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Abstract

Hyperbolic geometry has recently garnered considerable attention in machine learn-
ing due to its capacity to embed hierarchical graph structures with low distortions
for further downstream processing. This paper introduces a simple framework
to detect local outliers for datasets grounded in hyperbolic 2-space referred to as
HLoOP (Hyperbolic Local Outlier Probability). Within a Euclidean space, well-
known techniques for local outlier detection are based on the Local Outlier Factor
(LOF) and its variant, the LoOP (Local Outlier Probability), which incorporates
probabilistic concepts to model the outlier level of a data vector. The developed
HLoOP combines the idea of finding nearest neighbors, density-based outlier scor-
ing with a probabilistic, statistically oriented approach. Therefore, the method
consists in computing the Riemmanian distance of a data point to its nearest neigh-
bors following a Gaussian probability density function expressed in a hyperbolic
space. This is achieved by defining a Gaussian cumulative distribution in this space.
The HLoOP algorithm is tested on the WordNet dataset yielding promising results.
Code and data will be made available on request for reproductibility.

1 Introduction and Prior Work

From social interaction analysis in social sciences to sensor networks in communication, machine
learning has gained in importance in the last few years for analyzing large and complex datasets.
Applying machine learning algorithms in an Euclidean space is efficient when data have an underlying
Euclidean structure. However, in many applications such as computer graphics or computer vision,
data cannot be embedded in a Euclidean space, which prevents the use of conventional algorithms
[1]. As an example, in datasets having a hierarchical structure, the number of relevant features can
grow exponentially with the depth of the hierarchy and thus these features cannot be embedded
without distortions in an Euclidean space. In the quest for a more appropriate geometry of hierarchies,
hyperbolic spaces and their models (Poincaré disk or upper-half plane conformal models, Klein
non-conformal model, Beltrami hemisphere model and Lorentz hyperboloid model among others
[2]) provide attractive properties that can lead to substantial performance and efficiency benefits for
learning representations of hierarchical and graph data. Among several potential advantages, we can
highlight [3] 1) a better generalization capability of the model, with less overfitting, computational
complexity, and requirement of training data; 2) a reduction in the number of model parameters and
embedding dimensions; 3) a better model understanding and interpretation. Empowered by these
geometric properties, hierarchical embeddings have recently been investigated [4] for complex trees
with low distortions [5–7]. This has led to rapid advances in machine learning and data science across
many disciplines and research areas, including but not limited to graph networks [8–11], computer
vision [12–16], network topology analysis [17–20], quantum science [21, 22]. Finally, it is interesting
to mention the recent boom in hyperbolic neural networks and hyperbolic computer vision, which is
for instance reported in the recent reviews [23, 3].
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Figure 1: Illustration inspired from [24] of local outlier probabilities in a hyperbolic model: A
hierarchical structure (left) is embedded in a hyperbolic space with low-distortion (middle). The
point dataset is then described by local outlier probabilities in this hyperbolic space (right).

Motivated by these recent advances, identifying and dealing with outliers is crucial for generating
trustworthy insights and making data-driven decisions in hyperbolic spaces, e.g., providing informa-
tion about which nodes are highly connected (and hence more central) or which nodes correspond to
outliers such that embedding methods can realistically be used to model real complex patterns. In this
study, we focus on local outlier detection, which describes local properties of data, which is relevant
in many applications involving Euclidean spaces. An overview of local anomaly detection methods
can be found in the literature from many surveys or books ([25–28]). Initially, research related to local
outlier detection was focused on intrusion detection, fraud detection[29] and medical applications[30].
Intrusion detection [31–33] consists of detecting abnormal traffic in networks due to suspicious data
or violations of network management policies. Fraud detection[34–36] detects unexpected activities
in banking or insurance data, such as fraudulent online payments by credit card or inconsistent
insurance claims. In the wake of other disciplines, local outlier detection algorithms have been used
for medical data [37, 30], e.g., to detect abnormal QRS complexes in electrocardiograms due to
certain diseases (such as premature ventricular contraction).

A well-known technique for local outlier detection is the Local Outlier Factor (LOF) [38][39] and its
variant the LoOP (Local Outlier Probability)[40] with probabilistic concepts allowing the outlier level
of a data point to be defined. The properties and capabilities of these methods make the detection of
historical data attractive, particularly because they provide local outlier scores based on the degree
of isolation of each vector from the neighborhood. While the LOF detects the outlier data points
using the score of an outlier, the LoOP detects them by providing for each data point p an outlier
score (belonging to the interval ]0, 1[) corresponding to the probability that p is an anomaly. Because
the distances have positive values, the LoOP algorithm assumes a half-Gaussian distribution for
these distances. Based on Bayesian inference, the outlier score is directly interpretable as an outlier
probability.

Probabilistic inference for data embedding in hyperbolic spaces is a young research area, in which the
first main contributions can be dated from the beginning of 2020 (see [24, 41–43] and the references
therein). These insights led, for instance, to define the so-called Souriau Gibbs in the Poincaré
disk with its Fisher information metric coinciding with the Poincaré Riemannian metric[44]. A
novel parametrization for the density of Gaussian on hyperbolic spaces is presented in [41]. This
density can be analytically calculated and differentiated with a simple random variate generation
algorithm. An alternative is to use a simple Gaussian distribution in hyperbolic spaces,e.g., [45, 46]
introduced Riemannian normal distributions for the univariate normal model, with an application to
the classification of univariate normal populations. Along with the wrapped normal generalisation
used in [41], [47] studies a thorough treatment of the maximum entropy normal generalisation.
Meanwhile, a lot of applications combining hyperbolic geometry and Variational Auto-Encoders
(VAEs) was investigated in [48, 47, 49, 43] based on the fact that VAE latent space components
embedded in hyperbolic space help to represent and discover hierarchies. This work introduces a
simple framework to detect local outliers for datasets grounded in hyperbolic 2-space referred to as
HLoOP (Hyperbolic Local Outlier Probability).
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The key contributions of this paper are:

(1) We extend the Local Outlier Probabilities (LoOP) algorithm to make it applicable to
hyperbolic models, e.g, the Poincaré disk model, leading to Hyberbolic 2-space Local Outlier
probabilities (HLoOP). Figure 1 illustrates the pipeline to obtain local outlier probability
distributions in hyperbolic geometry from hierarchical structures.

(2) We derive an expression of a Gaussian cumulative distribution in hyperbolic spaces which
ensures that the Probabilistic Local Outlier Factor (PLOF) is performed by fully exploiting
the information geometry of the observed data.

The rest of this paper is structured as follows: section 2 briefly outlines some concepts from
Riemannian geometry for univariate models. In Section 3 we introduce the local outlier probability
detection in hyperbolic spaces and discuss how this probability can be computed. Section 4 evaluates
the proposed approach on the benchmark dataset “ taxonomy embedding from WordNet”.

2 A Univariate Normal Model for Hyperbolic Spaces

This section briefly reminds some concepts of Riemannian geometry [46, 50, 47] for the univariate
normal model, which are necessary to formally extend the LoOP detection algorithm.

2.1 Riemannian Geometry and Rao Distance

A Riemannian manifold is a real and smooth manifold denoted as M equipped with a positive
definite quadratic form gx : TxM×TxM 7→ R at each point x ∈ M, where TxM is the tangent
space defined at the local coordinates x = (x1, ..., xn)

T . Intuitively, it contains all the possible
directions in which one can tangentially pass through x. A norm is induced by the inner product
on TxM : ∥ · ∥x =

√
< ·, · >x. An infinitesimal volume element is induced on each tangent space

TxM. The quadratic form gx is called a Riemannian metric and allows us to define the geometric
properties of spaces, such as the angles and lengths of a curve. The Riemannian metric gx is an
n-by-n positive definite matrix such that an infinitesimal element of length ds2 is defined as:

ds2 = (dx1 · · · dxn) gx

dx1

...
dxn

 . (1)

The Riemannian metric is a well-known object in differential geometry. For instance, the Poincaré
disk with a unitary constant negative curvature corresponds to the Riemannian manifold in the
hyperbolic space (H, gHx), where H = {x ∈ Rn : ∥x∥ < 1} is the open unit disk1. Its metric tensor
can be written from the Euclidean metric gE = In and the Riemannian metric such that gHx = λ2

xg
E ,

where λx = 2
1−∥x∥2 is the conformal factor. The Rao distance between two points z1 = (x1, y1)

T

and z2 = (x2, y2)
T in H is given as:

dH(z1, z2) = arcosh

[
1 + 2

||z1 − z2||2

(1− ||z1||2)(1− ||z2||2)

]
, (2)

where arcosh denotes the inverse hyperbolic cosine and ∥ · ∥ is the usual Euclidean norm. Different
from Euclidean distance, hyperbolic distance grows exponentially fast as we move the points toward
the boundary of the open unit disk. There exists many models of hyperbolic geometry (Klein non-
conformal model, Beltrami hemisphere model and Lorentz hyperboloid model among others). We
can transform one model of hyperbolic geometry into another one by using a one-to-one mapping,
which yields an isometric embedding[51].

2.2 Riemannian Prior on the Univariate Normal Model

A Gaussian distribution in H, denoted as NH(µ, σ), depends on two parameters, the Fréchet mean
µ ∈ H (i.e., the center of mass) and the dispersion parameter σ > 0, similarly to the Gaussian density

1A d-dimensional hyperbolic space, denoted Hd, is a complete, simply connected, d-dimensional Riemannian
manifold with constant negative curvature c.
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Figure 2: (a) Illustration of the reachability distance for different data points p with regard to o, when
k = 5 . (b) The local density deviation of a given data point with respect to its neighbors.

in the Euclidean space. The Gaussian probability density function in the hyperbolic space, denoted as
pH(x|µ, σ) is defined as follows [45]:

pH(x|µ, σ) = 1

Z(σ)
exp

[
−d2H(x, µ)

2σ2

]
. (3)

Several remarks can be made from Eq. (3): (i.) the main difference between the hyperbolic density
pH(·) and the Gaussian density in the Euclidean space is the use of the squared distance d2H(x, µ)
in the exponential (referred to as Rao distance) and a different dispersion dependent normalization
constant Z(σ) which reduces to

√
2πσ2 in the Euclidean case. Note that the constant Z(σ) is linked

to the underlying geometry of the hyperbolic space (ii.). To define a Gaussian distribution NH(µ, σ),
through its probability density function, it is necessary to have an exact expression of the normalizing
constant Z(σ). This constant can be determined using hyperbolic polar coordinates r = dH(x, µ)
(i.e, a pulling-back) to calculate Z(σ) using an integral depending on the Riemannian volume element
(iii.). By introducing the parametrization z = (x, y)T where x = µ/

√
2, y = σ and the Riemannian

metric for the univariate Gaussian model is ds2(z) = (dx2 + dy2)/y2, the Riemannian area (since
H is of dimension 2) is dA(z) = dxdy/y2 or dA(z) = sinh(r)drdφ in polar coordinates. For a
two-dimensional parameter space, the normalization constant Z(σ) was computed in [45], leading to:

Z(σ) =

∫
H
exp

(
− r2

2σ2

)
dA(z) = 2πσ

√
π

2
exp

(
σ2

2

)
erf
(

σ√
2

)
, (4)

where erf is the error function. Formula 4 completes the definition of the Gaussian distribution
NH(µ, σ). In [47] authors shown that when σ get smaller (resp. bigger), the Riemmannian normal
pdf get closer (resp. futher) to the wrapped normal pdf [47].

3 Hyperbolic 2-space Local Outlier Probability

3.1 Density-based outlier scoring with a probabilistic approach

This subsection briefly presents the main theoretical principles of some research studies dealing
with local outlier probability concepts. A local outlier is a data point that is different or far from
most elements of the entire dataset as compared to its local neighborhood, which is measured
by the k-Nearest Neighbors (kNN) algorithm [52]. Therefore, the local outlier detection covers
a small subset of data points at a given time (Figure 2a). To compute the degree of outlier of a
point p in a dataset D, several distances have to be introduced [53]. The k-distance of a point
p ∈ D denoted as dk(p) is the distance between p ∈ D and its k-nearest neighbor. The notion of
k-distance must be used to delimit a neighborhood that contains the k-nearest neighborhood of p.
This neighborhood denoted as Nk(p) is defined as Nk(p) = {q ∈ D\{p}|d(q, p) ≤ dk(p)}. Thus,
the reachability distance denoted reachdistk(p, o) of a point p ∈ D regarding a point o is defined
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as reachdistk(p, o) = max {dk(p), d(p, o)}. Based on these definitions, the LOF (Local Outlier
Factor) algorithm has been introduced in [38] to improve the kNN approach in the senorio where, for
intance in two-dimentional data set, the density of one cluster is significantly higher (resp. lower)
than another cluster. To do this, it calculates the local reachable density of the data, and calculates the
local outlier factor score according to the local reachable density. Figure 2b presents the local density
deviation of a given data point with respect to its neighbors. It considers as outlier samples that have
a substantially lower density than their neighbors. In this work, we introduce the HLOF (Hyperbolic
Local Outlier Factor) algorithm by replacing d(q, p) with the Rao distance using Eq.(2).

While the LOF (Local Outlier Factor) algorithm detects the outlier data points using the reachibility
distance, the Local Outlier Probability (LoOP) algorithm introduces the probabilistic distance of
o ∈ D to a context set S ⊆ D, referred to as pdist(o,S) with the following property:

∀s ∈ S : P[d(o, s) ≤ pdist(o,S)] ≥ φ. (5)

This probabilistic distance corresponds to the radius of a disk that contains a data point of S , obtained
from the kNN algorithm, with a certain probability, denoted as φ. The reciprocal of the probabilistic
distance can be considered as an estimation of the density of S , i.e, pden(S) = 1

pdist(o,S) . Assuming
that o is the center of S and the local density is approximately a half-Gaussian distribution, the
probabilistic set distance of o to S can be defined as

pdist(o,S) = λσ(o,S), (6)

where σ(o,S) = (
∑

s∈S d(o, s)2/ |S|)1/2 is the standard Euclidean distance of o in S which is
similar to the standard deviation. The parameter λ is linked to the selectivity of the detection through
the quantile function of the normal distribution via the relation λ =

√
2erfinv(φ), where erfinv is

the inverse error function.

To be detected as an anomaly for the set S , a data point should deviate from the center of S for more
than λ times the standard distance. For instance, λ = 3 means that a circle of radius pdist(o,S) and
center o contains any data point of S with a probability φ ≈ 99.7%. The resulting probability is the
Local Outlier Probability (LoOP) given by

LoOPS(o) = max

{
0, erf

(
PLOFλ,S(o)

nPLOF
√
2

)}
, (7)

where the Probabilisitic Local Outlier Factor (PLOF) is defined as PLOFλ,S(o) =
(pdist(λ, o,S))/(Es∈S [pdist(λ, s,S)]) − 1 and a normalization factor nPLOF is such that
nPLOF = λ(E[PLOF2])1/2. The LoOP value is directly interpretable as the probability of o
being an outlier, i.e, close to 0 for points within dense regions and close to 1 for density-based
outliers.

3.2 HLoOP Algorithm

This subsection presents the main contribution of this study, which is an adaptation of the LoOP
algorithm to data lying in a hyperbolic 2-space. As mentioned above, the LoOP algorithm in an
Euclidean space exploits a probabilistic set distance, called pdist(o,S) (see Eq. 6), to pick the
density around o in the context set S with a probability of φ. The parameter λ gives control over the
approximation of the density. To define a local outlier probability adapted to hyperbolic geometry, it
is necessary to calculate a new parameter λH , which ensures that pdist(o,S) is performed without
undermining hyperbolic geometry. To come up with such a solution, the key idea is to derive a new
quantile function through an expression of a Gaussian cumulative distribution function (c.d.f) that
can be obtained by integrating the probability density function (3) in H. Using polar coordinates
(see subsection 2.2, remark iii.), it is possible to calculate this Gaussian c.d.f explicitly. To find
the parameter λH , we consider the probabilistic distance of o ∈ D to a context set S ⊆ D using a
Riemannian distance dH(o, s) and the following statistical property:

∀s ∈ S : φ = P[0 < dH(o, s) ≤ λHσr] = GH(λHσr). (8)

Assuming that o is the center of S and the set of distances of s ∈ S to o is approximately half-
Gaussian in a hyperbolic space, one can compute the standard deviation σr using the Riemannian
distance dH(o, s) with a mean dH(o, o) = 0. Note that the standard deviation of r denoted as σr and
its probability density function can be determined from the function GH(R) = P[0 < r < R], e.g.,
pH(r, σr) = G′

H(r, σr). Theorem 1 presents the main result of this paper.
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Theorem 1. Given r ∈ H, σr > 0, the Riemannian geometry of the Gaussian cumulative model
associated with the distribution defined in Eq. (3) is given by

GH(r, σr) =
π
√
2πσre

σ2
r
2

2Z(σr)
×
(
2erf

( σr√
2

)
+ erf

(r − σ2
r

σr

√
2

)
− erf

(r + σ2
r

σr

√
2

))
. (9)

Proof. Let P[0 < r ≤ R] and dA(z) = sinh(r)drdφ such that:

GH(R) =

∫ 2π

0

∫ R

0

1

Z(σr)
exp

(
− r2

2σ2
r

)
sinh(r)drdφ.

The probability density function (pdf) pH(·) must satisfy the following condition:∫
H
pH(x|µ, σ)d(µ, σ) = 1, (10)

where d(µ, σ) is the Lebesgue measure. The cumulative distribution function of the univariate
Gaussian distribution of pdf pH(·) can be computed using Eq. (10) as follows:

GH(R) =
2π

Z(σr)

∫ R

0

e
σ2
r
2

2

(
e
−
(r − σ2

r)
2

2σ2
r − e

−
(r + σ2

r)
2

2σ2
r

)
dr

=
π
√
2πσre

σ2
r
2

2Z(σr)

 2√
π

∫ R−σ2
r√

2σr

−σr√
2

e−u2
1du1 −

2√
π

∫ R+σ2
r√

2σr

σr√
2

e−u2
2du2


=

π
√
2πσre

σ2
r
2

2Z(σr)

(
2erf

( σr√
2

)
+ erf

(R− σ2
r

σr

√
2

)
− erf

(R+ σ2
r

σr

√
2

))
. (11)

Taking the limit GH(R) −→
R→1

1 yields in Eq. (11)

Z(σr) = (2πσr)

√
π

2
exp

(
σ2
r

2

)
erf
(

σr√
2

)
.

We recover the formula given in [45], which completes the proof.

Combining all these results, the parameter λH(σr) is determined by the inverse of GH(λHσr) (see
eq.8) such that

λH(σr) =
1

σr
G−1
H (φ). (12)

Hence, whilethe traditional quantile function is independent of the standard deviation we have
obtained means to directly derive the parameter λH that exploits the underlying geometry of the
hyperbolic space (see subsection 2.2, remark ii.). The HLoOP algorithm is summarized in Algorithm 1.

Algorithm 1 The procedure of HLoOP algorithm

Input: The data set X = {xi}mi=1 where xi = (xi
1, x

i
2, · · · , xi

n) ∈ Rn.
Pre-determined threshold φ, parameter k and hyperbolic distance dH(p, q);

(1) Determine the context set S of the data point xi from kNN algorithm;
(2) Compute the standard distance σr of the context set S;
(3) Determine G−1

H (φ) to derive the parameter λH by eq.12;
(4) Calculate the probabilistic set distance pdistk(x

i) of the data point xi by eq.6;
(5) Compute the local outlier probability LoOPk(x

i) of the data point xi by eq.7;

Output: Abnormal data points.
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3.3 Implementation Details

Before presenting the performance of the algorithm described above, it is interesting to discuss
some aspects related to the implementation of the HLoOP algorithm. Most of the steps used in the
implementation of the HLoOP algorithm are directly related to the Euclidean LoOP, except that the
distances are no longer Euclidean but hyperbolic. However, the computation of the significance λ
cannot be computed as in the Euclidean LoOP. While an analytic expression of the Gaussian quantile
function is known in the Euclidean space, the derivation of the cumulative distribution in the Poincare
disk, illustrated on Figure 3a, does not lead to an analytic formulation of its inverse G−1

H . Actually, an
analytical expression of G−1

H is not needed to compute λ providing the value of r = λσ for which
GH(r, σ) = φ can be determined. This is equivalent to solving:

GH(r, σ) = φ,

for a given pair (σ, φ), which can be done using Newton’s method. Once we have obtained r, as
shown on Figure 3b, the significance can be determined by using the relation r = λσ, yielding
λ = r/σ. All the elements required to implement the HLoOP algorithm are now available. The next
Section is dedicated to the assessment of the performance of this algorithm.

(a) Cumulative univariate Gaussian model associated
with the distribution Eq. (3).

(b) Newton’s method to determine r = G−1(φ).

Figure 3: Cumulative distribution GH in the Poincare disk and resolution of GH(r, σ) = φ.

4 Results

4.1 Performance of the HLoOP algorithm on a toy dataset

The HLoOP method is first used to detect the outliers in a toy dataset, with a reduced number of
points. The dataset was generated as follows: first, some vectors were generated uniformly in two
circular areas located in the Poincaré Disk (clusters A and B). Then, each area is filled with 40 points
whose positions are pulled from the normal distribution N (·, RI2) where I2 is the 2 × 2 identity
matrix. Five points located outside these areas (cluster C) constitute the outliers of the toy dataset,
which is finally composed of 2 × 40 + 5 = 85 points. The HLoOP algorithm is applied to this
dataset and its performance is compared to that of HLOF. As a first test, we compute the HLOF and
HLoOP values of each point of the embedding for k = 15 and, for HLoOP a treshold φ = 95%.
Figures 4 and 5 show the different points that are surrounded by a circle whose radius is proportional
to the HLoOP or HLOF value. We observe that for both methods (HLoOP or HLOF), the outliers
(cluster C) have a score higher than the inliers (clusters A and B). For the HLoOP, this correspond to
the probability of a point to be an outlier, while for the HLOF, the interpretation of the score is less
straightforward. It is also interesting to note that cluster A highlights a weakness of HLOF : like
LOF, it is designed for clusters of uniform density. The probability of datapoints in cluster A being
generated by Gaussian distribution, the HLOF assigns high outlier scores while these points were in
fact generated by the cluster. The HLoOP value is much more useful here : there is a clear chance the
the point is an outlier, but it is also very likely it is just an outer point of the clusters normal distribution.
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Figure 4: Embedding of the toy dataset in the Poincaré disk : HLOF values.

Figure 5: Embedding of the toy dataset in the Poincaré disk : HLoOP values – Some points have very
small H-LoOP values and their associated circle do not appear in the figure –.
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Figure 6: AUC ROC - Outlier detection in a toy dataset

The metric used to quantify the quality of the outlier detection is the Area Under the Receiving
Operator Curve (AUC-ROC). We recall that value of AUC-ROC near 0 coreesponds to very poor
detection performance (near 0% of the decision made by the algorithm are correct), while an AUC
ROC close to 1 means that the algorithm is making very few errors. As observed in Figure 6,
the HLoOP algorithm provides very good anomaly detections: for k > 2 (number of neighbors
considered to evaluate the density of the context set S), the number of true positives (actual outliers
detected as outliers) is between 95 and 100 %, which is a very good result. In the meantime, the
performance of HLOF is more contrasted and strongly dependent on the value of k. In particular, for
higher values of k, the HLOF performance dramatically decreases. With such promising results, the
next section aims at assessing the performances of HLoOP on a bigger dataset, containing up to 1000
points.

4.2 Evaluating the performances on the Wordnet/Mammals subgraph

This section evaluates the performance of H-LoOP on a subgraph of the WORDNET database.
WORDNET is a lexical dataset composed by 117000 synsets, which corresponds to nouns, adjectives
or verbs that are linked by conceptual relations. Several subgraphes are known to exist in this dataset.
Among them, we decided to apply H-LOF and H-LoOP on a group of 1180 synsets from the subgraph
“Mammals”. The dataset was corrupted by 11 outliers corresponding to nouns of animals that are not
mammals (i.e., fishes, reptiles or birds) and was embedded in the Poincaré Disk using the algorithm
of Nickel et al. (2017). The values of HLoOP and HLOF were calculated for the points of this
embedding. The Area Under the Receiving Operator Curve (AUC ROC) was finally calculated for
both HLOF and HLoOP for several value of K. As shown in Figure 7, the performance of HLoOP is
better than HLOF for all values of K, with a ROC AUC larger than 0.98, while the HLOF leads to a
ROC value less than 68%. In addition to its good performance, the HLoOP algorithm leads to AUC
values that are quite independent of K, which is outstanding.

5 Conclusion and perspectives

This paper has presented extensions of the Local Outlier Factor (LOF) and Local Outlier Probability
(LoOP) algorithms, respectively refered to as Hyperbolic LOF (HLOF) and Hyperbolic LoOP
(HLoOP). Rather than working in the Euclidean space, these extensions work in a specific model of
the hyperbolic space, namely the Poincaré Disk. Both algorithms are density based and compare the
density of a point’s neighborhood with the density of others’s neighborhood. On one hand, the HLOF
compute the density based on a deterministic distance (called reachibility distance) while the HLoOP
introduces the notion of probabilistic distance and returns for each point its probability of outlierness.
Simulations results conducted on a toy dataset have shown that the HLoOP algorithm allows a better
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Figure 7: AUC ROC - Outlier detection in our corrupted subgraph of Wornet/Mammals

distinction of outliers and inliers when compared to HLOF. While the HLoOP directly provides
the probability of each point to be an outlier, the HLOF returns a score whose interpretation is not
straightforward and depends on the dataset under study. Evaluations of the areas under the receiver
operational characteristics of data in the Poincaré disk have confirmed a better detection performance
of HLoOP when compared to HLOF. The results obtained with this dataset have also shown that the
HLoOP performance seems to be less sensitive to the number of neighbors taken into account in the
computation of the density of the context set than for HLOF. Given these promising results, we have
embedded the mammals subset of the Wordnet dataset in the Poincaré disk after introducing artificial
outliers. The HLOF and HLoOP values and the areas under the receiver operational characteristics
HLOF and HLoOP algorithms confirm the results obtained with the previous dataset.
Future work includes the extension of these two algorithms to the Lorentz’s disk, i.e., to another
model of the hyperbolic space. Indeed, it has been shown that the Poincaré disk presents some
numerical instabilities that are not observed in the Lorentz model. Moreover, it would be interesting
to apply the HLoOP and HLOF algorithms to more complex datasets, with more points and more
attributes. For instance, given the growing interest of the hyperbolic geometry in the computer vision
domain, it could be worthy to try using the HLoOP and HLOF to detect outliers in a set of images.
Finally, the hyperbolic geometry could be used to derive new outlier detection algorithms based on
isolation forest or one-class support vector machines.
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