�
sinh(r)drd’:

The pdf pH (�) satis�es the following condition:
Z

H
pH (xj�; �)d(�; �) = 1; (10)

where d(�; �) is the Lebesgue measure. The cumulative
distribution function of the univariate Gaussian distribution of
pdf pH (�) can be computed using (10) as follows:

GH (R) =
2�

Z(�r)

�
Z R

0

e
�2

r
2

2

 

e
�

(r � �2
r )2

2�2
r � e

�
(r + �2

r )2

2�2
r

!

dr ;

=
�
p

2��re
�2

r
2

2Z(�r)

�

0

@ 2
p
�

Z R��2
rp

2�r

��rp
2

e�u2
1du1 �

2
p
�

Z R+�2
rp

2�r

�rp
2

e�u2
2du2

1

A ;

=
�
p

2��re
�2

r
2

2Z(�r)

�
�

2erf
� �rp

2

�
+ erf

�R� �2
r

�r
p

2

�
� erf

�R + �2
r

�r
p

2

��
:

(11)
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Taking the limit GH (R) �!
R!1

1 in (11) yields:

Z(�r) = (2��r)
r
�
2

exp
�
�2

r
2

�
erf
�
�rp

2

�
;

which allows the expression given in [45] to be recovered and
completes the proof.

Combining all these results, the parameter �H (�r) is deter-
mined by the inverse of GH (�H�r) (see 8) such that

�H (�r) =
1
�r
G�1

H (’): (12)

It is interesting to note that, while the traditional quantile
function is independent of the standard deviation, we have
obtained means to directly derive the parameter �H that
exploits the underlying geometry of the hyperbolic space
(see subsection IV-B, remark ii.). The HLoOP algorithm is
summarized in Algorithm 1.

Algorithm 1 HLoOP algorithm

Input: Dataset X = fx igm
i=1 where x i = (x i

1; � � � ; x i
n) 2 Rn.

Pre-determined threshold ’, parameter k , and hyper-
bolic distance dH (p; q);

(1) Determine the context set S of the data point x i from the
kNN algorithm;

(2) Compute the standard distance �r of the context set S;
(3) Determine G�1

H (’) to derive the parameter �H by (12);
(4) Calculate the probabilistic set distance pdistk(x i) of the

data point x i by (6);
(5) Compute the local outlier probability LoOPk(x i) of the

data point x i by (7);

Output: Anomaly scores for the elements of the dataset X .

It is worth noting that the main difference between the
LoOP (computational complexity of O(n�log(n)) and HLoOP
algorithms is the addition of a Newton algorithm to estimate
the threshold given by � = G�1

H . Knowing that the time
complexity of Newton’s method is O(log(1=�)), where � is the
desired precision of the root; we can assess that the complexity
of the HLoOP algorithm is equivalent to that of the LoOP
algorithm. Similarly, the same applies to HLOF, where LOF
is the computational complexity of O(n2).

C. IMPLEMENTATION DETAILS
Before presenting the performance of the algorithm described
above, it is interesting to discuss some aspects related to
the implementation of the HLoOP algorithm. Most of the
steps used in the implementation of the HLoOP algorithm
are directly related to the Euclidean LoOP, except that the
distances are no longer Euclidean but hyperbolic. However,
the computation of the signi�cance � cannot be computed as
in the Euclidean LoOP. While an analytic expression of the
Gaussian quantile function is known in Euclidean space, the
derivation of the cumulative distribution in the Poincare disk,

illustrated in Figure 3a, does not lead to an analytic formulation
of its inverse G�1

H . Actually, an analytic expression of G�1
H is

not needed to compute � providing the value of r = �� for
which GH (r ; �) = ’ can be determined. Solving

GH (r ; �) = ’;

for a given pair (�; ’) can be performed using the Newton
method. Once we have obtained r , as shown in Figure 3b, the
signi�cance can be determined using the relation r = ��,
yielding � = r=�. All the elements required to implement
the HLoOP algorithm are now available. The next section
is dedicated to the assessment of the performance of this
algorithm.

(a) Univariate cdf associated with the density (3).

(b) Newton’s method to determine r = G�1(’).

FIGURE 3: Cumulative distribution GH in the Poincare disk
and resolution of GH (r ; �) = ’.

VI. RESULTS
A. PERFORMANCE OF HLOOP ON A TOY DATASET
The HLoOP method is �rst used to detect outliers in a toy
dataset, with a reduced number of points. The dataset was gen-
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erated as follows: �rst, some vectors were generated uniformly
in two circular areas located in the PoincarØ Disk (clusters
A and B). Then, each area was �lled with 40 points whose
positions are pulled from the normal distribution N (�;RI2)
where I2 is the 2 � 2 identity matrix. Five points located
outside these areas (cluster C) constitute the outliers of the
toy dataset, which is �nally composed of 2 � 40 + 5 = 85
points. The HLoOP algorithm was applied to this dataset, and
its performance was compared to that of HLOF. As a �rst
test, we compute the HLOF and HLoOP values of each point
of the embedding for k = 15 and a threshold ’ = 95% for
HLoOP. Figures 4 and 5 show the different points that are
surrounded by a circle whose radius is proportional to the
HLoOP or HLOF values. We observe that for both methods
(HLoOP or HLOF), the outliers (cluster C) have a higher
score than the inliers (clusters A and B). For the HLoOP,
this corresponds to the probability of a point being an outlier,
whereas for the HLOF, the interpretation of the score is less
straightforward. It is also interesting to note that cluster A
highlights a weakness of HLOF, which is designed for clusters
of uniform density as LOF. It is interesting to mention here
that HLOF assigns relatively high outlier scores to the points
of cluster A compared to HLoOP, which shows that HLoOP
performs better for this example.

FIGURE 4: Embedding of the toy dataset in the PoincarØ disk:
HLOF values.

A classical metric used to quantify the quality of the outlier
detection is the Area Under the Receiver Operating Curve
(AUC-ROC). We recall that a value of AUC-ROC close to 0
corresponds to very poor detection performance (around 0%
of the decisions made by the algorithm are correct), while an
AUC ROC close to 1 means that the algorithm is making very
few errors. As observed in Figure 6, the HLoOP algorithm
provides good anomaly detections: for k > 2 (number of
neighbors considered to evaluate the density of the context set
S), the number of true positives (actual outliers detected as
outliers) is between 95 and 100 %, which is a very good result.
Meanwhile, the performance of HLOF is more contrasted and

FIGURE 5: Embedding of the toy dataset in the PoincarØ disk:
HLoOP values. Some points have very small HLoOP values
and their associated circles do not appear in the �gure.

FIGURE 6: AUC ROC - Outlier detection in a toy dataset

strongly dependent on the value of k . In particular, for higher
values of k , the HLOF performance dramatically decreases.
The next section assesses the performance of HLoOP on a
larger dataset containing up to 1000 points.

B. EVALUATING THE PERFORMANCES ON THE
WORDNET/MAMMALS SUBGRAPH
This section evaluates the performance of HLoOP on a sub-
graph of the WORDNET database. WORDNET is a lexical
dataset composed of 117000 synsets2, which correspond to
nouns, adjectives, or verbs that are linked by conceptual
relations. Several subgraphs are known to exist in this dataset.
Among them, we chose to apply HLOF and HLoOP to a group
of 1180 synsets from the subgraph ‘‘Mammals’’. The dataset
was corrupted by 11 outliers corresponding to nouns of animals
that are not mammals (i.e., �shes, reptiles or birds) and was

2data elements that are considered semantically equivalent
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embedded in the PoincarØ Disk using the algorithm of Nickel
et al. (2017). The values of HLoOP and HLOF were calculated
for the points of this embedding. The Area Under the Receiving
Operator Curve (AUC ROC) was �nally calculated for both
HLOF and HLoOP for several values of k . As shown in Figure
7, the performance of HLoOP is better than HLOF for all
values of k , with a ROC AUC larger than 0:98, while HLOF
leads to a ROC AUC less than 68%. In addition to its good
performance, the HLoOP algorithm yields AUC values that
are quite independent of k , which is outstanding.

FIGURE 7: AUC ROC - Outlier detection in the corrupted
subgraph of Wordnet/Mammals

As shown in Figures 8 and 9 respectively for HLOF and
HLoOP, the detected anomalies are surrounded by a circle
whose radius is proportional to the HLoOP or HLOF values.
The number of neighbors considered in the density computa-
tions of HLoOP and HLOF is 20. What is interesting is that
for the same number of neighbors considered in the density
calculation, the �gures clearly show that the performance of
HLoOP better discriminates outliers than HLOF. Particularly,
we observe that one of the anomalies is not detected by the
HLOF, and points that are very far from the group in the center
had a fairly low score.

VII. CONCLUSION AND PERSPECTIVES
This paper presents extensions of the Local Outlier Factor
(LOF) and Local Outlier Probability (LoOP) algorithms, which
are referred to as Hyperbolic LOF (HLOF) and Hyperbolic
LoOP (HLoOP). Rather than working in the Euclidean space,
these extensions work in a speci�c model of hyperbolic space,
namely the PoincarØ Disk. Both algorithms are density based
and compare the density of a point with the density of its
neighbors. On the one hand, HLOF computes the density
based on a deterministic distance (called reachability distance),
while HLoOP introduces the notion of probabilistic distance
and returns its probability of being an outlier for each point.
The simulations conducted on a toy dataset have shown that
the HLoOP algorithm allows a better distinction of outliers
and inliers than HLOF. While HLoOP directly provides the

FIGURE 8: Wordnet/Mammals HLOF values.

FIGURE 9: Wordnet/Mammals HLoOP values.

probability of each point being an outlier, HLOF returns a
score whose interpretation is not straightforward and depends
on the dataset under study. Evaluations of the areas under the
receiver operating characteristics of data in the PoincarØ disk
have con�rmed that HLoOP has a better detection performance
than HLOF. The results obtained with this dataset also show
that the HLoOP performance is less sensitive to the number of
neighbors considered in the computation of the density, than
HLOF. Given these promising results, we have embedded the
mammals subset of the Wordnet dataset in the PoincarØ disk
after introducing arti�cial outliers. The HLOF and HLoOP
values and the areas under the receiver operating characteristics
of HLOF and HLoOP con�rm the results obtained with the
previous dataset. At last but not least, HLoOP adopts the same
assumptions as in the LoOP algorithm. These assumptions are
based on the application of the central limit theorem, which
suggests that the distances follow a normal distribution. By
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doing so, we prevent our method from being restricted to a
particular type of distribution. It is worth noting that other
types of distributions can also be considered in the hyperbolic
space, as discussed in [24].
Future work includes the extension of HLOF and HLoOP to
the Lorentz disk, i.e., to another model of the hyperbolic space.
Indeed, it has been shown that the PoincarØ disk presents
numerical instabilities that are not observed in the Lorentz
model. Moreover, it would be interesting to apply the HLoOP
and HLOF algorithms to more complex datasets, with more
points and attributes. For instance, given the growing interest
for hyperbolic geometry in the computer vision domain, it
could be worthwhile to try using HLoOP and HLOF to detect
outliers in a set of images. Finally, hyperbolic geometry could
be used to derive new outlier detection algorithms based on
isolation forest or one-class support vector machines.
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