
HAL Id: hal-04323493
https://enac.hal.science/hal-04323493

Preprint submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Geostatistical framework to Interpolate Sustainable
Aviation Data

Remi Perrichon, Xavier Gendre, Thierry Klein

To cite this version:
Remi Perrichon, Xavier Gendre, Thierry Klein. A Geostatistical framework to Interpolate Sustainable
Aviation Data. 2023. �hal-04323493�

https://enac.hal.science/hal-04323493
https://hal.archives-ouvertes.fr


A Geostatistical framework to Interpolate

Sustainable Aviation Data
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Summary. In the sustainable aviation literature, it is common to rely on multiple data

sets, including traffic, noise, and meteorological data. Spatial interpolation of these data

is a frequent practice. This article presents a comprehensive comparison of interpolation

techniques for aviation data, focusing on stochastic methods. Two primary case studies

are investigated: the interpolation of noise in the vicinity of airports (two-dimensional in-

terpolation) and the interpolation of weather values across multiple pressure layers (three-

dimensional interpolation). In the first case, standard geostatistical methods are particu-

larly well-suited. The interpolation of meteorological values is more complex. The underly-

ing physics gives rise to a trend and complex anisotropies that are challenging to estimate

with the basic geostatistical framework. In the absence of outliers and if meteorological

data are sampled on a sufficiently dense regular grid, trilinear interpolation performs com-

parably to advanced statistical methods. Otherwise, statistical methods appear to be more

flexible.
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1. Introduction

The swift expansion of worldwide aviation activities has rendered their adverse ecological

effects a global apprehension. Notably, the first report from the Intergovernmental Panel

on Climate Change (IPCC) on a specific industrial subsector is the one on aviation and

its consequences on the atmosphere that was written by Penner et al. (1999). In addition

to CO2 emissions, Lee et al. (2009) have shown that non-CO2 effects are substantial yet

generally challenging to estimate. More specifically, Lee et al. (2021) have highlighted

that the largest positive (warming) climate forcings adding to that of CO2 are those

from contrail cirrus and from NOx-driven changes in the chemical composition of the

atmosphere. However, the environmental impact of aviation is not limited to the climate.

Namely, the noise produced by aircraft during their operation represents an ecological,

economic, and social problem which is increasingly documented in the literature as shown

by Franssen (2004), Cohen and Coughlin (2008), Salvi (2008), Zheng et al. (2020).

Contributions on aviation sustainability commonly involve the use of multiple data

sources, such as weather, noise, and traffic data. Often, there is a requirement for spatial

interpolation, primarily due to the disparate levels of granularity in the observation

of these data. Many examples of spatial interpolation can be found in the scientific

literature on contrails and noise pollution, two topics for which it is necessary to provide

some contextual background:

• Contrails. As put by Kärcher (2018), condensation trails (contrails) are line-

shaped ice clouds generated by jet aircraft cruising in the upper troposphere at 8-13

km altitude. Depending on surrounding atmospheric conditions, contrails can be

short- or long-lived. The theory of contrail formation is now well documented. Ac-

cording to Paoli and Shariff (2016), the formation stage of contrails lasts for about

10 minutes. The thermodynamic mixing model of Schumann (1996) has shown

that temperatures typically below 233 K (≈ −40 ◦C) provides a threshold below

which either short-lived or long-lived contrails appear behind jet aircraft. Contrail

occurrence is predicted with confidence if ambient pressure, relative humidity, wa-

ter vapour, heat emissions, and propulsive characteristics of aircraft engines are

known. Aircraft typically form persistent contrails when flying through pockets of
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air that are cold and have relative humidity greater than 100% with respect to ice,

so-called ice supersaturated regions. A presentation of such regions is to be found

in the work of Gierens et al. (2012).

To assess the actual environmental impact of contrail, contrail detection and con-

trail tracking are key. A method proposed by Vazquez-Navarro et al. (2010) follows

the evolution of contrails from their linear stage until they are indistinguishable

from natural cirrus clouds. In a recent work, Chevallier et al. (2023) have intro-

duced a procedure to detect contrails and identify the aircraft that generated them.

To account for contrail lifetimes that are underestimated due to the limitation of

satellite data, Gierens and Vazquez-Navarro (2018) have complemented some pre-

vious works with a Weibull distribution model that describes the survival rate of

contrails.

In many analyses, it is often needed to perform an interpolation of weather values.

For example, Duda et al. (2004) have used linear interpolation to obtain weather

data over the Great Lakes at a finer spatial and temporal resolution whereas Schu-

mann (2012) has relied on linear interpolation to input ambient meteorological

conditions in its Contrail Cirrus Prediction Tool (CoCiP). More recently, linear in-

terpolation has been used by Gierens et al. (2020) to compare ERA-5 and MOZAIC

data. An analogous approach is employed by Wilhelm et al. (2021, 2022). Avia-

tion contrail climate effects in the North Atlantic have been assessed by Teoh et al.

(2022). Linear interpolation is utilized to associate each waypoint of a flight to

meteorological data. Discussion on the relevance of linear interpolation is often

limited to the vertical dimension. Notably, Gierens et al. (2020) have argued that

transforming pressure to perform the interpolation is not of key importance for the

final value of the Equitable Threat Score (ETS), a measure introduced to quantify

the degree of agreement between in situ and reanalysis data.

• Noise. As put by Sabatini and Gardi (2023), the development and improvement

of airport facilities, including their design and redesign, depend on the calculation

and measurement of aircraft noise. There is actually a multitude of aircraft noise

prediction models, each designed for specific purposes. Some authors such as Fil-
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ippone (2014) have suggested distinguishing between theoretical methods that rely

on a physical model of noise production and propagation and best practice methods

that rely almost exclusively on measurement databases (fly-over or other measure-

ments), which are augmented with other sub-models. Recently, the use of ADS-B

data for the computation of noise around airports has been a research topic of great

interest as shown by Pretto et al. (2022). As airports recognize the importance of

sharing noise-related data, Gasco et al. (2017) have argued that aircraft noise pre-

dictions are becoming more accessible. The main media for this communication are

noise maps, periodic reports, and systems for visualizing data from Noise Measure-

ment Terminals (NMTs). As explained by Genescà et al. (2013), the placement of

these NMTs is chosen so that the measured noise levels are representative of the

acoustic influence of the airport on the population. Measured and predicted air-

craft noise are regularly compared, for instance by Simons et al. (2022), Bendarkar

et al. (2022), Huynh et al. (2022), Jäger et al. (2021), Arnone et al. (2023). For

each NMT, the difference between modeled and measured values are usually com-

puted (local agreement). Yet, a spatial (global) agreement is more complicated to

get since, obviously, noise measurements are taken at a limited number of specific

locations. In this regard, having noise maps based solely on data collected by the

NMTs would be valuable in order to visualize the empirical spatial distribution

of noise measurements. These interpolated values can then be compared with the

output of a more comprehensive acoustic model. Moreover, acoustic research fre-

quently employs geostatistical methods for noise mapping in urban areas. Typical

examples are the works of Aumond et al. (2018) focusing on the XIIIth district

of Paris and Tsai et al. (2009) focusing on Taiwan. Several interpolation methods

have been compared by Harman et al. (2016) and Can et al. (2014).

While the contrail literature emphasizes the simplicity and good performance of linear

interpolation, the scientific literature on noise pollution shows a preference for statistical

methods. Linear interpolation is indeed simple to implement and easily generalizes to

multiple dimensions. The quality of predictions is particularly good if the grid being

interpolated is already of high resolution, which is often the case with reanalysis data
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used in the literature on contrails. Yet, as early pinpointed by Myers (1994), determin-

istic interpolation and more specifically linear interpolation, is only one option among

many others. In environmental sciences, a great number of other methods have recently

been reviewed by Li and Heap (2014). Most of them are stochastic, as explained by

Webster and Oliver (2007). One reason is the ability of the statistical framework to

provide accurate predictions, to quantify uncertainties and most of all to enable the use

of covariates. Hence, several questions arise.

What should be expected from the geostatistical approach for interpolating meteo-

rological data in contrail studies? Why is the geostatistical approach particularly in-

teresting to interpolate noise values in the vicinity of airports? What similarities exist

between these two applications and when should the geostatistical framework be chosen?

The objectives of this work are of several kinds:

(a) Presenting a general statistical framework for the interpolation of aviation data,

assumptions on which this framework is based, its implementation and limitations.

(b) Confirming that linear interpolation is a highly competitive method to interpolate

fine resolution weather data. We compare linear interpolation to other methods for

several weather variables: temperature, relative humidity, and the two components

of horizontal wind.

(c) Confirming findings from the contrail literature, especially regarding the poor es-

timation of relative humidity values in regions for which air is supersaturated with

respect to ice. The power-law correction to humidity fields introduced by Teoh

et al. (2022) is discussed.

The paper is organized as follow. First, the data sources and considered samples for

the contrail and noise case studies are presented in Section 2. The distinctions between

deterministic interpolation methods and stochastic methods are elucidated in Section 3.

The geostatistical framework for interpolation over a two-dimensional (2D) domain is

introduced in Section 4. The 2D case is especially important for the noise case study.

The three-dimensional (3D) case is developed in Section 5. The 3D case is particularly

relevant for the contrail case study. Finally, Section 6 is devoted to the correction of

humidity fields. This question, although seemingly peripheral, is directly related to the
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reliability of the interpolated values. Without correcting relative humidity values beyond

100%, it is likely that even a good interpolation method would yield disappointing results.

2. Data sources and considered samples

2.1. The contrail case study

2.1.1. Trajectory data

The Measurement of Ozone and Water Vapour on Airbus In-service Aircraft (MOZAIC)

programme started in 1994 (Marenco et al. (1998)). It was transferred into the European

Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System) in

2008 (Petzold et al. (2015)). IAGOS operates a global-scale monitoring system for

atmospheric trace gases, aerosols and clouds utilising the existing global civil aircraft. As

of 2020, the MOZAIC/IAGOS fleet has visited 330 airports. Due to the high frequency

of the flights covered by IAGOS, data are highly representative of the altitude band and

flight corridors frequented by passenger aircraft.

The focus is made on the IAGOS L2 time series data product, that is to say data

that have been submitted to final quality control (level 2) (Boulanger et al. (2018)).

One single file is provided for each flight. Data include both the position of the aircraft

every 4 seconds (longitude, latitude, altitude) as well as the air temperature, relative

humidity, and the two components of the wind.

IAGOS data are the ground truth we consider to compare interpolation methods. To

put it differently, an interpolation method is said to be good if the interpolated values

along a flight path are close (in a sense to be defined) to the measured values. IAGOS

data are reliable enough to serve as ground truth in this context as assessed by Neis

et al. (2015).

2.1.2. Weather data

ERA5 is the fifth generation European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalysis for the global climate and weather for the past four to seven

decades (Hersbach et al. (2020)). Reanalysis combines model data with observations

from across the world into a globally complete and consistent data set using the laws of
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physics.

The focus is made on a data set named ERA5 hourly data on pressure levels from 1940

to present. In this data set, several weather variables are available on an hourly basis

for 37 pressure levels on a 0.25◦ × 0.25◦ longitude-latitude grid. Despite the fine spatial

and temporal granularity of ERA5 data, they exhibit a number of well-documented

limitations.

More specifically, in situ measurements of weather and modelled data may differ at

the tropopause level. Differences between in situ measurements provided by IAGOS

and reanalysis data of ERA-Interim (an old version of the ERA5 data set we consider)

have been quantified by Reutter et al. (2020). Temperature values are found to be

very similar as well as water vapour volume mixing ratio values. However, IAGOS water

vapour volume mixing ratio values show a larger variability and stronger extreme values,

which has a consequence on the values of relative humidity with respect to ice. Crucially,

ERA-Interim and IAGOS behave differently when relative humidity with respect to ice

exceeds 100% (ice supersaturated regions). This assessment is also made by Gierens et al.

(2020). A review of existing studies that have identified the limitations of humidity fields

provided by the ECMWF ERA5 product is given in the supplementary material of Teoh

et al. (2022).

Limitations of humidity fields have a very important consequence on the comparison

of interpolation methods: even a perfect interpolation based on ERA5 data would not

be able to retrieve measured weather values (IAGOS). It is expected that interpolation

errors will be more significant for relative humidity values than for temperature ones, and

this, regardless of the quality of the interpolation. Section 6 details the right procedure

to correct humidity fields. Without further clarification, the relative humidity referred

to in this work is always the relative humidity with respect to ice.

2.1.3. Considered sample

The sample of interest for the contrail case study is made of 1,212 flights. The steps of

data acquisition are briefly recalled in the following.

Flights are first downloaded from the IAGOS data portal (observational data access).
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The query period is the year 2019. Flights from the IAGOS-CORE project are selected.

Two variables are kept : relative humidity with respect to ice and relative humidity with

respect to liquid water. The query area goes from −180◦ to 180◦ in longitude and from

−90◦ to 90◦ in latitude. 2,290 flights are retrieved.

Out of these flights, we perform some additional subsetting. Using quality labels

provided in IAGOS, we only use data with validity flag “0” which means that the mea-

surement is reliable as stated by Gierens et al. (2020). For a given flight, if more than

90% of the points have validity flag “0”, invalid points are dropped and the flight is

retained. Otherwise, the entire flight is discarded. To avoid creating a data set for each

weather variable, the criterion is considered for all four variables jointly. At the end of

this procedure, there are 1,365 flights remaining.

For each remaining flight, corresponding ERA5 data are downloaded thanks to the

Climate Data Store (CDS) Application Programming Interface (API) with a margin of

2 degrees of longitude and latitude. The flights for which this margin is not respected

without coordinate transformations are excluded from the analysis for simplicity. At the

end of this step, the final sample consists of 1,212 flights. To speed up the calculations,

each flight is linearly interpolated to retain only 100 points. Records associated to water

supersaturation are discarded to compare interpolation results.

2.2. The noise case study

The Chicago Department of Aviation’s Airport Noise Management System (ANMS) is

a comprehensive system to provide actual measurement of the aircraft noise levels in

Chicago neighborhoods and suburban communities around O’Hare and Midway. This

integrated system includes a network of about 40 permanent noise monitors that mea-

sure the noise environment and a system directly connected to the Federal Aviation

Administration’s (FAA) air traffic control radar that collects aircraft flight tracks.

Noise monitors record noise events based on threshold exceedance. Each noise event

starts at the time the noise level exceeds a decibel threshold, typically slightly above

the background or ambient noise level, and ends at the time the noise level returns to

the threshold. Once the noise events are collected, they are correlated to actual aircraft
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operations.

The focus is made on monthly reports made available by Chicago O’Hare Interna-

tional Airport. Our particular focus lies on the month of December 2022.

3. Mathematical framework

Deterministic and statistical methods share similarities when it comes to defining a

spatial interpolation problem. This shared intuition is presented in Subsection 3.1. The

geostatistical framework and its expected benefits are detailed in Subsection 3.2. Typical

assumptions related to the geostatistical framework are stated in Subsection 3.3. The two

case studies we consider are respectively presented in Subsection 3.4 and Subsection 3.5.

3.1. A shared intuition based on weighted averages

As stated by Webster and Oliver (2007), nearly all interpolation methods can be seen

as weighted averages of data. Raw data come as a collection of n values denoted

{z(si), i = 1, ..., n} over a region of interest hereinafter referred to as D ⊂ Rd (in this

work, d = 2 or d = 3). Note that si is a location on D and z(si) is its associated value.

To get the predicted value z∗(s0) of an unknown location s0, the following formula is

commonly used:

z∗(s0) =

n∑
i=1

λiz(si). (1)

Choosing an interpolation method boils down to choosing a procedure to compute

the weights λ1, ..., λn. Weights depend on s0 and the locations of known points. One

basically predicts unobserved values from observed data for which the only exogenous

variables are their spatial locations.

Bilinear interpolation is a good place to start when D ⊂ R2. Known points are

typically sampled on a rectilinear grid. 4 known points are considered to describe the

rectangle within which the interpolation takes place: s1,1 (bottom left corner), s1,2

(upper left corner), s2,1 (bottom right corner), s2,2 (upper right corner). Known points

have coordinates (x1, y1), (x1, y2), (x2, y1), (x2, y2). In between, the unknown location s0
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writes (x0, y0). The weights λ1,1, λ1,2, λ2,1, λ2,2 must satisfy the transposed linear system:
1 1 1 1

x1 x1 x2 x2

y1 y1 y2 y2

x1y1 x1y2 x2y1 x2y2




λ1,1

λ1,2

λ2,1

λ2,2

 =


1

x0

y0

x0y0

 . (2)

At the cost of increased computational complexity, bicubic interpolation gives an in-

terpolated surface that is smoother than corresponding surfaces obtained by bilinear

interpolation. More generally, known points may be the vertices of a convex quadri-

lateral. Linear interpolation can be performed in higher dimensions. When points are

scattered, one may triangulate the set of known points. Once the triangle containing

the point to be interpolated is identified, it is possible to perform linear interpolation.

It involves a calculation of barycentric coordinates.

When known points are not located on a rectilinear grid, methods based on in-

verse functions of distance are also very popular (abbreviated IDW for Inverse Distance

Weighting). In this setting, weights are defined by:

λi =
1

dist(si, s0)β
, β > 0, (3)

and are scaled so that they sum to 1. Data points near to s0 carry larger weight than

those further away. When β is large, the relative weights diminish rapidly as the distance

increases, and so the interpolation is sensibly local. Interpolation is exact. Because the

weights never become zero, there are no discontinuities.

Deterministic methods are rightly appreciated for their simplicity and their good

practical results. Yet, for each method, spatial dependence is considered in a rigid

manner. It is also impossible to associate a degree of certainty with each interpolated

value. No covariate is taken into account. These reasons sometimes lead to preferring

statistical methods to deterministic ones.

3.2. The geostatistical framework and its expected benefits

Geostatistical methods assume that {z(si), i = 1, ..., n} is a collection of regionalized

values. A regionalized value is the outcome of a random mechanism. Each location s
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on D is associated to the realisation z(s) of a random variable Z(s). Values are said to

be regionalized because they exhibit some spatial correlation. A family of real-valued

random variables {Z(s), s ∈ D} is traditionally called a spatial random field.

In the sequel, we assume that the first moment as well as the usual second-order

moments of the random fields of interest are well-defined. In other words, the expectation

of the random field is defined as a non-random function of s that coincides at each point

with the expectation of the random variable at that point:

µ(s) = E(Z(s)). (4)

The covariance function of the random field is defined as a non-random function of

si and sj . For any pair of values (si, sj), it coincides with the covariance between the

random variables at those two points:

C(si, sj) = Cov(Z(si), Z(sj)) = E [(Z(si)− µ(si))(Z(sj)− µ(sj))] , ∀si, sj ∈ D. (5)

Kriging refers to predicting the value of a non-observed point s0 of a random field

Z with a linear predictor. The general idea is (unsurprisingly) to produce a weighted

average:

Z∗(s0) =

n∑
i=1

λiZ(si). (6)

The weighting is found ensuring that the expected prediction error is zero (unbiasedness

of the kriging predictor) and its variance minimum.

The theoretical benefits of kriging are well known. Kriging takes into account the

geometric characteristics, the number and organization of locations. It considers the

structure of the spatial correlation that is deduced from known points. The weights

kriging uses are not calculated on the basis of an arbitrary rule that can be used in

some cases but not others, but rather on the behavior of the function that represents the

structure of spatial correlation. Kriging makes it possible to quantify how accurate are

the predictions using the prediction error variance. Interpolation is exact and covariates

may be used.

The framework for inference in geostatistics is not the same as the one of classical

multivariate statistics. Instead of having the realization of a random sample of inde-
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pendent and identically distributed random variables, there are no multiple independent

realizations of the same field. Assumptions are necessary.

3.3. Typical assumptions

The most famous assumption in geostatistics is the second-order stationary hypothesis.

The hypothesis is as follows:

(a) The expectation exists and is constant, and therefore does not depend on the

location s: µ(s) = µ.

(b) The covariance exists for every pair of random variables Z(s) and Z(s+h), and only

depends on the vector h that joins the locations s and (s+h), but not specifically

on them: C(Z(s), Z(s+ h)) = C(h), ∀s ∈ D, ∀ h ∈ Rd such that s+ h ∈ D.

When the covariance function only depends on the distance between the locations s and

s+h, it is called isotropic. When it depends on both the distance and direction of vector

h, it is described as anisotropic.

In geostatistics, it is common to define the variogram, that is, the variance of the first

differences of the random field:

2γ(si − sj) = V(Z(si)− Z(sj)), ∀si, sj ∈ D. (7)

The function γ is called the semivariogram. As this function is all that is needed for

modeling and making spatial predictions. Some authors have called γ a variogram which

may be confusing.

In the case of second-order stationarity, the covariance function and the semivar-

iogram are equivalent when it comes to defining the structure of spatial dependence

displayed by the phenomenon. If the hypothesis holds, γ(h) = C(0) − C(h). It is con-

venient from a mathematical standpoint but unrealistic in many practical applications.

A very important case in which the second-order stationarity assumption doesn’t

hold is the so-called drift situation in which the mean of the random field depends on

location. Difficulties associated with the drift case are addressed in the sequel and are

of key important for both case studies.
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Fig. 1. Adding weather data to this flight involves several weather grids.

A relaxed version of the second-order stationarity hypothesis is also commonly used:

intrinsic stationarity. A random field is said to be intrinsically stationary (or simply

intrinsic) if, for any given translation vector h, the first-order increments Z(s+h)−Z(s)

are second-order stationary.

Often, it is enough to estimate spatial dependence in the neighborhood of the points

for which we need a prediction. It is possible to relax the second-order stationarity

hypothesis (respectively the intrinsic hypothesis). In this view, quasi-stationarity is de-

fined by Journel and Huijbregts (2004) to be a second-order (resp. intrinsic) stationarity

hypothesis that holds within a neighbourhood.

3.4. Full problem statement for weather interpolation

For a given flight, the position of the aircraft is recorded for a finite set of observation

points (IAGOS data are presented in Subsection 2.1.1). The goal is to match each of

these points with a temperature value, a relative humidity value and wind values (ERA5

data are presented in Subsection 2.1.2). We need to interpolate a three-dimensional

weather grid that is available every hour. As the duration of each flight spans over

several hours, the interpolation problem involves multiple weather grids as schematized

in Figure 1.

The complete problem is a spatio-temporal interpolation task. Since time is not

the focus of this work, temporal interpolation is simplified to the fullest extent. For

each point, the closest ERA5 grid in time is retained, and various spatial interpolation

methods are compared.
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Fig. 2. Location of noise monitors in the vicinity of Chicago O’Hare International Airport. The

data presented summarizes the Day-Night Average Sound Levels (DNLs) in December 2022.

Current community area boundaries in Chicago are reported in black. Runway axes are in violet.

3.5. Full problem statement for noise interpolation

Noise monitors are located on the ground, in the vicinity of Chicago O’Hare International

Airport (noise data are presented in Subsection 2.2). Here, the objective is to interpolate

noise values around the airport, involving both interpolation and extrapolation. Both

are two-dimensional.

4. Interpolation over a two-dimensional (2D) domain

Interpolation over a two-dimensional (2D) domain is mostly relevant for the noise case

study. In this section, the region of interest D is two-dimensional. The locations of noise

monitoring stations are shown in Figure 2.

4.1. Characterizing spatial dependence

Stochastic interpolation methods require estimating the spatial dependence between ob-

servations. In practice, the empirical (or experimental) semivariogram is the instrument

used to estimate the structure of spatial variability existing in the phenomenon of in-

terest. The most famous estimator of the semivariogram is the Matheron’s method of
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moments estimator:

γ̂(h) =
1

2#N(h)

∑
N(h)

[Z(si + h)− Z(si)]
2 (8)

where Z(si) are the values of the characteristic of interest at the points si when we also

know the value of this characteristic at si + h, and #N(h) is the number of pairs of

locations separated by a vector h (the lag). In practice, nothing can be said about the

variogram at lag distances smaller than the minimum distance.

4.2. Structural analysis

A given empirical semivariogram may not meet the require theoretical properties of a

valid semivariogram. An important one is conditional negative-definiteness. The absence

of this property can result in negative mean-squared errors of prediction. The so-called

structural analysis step then concerns the fitting of a valid model to the empirical semi-

variogram. This step is necessary to make accurate spatial predictions.

Fitting a semivariogram model can be done by eye or using statistical procedures.

A common practice is first to manually choose the models that best capture the main

features of the empirical semivariogram and then to perform statistical fitting. Statistical

fitting is usually based on least squares methods or maximum likelihood. Note that a

Gaussian assumption is crucial for the maximum likelihood estimation procedure.

4.3. Kriging

In the kriging procedure, the weighting (see Equation 6) is found ensuring that the

expected prediction error must be zero (unbiasedness of the kriging predictor) and its

variance minimum. As a result, the mean-squared prediction error is minimized (spatial

prediction is said to be optimal in this sense). Unbiasedness translates into the linear

constraint
∑n

i=1 λi = 1.

Simple Kriging (SK) is the special case of kriging a second-order stationary random

field with a known mean. Kriging a second-order stationary random field with an un-

known constant mean is called Ordinary Kriging (OK). Universal Kriging (UK) deals

with the non-stationary (in mean) case and is developped in Subsection 4.4. The OK
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problem is solved by the method of Lagrange multipliers. The optimization goes:

min
λ1,...,λn,α

V [Z∗(s0)− Z(s0)]− α

(
n∑

i=1

λi − 1

)
, (9)

α being the Lagrange multiplier. This results in a system of n+1 equations. The system

of equations can be presented in matrix form:

γ(s1 − s1) γ(s1 − s2) · · · γ(s1 − sn) 1

γ(s2 − s1) γ(s2 − s2) γ(s2 − sn) 1
...

...
. . .

...
...

γ(sn − s1) γ(sn − s2) γ(sn − sn) 1

1 1 · · · 1 0





λ1

λ2

...

λn

α


=



γ(s0 − s1)

γ(s0 − s2)
...

γ(s0 − sn)

1


.

The minimized mean-squared prediction error is the kriging variance. Prediction in-

tervals can be constructed from the kriging variance with an additional Gaussian as-

sumption. The effect of estimating the semivariogram parameters on the mean-squared

prediction error is often unaccounted for.

4.4. Drift

In geostatistics, a drift or trend may be long-range or short-range but is viewed as a

smooth systematic non-random variation. A common practice is to break down the

random field into the sum of two components:

Z(s) = µ(s) + ε(s) (10)

where µ(s) denotes the deterministic part of the random field (the drift, that is unknown)

and ε(s) the stochastic part that can be treated as second-order stationary. This trend-

fluctuation-noise decomposition is not unique.

As stated by Hristopulos (2020), trend estimation methods can be empirical or

process-based. In the former approach, the trend function is determined from general

knowledge of the process or the exploratory analysis of the data. In the latter, the func-

tional form of the trend and possibly the coefficients of the trend function are inferred

from a model.
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In geostatistics, one would generally assumes that both macro and micro variations

are important. As a consequence, UK was proposed by Matheron in 1969. For UK, the

deterministic component writes:

µ(s) =

p∑
j=1

ajfj(s) (11)

where f1, ..., fp are p known functions and a1, ..., ap unknown coefficients (or parameters).

Functions are generally polynomials in the spatial coordinates. As an example, a basic

trend for D ⊂ R2 would be written:

µ(s) = a1 + a2x+ a3y + a4x
2 + a5y

2 (12)

for s =
(
x y

)⊤
∈ D. In the UK approach, the stochastic part is assumed to be a zero-

mean intrinsically stationary random process with known variogram 2γ. The UK system

is then no more than an augmentation of the OK system. In practice, the variogram must

be estimated because it is not known. When external variables are considered instead of

or additional to functions of spatial coordinates, UK is called Kriging with External Drift

(KED). Formally, any external variable is treated as a deterministic function assumed

known everywhere in the domain of interest.

When the trend is particularly complex (which is commonly the case with weather

data), other methods may be used. A recent one called Spatial Regression with Partial

Differential Equation regularization (SR-PDE) is introduced in Subsection 4.6.

4.5. Anisotropy

The hypothesis of isotropy remarkably simplifies the modeling of spatial dependence.

Yet, this hypothesis is violated when the empirical semivariogram depends on the di-

rection of h. In this case, there is an underlying physical process evolving differen-

tially in space to take into account. Geometric anisotropy is the only case for which

isotropy can be restored with a simple coordinate transformation. Conceptually, geo-

metric anisotropy is obtained by some stretching of an isotropic model. Speaking in

terms of semivariogram, geometric anisotropy is characterized by:

γ(h) = γiso(∥Ah∥2)
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where the matrix A defines the transformation from the initial space to the isotropic

space. A linear transformation of the coordinates in enough to solve the anisotropy

problem. As put by Chilès and Delfiner (2012), in R2, denoting by θ1 and θ1 +
π
2 the

main directions of anisotropy, a rotation θ1 defines a new coordinate system with axes

parallel to the anisotropy directions. The matrix A is then:

A =

b1 0

0 b2


︸ ︷︷ ︸

T

 cos(θ1) sin(θ1)

−sin(θ1) cos(θ1)


︸ ︷︷ ︸

R

,

where T is matrix of scaling factors and R a rotation matrix. Empirically, the variogram

map can be used to estimate the anisotropy parameters. To estimate a variogram map,

variogram values are computed for a grid of separation vectors creating square cells.

4.6. A more advanced framework

In many applications related to the interpolation of meteorological or industrial data,

the spatial variations of the phenomenon of interest are highly complex. As stated by

Sangalli (2021), it may be typically due to:

• The complex physics of the phenomenon under study (for instance, the velocity

field of blood flow in human arteries)

• An external source that generates strong anisotropies and non-stationarities in the

observed quantity of interest (for instance, prevailing winds play a huge role in

environmental and climate data)

• The complicated conformation of the planar domain where the data are observed

(for instance, a domain with holes or with a strong concavity).

• Non-planar domains (for instance, the cerebral cortex)

Relative humidity and noise may typically involve a complex physics. Yet, the do-

main is planar and relatively simple. The approach introduced by Sangalli (2021) is

called Spatial Regression with Partial Differential Equation (SR-PDE) regularisation.
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Unlike the classic geostatistical approach, whose common assumptions are given in Sub-

section 3.3, the SR-PDE approach assumes that spatial field is deterministic. The spatial

structure of the phenomenon is modelled via a PDE in a regularising term.

Let wi = (wi1, ..., wiq)
⊤ ∈ Rq be q covariates observed at si. We consider the model:

z(si) = w⊤
i β + f(si) + ε(si), i = 1, ..., n, (13)

where β ∈ Rq is a vector of unknown regression coefficients, f : D → R is an unknown

deterministic field that captures the spatial structure of the phenomenon under study and

ε(s1), ..., ε(sn) are uncorrelated errors with zero mean and finite variance. Sangalli et al.

(2013) proposed to estimate the vector β and f by minimising the following regularised

sum-of-square-error functional:

n∑
i=1

[
z(si)−w⊤

i β − f(si)
]2

+ λ

∫
D
(∆f)2 ds, (14)

where λ is a positive smoothing parameter and ∆ the Laplace operator. The Laplace

operator provides a simple measure of the local curvature of the field f . The functional

is well defined for β ∈ Rq and f ∈ H2(D), where H2(D) is the Sobolev space of functions

g : D → R such that g and its first and second derivatives are in L2(D). It is assumed

that D has boundary ∂D ∈ C2.

When the domain is bounded, the use of appropriate boundary conditions guarantees

the uniqueness of the solution (Sangalli et al. (2013), Azzimonti et al. (2014)). We denote

by V (D) the subspace of H2(D) with the chosen boundary conditions.

Numerical discretisation procedures are used because there is no analytical solution.

The numerical discretisation reduces the estimation problem to the solution of a linear

system. The spatial domain D is represented by an appropriate mesh, and the functions

over D are approximated by a finite system of bases defined on this mesh. Convenient

meshes of the spatial domain are typically obtained by constrained Delaunay triangula-

tion when the planar domain is complex.

4.7. Results for the noise case study

We compare four approaches to interpolate noise measurements:



20 Rémi Perrichon et al.

Fig. 3. Interpolation of noise measurements in the vicinity of Chicago O’Hare International

Airport (December 2022) using Trilinear interpolation [upper left], IDW [lower left], KED [lower

right], and SR-PDE [upper right].

• Linear interpolation based on Delaunay triangulation

• IDW interpolation with the Euclidean distance and β = 2 (see Equation 3)

• KED (see Subsection 4.4) with a drift given by:

µ(s) = a1 + a2x+ a3y + a4xy + a5
∥∥s− sair

∥∥
2
+ a6 min

srun∈R
∥s− srun∥2 , (15)

where x is the longitude, y the latitude, sair the airport location, and R the union

runway axes. There is no apparent issue of anisotropy.

• SR-PDE (Subsection 4.6) with two covariates: the distance to the airport and the

distance to the closest runway axis. The smoothing parameter λ is selected using

generalised cross-validation introduced by Craven and Wahba (1978).

Resulting noise maps are depicted in Figure 3. When possible, noise extrapolation is

performed.

In light of the obtained noise map, it is evident that trilinear interpolation, as well

as the interpolation obtained through SR-PDE, are highly dependent on the underlying

triangulation. The noise levels obtained consist of broken lines that do not correspond to
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Fig. 4. Weather grid with relative humidity values on 2019-01-01 00:00:00.

a credible diffusion of noise from the acoustical perspective. The inclusion of covariates

in the SR-PDE approach is not sufficient to achieve satisfactory interpolation, even

though the smoothing parameter value selected by GCV is very low. The interpolation

obtained through IDW is not credible either. By design, it does not consider the distance

to the airport, which would allow for concentric noise levels centered around the airport.

Crucially, kriging with external drift provides a very satisfactory noise map as it takes

into account the distance to the nearest runway axis and the distance to the airport.

5. Interpolation over a three-dimensional (3D) domain

Interpolation over a three-dimensional (3D) domain is especially suitable for the weather

case study. Every hour, raw weather data are given on a three-dimensional regular

grid. A weather grid example is shown in Figure 4. For weather data, two spatial

coordinates and a third dimension are available. The third dimension is the pressure

level in hectopascal (hPa).

In order to simplify distance calculations, longitude and latitude values are trans-

formed using the widespread Web Mercator projection. To use the Euclidean distance,

it is necessary to transform the pressure level. To go from a pressure level p to an alti-

tude alt in meters (m), the following formula is provided by the National Oceanic and
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Fig. 5. Representation of the neighborhood of a trajectory point, shown in red, for which we

want to predict the values of temperature, relative humidity, and wind. Two views are provided:

from the side [left] and from the top [right].

Atmospheric Administration (NOAA):

alt =
145366.45

[
1−

( p
1013.25

)0.190284]
3.281

.

This formula is based on the International Standard Atmosphere (ISA).

In the case of meteorological data, the area of interest is particularly vast and covers

both oceanic and continental zones. It would be at best ambitious, at worst erroneous,

to assume second-order stationarity, given that spatial dependence is likely to change

significantly across the entire domain. Therefore, for each grid, a neighborhood of 1,000

points is considered around the point of interest in the spirit of quasi-stationarity defined

in Subsection 3.3. Figure 5 illustrates the neighborhood of a trajectory point.

Handling three dimensions follows essentially the same framework as in the two-

dimensional case. Defining an equation for the three-dimensional trend does not present

any specific challenges. Yet, incorporating anisotropy introduces a higher level of com-

plexity because defining a rotation in R3 requires more parameters than in R2.

5.1. Anisotropy when D ⊂ R3

In the three-dimensional case, the matrix A can be written:

A=


b1 0 0

0 b2 0

0 0 b3




cos(θ3) sin(θ3) 0

−sin(θ3) cos(θ3) 0

0 0 1



1 0 0

0 cos(θ2) sin(θ2)

0 −sin(θ2) cos(θ2)




cos(θ1) sin(θ1) 0

−sin(θ1) cos(θ1) 0

0 0 1

.



Interpolation of Sustainable Aviation Data 23

In geostatistics, the primary focus is on the specific case where the principal axis of

anisotropy is the vertical axis. In this case, θ2 = θ3 = 0. From our case study perspective,

vertical anisotropy accounts for the fact that meteorological variability evolves differently

from one pressure level to another.

5.2. SR-PDE when D ⊂ R3

The SR-PDE approach has been extended by Arnone et al. (2023) to nonconvex 3D

domains. As a consequence, tetrahedral meshes are used to approximate the 3D domain

of interest.

5.3. Results for the contrail case study

Multiple interpolation methods are being compared with the ultimate goal of assigning

temperature, relative humidity, and wind values to every point along the trajectories

presented in Subsection 2.1.3. As these flights are chosen in a manner that provides

onboard measured values, it becomes feasible to quantify the difference between the

measured value and the predicted value. Figure 6 depicts the discrepancies between

the measured and predicted values for each meteorological variable across the sample

of 1,212 flights. As expected, interpolation errors are larger for relative humidity (see

Subsection 2.1.2).

Regardless of the variable of interest, the several versions of IDW interpolation do

not yield good results. Basic geostatistical methods fail to accurately capture the trend

which explains significant discrepancies from the reference values. As a result, predictions

made by Ordinary Kriging (OK) and Universal Kriging (UK) are not satisfactory even if

vertical anisotropy is considered. The best results are provided by trilinear interpolation

and SR-PDE interpolation. The performance of these two methods can be explained

by the fine spatial granularity of ERA5 reanalysis data and the absence of outliers.

Temperature values are predicted much more accurately than relative humidity values, as

observed in the existing literature on contrails (Subsection 2.1.2). One can illustrate the

good results of these two methods with a specific flight (Figure 7). The SR-PDE method

is conceptually more complex than trilinear interpolation. In the specific case of ERA5
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Fig. 6. For each variable of interest, boxplots depict the discrepancies from the measured

values for each interpolation method. A positive difference indicates that the reference value is

greater than the predicted value. The mean is indicated by the red cross. IDW41 refers to an

IDW interpolation restricted to four nearest neighbors with β=1 (see Equation 3). OK refers to

Ordinary Kriging, UK to Universal Kriging, and SR-PDE to the Spatial Regression with Partial

Differential Equation regularization interpolation.

Fig. 7. For each variable of interest and for a specific flight, measured and predicted values.
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Fig. 8. Representation of the neighborhood of a trajectory point (in red) with different missing

rates. Only 10 points [left], 100 points [middle], or 200 points [right] are remaining.

Fig. 9. For each variable of interest, boxplots depict the discrepancies from the measured

values for each missing proportion.

reanalysis data, its use is of limited interest. However, as soon as meteorological data

are scattered, it is clear that interpolation using SR-PDE becomes interesting because

it offers more flexibility than linear interpolation on a mesh. To illustrate this point,

one can calculate the prediction error when meteorological data become less abundant.

Starting from the complete neighborhood (1,000 points), a certain proportion of points

is randomly removed. This proportion ranges from 0.01 (almost all points remaining)

to 0.99 (only 10 points remaining). Visualizations are provided in Figure 8. As seen in

Figure 9, the number of points remaining in the neighborhood does not have the same

effect on the prediction error depending on the variable of interest. For each variable,

a higher density of points in the neighborhood helps reducing the interquartile range.

For temperature values, it seems that the median error shifts from negative to positive,

indicating that the interpolation of ERA5 data tends to very slightly underestimate the
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measured temperature when the point density is high. Regarding relative humidity, the

effect of a large number of points is primarily to reduce the interquartile range. For the

u component of the wind, the median error decreases and stabilizes around zero as the

number of points increases in the neighborhood. For the v component of the wind, it

seems that the number of points has no significant effect on the error.

6. Correction to ERA5 humidity fields

The humidity fields of ERA5 products have limitations, the main one being that relative

humidity values are underestimated in ice supersaturated regions (see Subsection 2.1.2).

As Teoh et al. (2022) pointed out, there are several ways to address this issue in the

literature on contrails (see Supplement, Section 3). Previous studies that used contrail

cirrus prediction models uniformly increased humidity fields by dividing them with an

enhancement factor that is strictly less than 1. This approach is not ideal as it may

artificially increase the coverage of ice supersaturated regions. Additionally, the adjusted

distribution of relative humidity values may not align with one derived from in-situ

measurements, if available. To overcome these limitations, Teoh et al. (2022) have

developed a new correction. The objective of this new approach is twofold: to better

predict the location and extent of ice supersaturated regions and to better predict relative

humidity values within these regions. To determine if the objective is achieved, ice

supersaturated regions occurrence is measured from the 2019 IAGOS campaign and

compared to the one derived from ERA5. The Equitable Threat Score (ETS) is also

provided based on Appendix A of Gierens et al. (2020). Given a location si, the corrected

relative humidity value, denoted z̃(si), is given by:

z̃(si) =


z(si)
a if z(si)

a ≤ 1

min

{(
z(si)
a

)b
,UB

}
if z(si)

a > 1,
(16)

where z(si) is the original relative humidity value (from ERA5), a and b two coefficients

and UB a chosen upper bound (based on IAGOS data). Coefficients a and b are chosen

to minimize a Cramér–von Mises criterion. To be more precise, the criterion formula

proposed by Teoh et al. (2022) is the famous Cramér-von Mises test statistic used to
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Fig. 10. A simple example where two humidity fields would yield the same empirical distribution

function.

perform a goodness-of-fit test.

It is misleading, if not ill-suited to the objectives, to use this formula, and this is for

three main reasons.

• It is straightforward to produce a scenario in which two distinct humidity fields

yield two empirical distributions that are identical. An illustration of such a sce-

nario is given in Figure 10. Ensuring that the two empirical distribution functions

align is not sufficient for the spatial agreement of the two fields. In practice, the

limited number of IAGOS flights does not allow for the adoption of more ambitious

methods. Indeed, to compare spatial distributions of relative humidity for a given

area at a given time, it would be necessary to have a sufficient number of IAGOS

flights in that area, which is not the case. Since relative humidity is quite variable,

it is not reasonable to group IAGOS flights temporally to obtain more measurement

points in a given area. As a consequence, the adequacy of empirical cumulative

distribution functions meets practical imperatives, although it would be preferable

to adopt another method theoretically.

• More worryingly, the test statistic of Teoh et al. (2022) does not correspond to the
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correct statistical framework. Let X1, ..., Xn be a sample of random variables that

are independent and identically distributed according to some unknown cumulative

distribution function F . A goodness-of-fit test is used if the problem is to test that

F is actually a reference distribution (say, a normal or an exponential distribution).

However, regarding relative humidity values, the reference distribution is estimated

from IAGOS data. In other words, it is not known a priori. The framework of two-

sample problems must be used in this case (Gibbons and Chakraborti (2010)).

Let X and Y be two populations with cumulative distribution functions FX and

FY , respectively. We have a random sample of size N drawn from the X population

and another random sample of size M drawn independently from the Y population.

The hypothesis of interest in the two-sample problem is that the two samples are

drawn from identical populations:

H0 : ∀x, FX(x) = FY (x). (17)

The most general two-sided alternative is:

HA : ∃x, FX(x) ̸= FY (x). (18)

In this framework, the Cramér–von Mises criterion is quite different, as early

demonstrated by Anderson (1962). Let ri and sj be the ranks in the pooled sample

of ordered observations of the first and second sample. The Cramér–von Mises

criterion is:

T =
1

(N +M)2

N

M

N∑
i=1

(
ri −

N +M

N
i

)2

+
M

N

M∑
j=1

(
sj −

N +M

M
j

)2
 . (19)

• The use of the Cramér–von Mises criterion is interesting from the perspective of

statistical inference because it is possible determine its distribution under the null

hypothesis with some assumptions. A key assumption is independence. Assuming

that downsampling IAGOS data is sufficient to limit the temporal correlation, it

remains that relative humidity values are highly spatially correlated (that is why

it is even possible to perform spatial interpolation). Indeed, at a given point in

time, two relative humidity values are all the more similar the closer they are
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Fig. 11. The Cramér–von Mises criterion value versus a range of b coefficients for a set to its

optimal value

in space. Using the Cramér–von Mises criterion is still possible to quantify the

discrepancy between IAGOS and ERA5 data, but nothing can be said from the

inference perspective if the right assumptions are not used.

Since ERA5 data have been interpolated (Section 5.3), it is possible to search for

the values of the coefficients a and b that minimize the correct Cramér–von Mises

criterion (Equation 19). We focus on the geographical area studied by Teoh et al.

(2022) (−50◦W, 40◦N, −10◦W, 75◦N) and estimate the cumulative distribution

function of relative humidity on IAGOS measurements in this area for 2019 as well

as the one based on interpolated ERA5 data (trilinear interpolation). The optimal

a is found to be 0.9367 (Teoh et al. (2022) found a = 0.9779). When a is set to

the optimal value, the Cramér–von Mises criterion evolves in a comparable manner

to what was found by Teoh et al. (2022), as one may notice in Figure 11. The

minimum is found when b = 1.6122 (Teoh et al. (2022) found b = 1.776). As

already pinpointed by Teoh et al. (2022), optimal coefficients are only valid for a

specific area at a given time. Notably, it is possible to compute these coefficients

for each season.

6.1. A seasonal approach to the correction

Still considering the geographical area studied by Teoh et al. (2022), one may be

interested in checking the seasonal variations of the correction coefficients. The
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Fig. 12. For each season, empirical cumulative distribution function of relative humidity for each

data set (IAGOS data and interpolated ERA5 data).

empirical cumulative distribution functions of relative humidity for each data set

(IAGOS data and interpolated ERA5 data) clearly show a kind of ceiling value for

relative humidity around 100% (Figure 12). Interestingly, it is not possible to find

the optimal coefficients a and b for each season, as clearly observed in Figure 13.

While the values of coefficients a and b are of a similar magnitude for summer,

winter, and fall, it is evident that the optimal coefficients for spring (a = 0.6837,

b = 0.2) are not satisfactory.

It becomes much clearer when observing the difference in the cumulative distri-

bution functions of relative humidity for spring compared to the other seasons

(Figure 14). While the other three seasons exhibit a similar pattern where the

difference between the two distributions is mainly noticeable for relative humidity

values beyond 100%, it is noteworthy that in spring, this difference is also very pro-

nounced for low relative humidity values. As a result, to minimize the Cramér–von

Mises criterion, it is crucial for the coefficient a to be very small in order to correct

the disparity between the empirical distribution functions at low relative humidity

values. However, this low value of a affects the threshold at which the coefficient b

comes into play (see Equation 20). The value of b for which the Cramér–von Mises

criterion is minimized is smaller than 1. This is indeed necessary to counterbalance
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Fig. 13. For each season, the Cramér–von Mises criterion value versus a range of b coefficients

for a set to its optimal value.

Fig. 14. For each season, the difference between empirical cumulative distribution functions

(ecdf).
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Fig. 15. For each season, the difference between empirical cumulative distribution functions

(ecdf) and the corrected difference.

the very small value of a. It is possible to address this issue with a slight modi-

fication of Equation 20. Given a location si, the new corrected relative humidity

value, denoted ž(si), is given by:

ž(si) =


z(si) if z(si)

a ≤ 1

min

{(
z(si)
a

)b
,UB

}
if z(si)

a > 1,
(20)

where z(si) is the original relative humidity value (from ERA5), a and b two co-

efficients and UB a chosen upper bound (based on IAGOS data). With this new

formula, it is possible to obtain good correction coefficients, as evidenced by the

corrected difference in empirical distribution functions shown in Figure 15.

7. Conclusions

The interpolation of noise or meteorological data can be done using deterministic or

stochastic methods. In both cases, choosing an interpolation method generally involves

deciding how known values in the domain of interest should be weighted to make pre-

dictions at new locations. In both two-dimensional and three-dimensional cases, several

elements come into play for determining the best interpolation procedure. One can men-

tion, among other things, the total area of the domain and its topology, the number of
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known points and their distribution in space, the presence of a trend and/or of one or

more anisotropies, the number of locations to interpolate, and the physical complexity

of the studied phenomenon.

Geostatistical methods and interpolation procedures based on inverse distance weight-

ing allow for extrapolation, which is not the case for methods based on a triangulation.

As for interpolating noise values around airports, it is clear that geostatistical meth-

ods are particularly suitable because they allow for the consideration of important co-

variates to obtain credible noise maps. The distance from NMTs to the airport is taken

into account as well as runway axes. Linear interpolation is too dependent on the chosen

triangulation and does not appear to be suitable in this case.

Regarding the interpolation of meteorological values over multiple pressure layers, it

appears that the trend and the presence of very complex anisotropies do not allow for

good results with standard geostatistical methods. To account for the complex physics

of the phenomena at play, the SR-PDE method seems much more suitable and flexible.

Trilinear interpolation is excellent when data is provided on a regular grid, with a fine

spatial and temporal resolution and without outliers. It is typically the case for ERA5

reanalysis data. If data are scattered, the SR-PDE method can be seen as a statistical

extension of trilinear interpolation.

It is possible to correct the humidity values from ERA5 data based on a ground-truth

provided by IAGOS flights. Yet, it is not possible to quantify the agreement between

the two humidity fields for a given area at a given hour because the spatiotemporal

coverage of IAGOS data is limited. At the very least, one can ensure that the empirical

distributions of humidity values agree. A proper parameterization for the correction of

humidity values is essential.
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