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Abstract—This study addresses the integrated air-rail fre-
quency planning problem with the goal of estimating jointly
flight and long-distance train frequencies while considering
potential synchronisation between the two modes and passenger
preferences. It introduces a generalised cost model to capture
passenger travel preferences and incorporates CO2 emissions
modelling to minimise the environmental impact. The model
is tested on the Spanish air-rail transportation network using
real passenger demand from mobile phone data. The results
indicate that integrating air and rail frequency planning, along
with considering environmental costs, can reduce CO2 emissions
by over 66%, thanks to the air-to-rail transfer, with only a 20-
minute increase in average door-to-door travel time.
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I. INTRODUCTION

The European Commission sets two main objectives for
the transportation system in 2050: providing passengers with
an efficient and resilient multimodal transportation system,
and significantly reducing the transportation CO2 emission.
With the goal that 90% of travellers can travel door-to-door
in Europe within four hours, the air transportation system
should no longer be isolated, and airports should turn into
multimodal hubs [1]. At the same time, the Sustainable and
Smart Mobility Strategy report [2] claims to reduce CO2

emissions of the transportation system. In particular, trips
within 500 km should be carbon neutral in Europe, and high-
speed rail service must be developed for short-haul distances.
Coordination mechanisms between air and ground transporta-
tion systems are therefore essential to ensure a high level of
service for passengers.

In this paper, we propose a modelling framework to design
an integrated air and rail transportation network on a domestic
market. More precisely, we aim to estimate optimal flight and
train frequencies on all the routes of the considered trans-
portation network, including multimodal solutions for passen-
gers. In the following, we refer to this problem as the Air-
Rail Service Network Design (ARSND) problem. The model
proposed consists in determining train and flight frequencies,
minimising the average passenger door-to-door travel time,

considering station processing times and transfer times. In
addition, passenger preferences are taken into account through
a generalised cost that includes sensitivity to travel time, price,
and CO2 emission. We also consider the global environmental
cost of the transportation network. The model is tested on
the Spanish transportation network, using passengers’ mobile
network data to build the Origin-Destination (OD) demand
matrix.

The paper is organised as follows. Section II describes the
ARSND problem, provides a brief literature review on air-
rail coordination, and details the transportation network and
passenger demand models. Section III presents the mathemat-
ical formulation of the problem, and the resolution approach.
Finally, Section IV presents the Spanish case study, and
discusses the results obtained.

II. INTEGRATED AIR-RAIL SERVICE NETWORK DESIGN

A. Previous studies

Air and rail have long been seen as competitors, especially
on the short-haul market [3]–[5]. However, with increasing
airport congestion and environmental awareness, recent studies
show that high-speed trains are a good alternative to short-
haul flights, especially in view of relieving airport congestion
[6], [7]. To this end, the European Commission launched
several research projects regarding multimodality. IMHOTEP
[8] proposes to extend airport operations management, in-
cluding collaboration with ground transport modes. In the
TRANSIT project [9], coordination mechanisms between air
and ground transportation modes are implemented to mitigate
the impact of a delay on a door-to-door journey and to offer
passengers seamless transfers between rail and air. MODUS
[10] aims to measure the performance of the transportation
system considering the entire passenger door-to-door journey.
Indeed, the shift from flight-oriented to passenger-oriented
metrics reveals that in-vehicle time may differ significantly
from door-to-door travel time [11], [12].

In parallel, some studies examine the potential benefits of in-
tegrating air-rail frequency planning problems. The frequency



planning problem, which relies in determining the daily vol-
ume of flights or trains, is traditionally made individually
by each supplier, considering potential competition, several
months before the day of operations [13]–[16]. Okumura and
Tsukai [17] propose an air-rail integration by determining
the optimal flight frequencies and train speeds under various
airport capacity and rail-line length constraints. However,
the author assumes that train frequencies remain the same
as initially scheduled. Allard and Moura [18] study air-rail
passenger network design. These authors propose a model to
design a hub-and-spoke transportation network including both
air and rail.

Here, we propose to address simultaneously the classical
frequency planning problems of airlines and railway operators.
Both the flight and rail frequencies are estimated. In addi-
tion, we do not impose a hub-and-spoke network topology
and allow point-to-point services when relevant. Passengers’
preferences are extracted from the analysis of mobile phone
data, and the environmental cost of the transportation network
is also considered in the objective function.

B. Multimodal transportation network model

The transportation network is represented by an oriented
graph, G = (V,E), where the vertex set V is the set of nodes
and the edge set E is the set of connections between nodes.
The set V is further partitioned into the set of airports, V air,
the set of train stations , V rail, and the set of city centres, V city.
Similarly, the set E is partitioned into three subsets: Eair

represents flight routes between airports, Erail corresponds to
rail tracks, and Etransfer models transfers between stations
or city centres. In addition, each airport and a subset of
train station node is duplicated into one arrival node and one
departure node. This way one can model a transfer between
two consecutive flights (respectively, trains) at the same airport
(respectively, train station). Transfers can also occur between
two different modes, for instance between an airport and a train
station if a passenger catches a train after a flight. Finally,
the edge set E also includes edges from city centre nodes
to transportation stations (accessing edges) and edges from
stations to city centres (egressing edges). An illustration of
the considered network is presented in Figure 1.

For each edge e ∈ E, several costs are defined: the travel
time, the price, and the CO2 emission.

1) Travel time cost: For flight-route and rail-track edges,
the travel time is estimated as the average travel time by
flight and train initially scheduled by transportation suppliers.
Regarding transfer edges, an average transfer time, noted
ttransfer, is considered. If passengers must shift between two
stations, the travel time between the two stations is included
to the average transfer time. This travel time is computed by
multiplying the great circle distance between the two stations
with an average speed of 90km/h. If the stations are located
at the same place (e.g., if the train station is directly at the
airport), then this transfer time is zero. The travel time from/to
the city centre to/from the station is similarly computed for
access edges and egress edges. Finally, in order to account

City centre
Airport

Train station
Departure station

Arrival station

Flight route

Rail track
Transfer
Transportation network access
Transportation network egress

Figure 1. Illustration of air-rail multimodal network: 4-city example.

for the total door-to-door journey duration, station processing
times are taken into account within the total travel time. It has
been found [19] that airport processing time and passengers
conservative behaviour may significantly increase the door-to-
door journey. We therefore add an average outbound process-
ing time (tdep), to the access edge travel time, and an average
inbound processing time (tarr) to the egress edge travel time.
The station processing times are therefore included in the total
door-to-door travel time.

2) CO2 cost: The CO2 cost of travelling by air or by rail is
different. Regarding flights, fuel consumption directly depends
on the aircraft type, weather conditions, airline strategies,
payload, etc. It is therefore difficult to obtain an accurate
measure of the CO2 emission at such an early stage of
the frequency planning process. To overcome that issue, we
proceed as follows:

• We only consider one aircraft type which can cover all
routes in the domestic market.

• We assume that, a scheduled flight has all available seats
filled or the remaining available payload, else, is filled
with freight. Aircraft indeed generally take off at a weight
close to its maximal authorised weight [20]. Thus we
consider an average value of 80% of the maximum take-
off weight for each flight.

• According to the aircraft characteristics such as the
payload over range function, the fuel consumption per
kilometre can be estimated: the total amount of fuel (in
kg) for a scheduled flight is product of the consumption
per kilometre and the total distance flown.

• Finally, the CO2 emission equivalent is obtained using
the International Air Transport Association (IATA) con-
version table [21].

The CO2 emission of trains per km is provided by the
Office of Rail and Road [22]. The CO2 emission of a train
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is estimated as the product of the emission per kilometre and
the distance travelled by train. For transfers (access and egress
edges) the CO2 emission is assumed to be null.

3) Price: The monetary cost of travelling by air or by rail
for passengers is estimated as the product of the unit cost of a
kilometre and the total distance travelled. Values of unit cost
per kilometre for flights and trains can be obtained from [23]
and [24], respectively.

C. Passenger demand model

The passenger demand corresponds to the number of pas-
sengers that want to travel between each OD pair. The OD
demand is represented by a set of commodities C. A com-
modity c ∈ C is a tuple (Oc, Dc, dc), where Oc is the origin,
Dc is the destination and dc is the number of passengers. In the
following, we name a path a sequence of edges. For instance,
for two connected cities with airports, a path corresponds
to: the access edge from the city centre to the airport, the
flight edge, and finally the egress edge from the airport to the
destination city. For each commodity c ∈ C, we denote Pc

the set of paths that connect Oc to Dc.
Passengers may have various travel preferences: the busi-

ness travellers are likely to be more concerned about the
travel duration than leisure travellers are [25]. Similarly,
passengers more concerned about the CO2 emissions prefer
to travel by train. We therefore define a set of cost: I =
{Travel time, Price, CO2}. The set of passengers involved
in each commodity c ∈ C has additional attributes, αc,i,
representing the sensitivity of that group of passengers for the
cost i, i ∈ I . Thus, for each commodity c ∈ C and for each
path p ∈ Pc, we define τcp the cost of path p for commodity
c as follows:

τcp =
∑
i∈I

αciτpi, (1)

where τpi corresponds to the cost i of path p (e.g. travel time,
price and CO2 emission of p). The cost of a path p ∈ P is
computed as:

τpi =
∑
e∈p

cei, (2)

where cei is the cost i of edge e ∈ E, as described above.

III. MATHEMATICAL FORMULATION AND RESOLUTION
APPROACH

The objective of the ARSND problem is to determine the
daily flight and train frequencies in a domestic market that
minimise passengers’ generalised cost and CO2 emission. This
section presents the given input data, the decision variables,
objective function, and the constraints. The resolution ap-
proach is detailed in the last subsection.

A. Input data

Recall that, for each commodity c ∈ C, the demand dc is
known, and Pc is the set of paths to reach Dc from Oc. For
each path p ∈ Pc, the generalised cost of travelling by p is
given by τcp and we denote Pc,e the set of paths using edge
e, e ∈ E. A train-line is a sequence of stations served by the

same train. Let L be the set of train-lines. We assume that
a train should provide service to the entire line. We further
define for each edge e ∈ E, the set of lines using e, noted Le.
For simplicity, this preliminary study assumes that the air and
rail fleets are composed of exactly one aircraft type and one
train type. For any edge e ∈ Eair ∪ Erail, the capacity of a
vehicle (aircraft of rail-car) is known and denoted Ce and the
cost cei is given for each cost i ∈ I .

In order to take into account operational constraints, air and
rail frequencies are limited. For instance, headway separation
between two consecutive trains and the number of tracks,
limit the number of rail trips that can be scheduled on each
track. Similarly, for flights, minimum separation constraints
or airport and sector maximum capacities, limit the number
of flights that can be scheduled each day. As the frequency
planning is done several months before operations, we do not
model this level of detail in our constraints. However, we limit
the flight frequency on each route in order to ensure that a
feasible can be built. In the following, we denote fair and f rail

the maximum flight and train frequencies, per flight route and
rail track, to take into account capacity constraints. In addition,
we denote F and R the maximum number of flights and trains
that can be scheduled for the whole day, respectively.

B. Decision variables

For each commodity c ∈ C, for each path p ∈ Pc, we
define a continuous decision variable xcp that corresponds to
the share of passengers of commodity c assigned to path p. We
then define for each edge e ∈ E, an auxiliary continuous de-
cision variables ve, giving the number of passengers assigned
to travel through edge e. We also define an integer decision
variable, ye, that counts the number of services (flight or train)
to schedule on edge e ∈ E. Finally, for each train line l ∈ L,
we define an integer optimisation variables fl that decides the
frequency of l.

C. Objective function and constraints

The aim is to route passengers in the network according
to their preferences while minimising the CO2 emissions of
the transportation network. The problem is formulated as a
bi-criterion optimisation problem where the functions to be
minimised are the following:

F1(x, v, y, f) =
∑
c∈C

dc
∑
p∈Pc

xcpτcp, (3)

which represents the passenger preferences, and:

F2(x, v, y, f) =
∑
e∈E

yece,CO2
, (4)

which is the global CO2 emission criterion. We propose the
following Mixed-Integer Linear Programming (MILP) formu-
lation:

min
x,v,y,f

(F1, F2), (5)
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∑
p∈Pc

xcp = 1 c ∈ C, (5a)∑
c∈Ce

∑
p∈Pc,e

xcpdc = ve e ∈ E, (5b)

ve ≤ Ceye e ∈ E, (5c)

ye ≤ fair e ∈ Eair, (5d)

ye ≤ f rail e ∈ Erail, (5e)

ye =
∑
l∈Le

fl e ∈ Erail, (5f)∑
e∈Eair

ye ≤ F, (5g)∑
l∈L

fl ≤ R, (5h)

1 ≤ fl l ∈ L, (5i)
xcp ∈ [0, 1] c ∈ C, p ∈ Pc, (5j)
ve ∈ R e ∈ E, (5k)

ye ∈
{
0, 1, . . . , fair

}
e ∈ Eair, (5l)

ye ∈
{
0, 1, . . . , f rail

}
e ∈ Erail, (5m)

fl ∈
{
0, 1, . . . , f rail

}
l ∈ L. (5n)

Constraints (5a) ensure that all passengers are routed in the
network. Constraints (5b) count the number of passengers
routed through edge e. Constraints (5c) implement the capacity
bound on each edge while constraints (5d) and (5e) implement
the upper bounds on frequencies for each edge. Constraint
(5f) ensures that a train is scheduled for an entire line.
Constraints (5g) and (5h) implement upper bounds on the
total number of scheduled flights and trains. Constraint (5i)
guarantees a minimum level of service for every train-line.
Finally, constraints (5j)-(5n) specify the definition domain of
the decision variables.

D. Resolution approach

To obtain a realistic solution and reduce the computation
time, a pre-processing step is made. For each commodity
c, there are several possible paths to travel from Oc to Dc.
However, one can assume that passengers will prefer to travel
through shortest paths, according to the cost defined above.
Hence, for each commodity c ∈ C, a subset of k shortest paths
from Oc to Dc is computed, where the shortest path is defined
in terms of lowest generalised cost. This computation is made
using Yen algorithm [26], and the value of the parameter k is
set by the user.

The bi-criterion optimisation problem is addressed via a
weighted-sum scalarisation of the two criteria: the problem
is rewritten as a mono-criterion optimisation problem:

min
x,v,y,f

λF1 + (1− λ)F2 (6)

where λ is a user-defined parameter. The resolution of the
optimisation problem formulation is made using the MILP
solver Gurobi [27], version 9.1.2. The global resolution frame-
work is presented in Figure 2. Note that if λ parameter

Transportation
graph G

Set of
commodities

C

k-shortest
paths Pc

Passenger
routing
problem

resolution

Flight and train
frequencies (ye)

Figure 2. Resolution framework of the ARSND problem.

is set to 1, the CO2 global criterion is not considered in
the objective function. In this case, there may be multiple
solutions minimising the total passenger travel time, some
of which are undesirable. The solver may plan more trains
than necessary to accommodate all passengers since the CO2

cost of these additional trains is not counted. To palliate this
problem we simply do the following post-processing set: we
launch the solver one last time by constraining the value of
F1 to be as good as previously found, while minimising the
total frequency.

IV. SPANISH TRANSPORTATION NETWORK CASE STUDY

The methodology is tested on the case study of the Spanish
long-distance transportation network. Data and hypotheses are
detailed, followed by a description and an analysis of the
results obtained.

A. Spanish transportation network

Train and flight schedules data are collected for January
20, 2023 from the website of RENFE [28], which is the
most important rail operator in Spain, and from OAG [29],
respectively. Processing flight data reveals that the most used
aircraft type for that day is a Boeing 737-800, which is used
for 31% of the flights. This aircraft type is then used to
model CO2 emission according to the aircraft characteristics
[30]. Regarding rail CO2 emission, rail services are served by
electric trains in Spain [31]. The value of 358g CO2/km for
an electric train, computed by the Office of Rail and Road
[22], is used for the study. For that day, 1,033 flights and
1,584 long-distance train trips were scheduled in Spain. These
values are used for the daily maximum number, F , of flights,
and the daily maximum number, R, of train trips that can be
scheduled. The train capacity is set to 500 passengers, and the
flight average capacity to 189, as this is the value found from

TABLE I. AVERAGE TRANSFER AND PROCESSING TIMES AT STATIONS
(MINUTES).

tdep tarr ttransfer

Airport 90 20 60
Train station 10 0 15
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Figure 3. OD matrix demand and the 48 cities considered. Bolder edges
correspond to higher number of passengers.

OAG for the Boeing 737-800 on that day. A filling rate of
100% is assumed on each mode.

For simplicity, we restrict the node set to 48 cities of Spain,
including the largest ones and at least one city per island.
These cities are represented on Figure 3. The values of the
parameters set for the study are presented in Table I.

B. Travel demand from mobile phone data

Passenger demand flows are measured by analysing
anonymised mobile network data (MND) collected by one
of the main Mobile Network Operators (MNOs) in Spain.
MND consist of all the interactions between mobile devices
and the antennas of the MNO. The data are analysed using a
processing pipeline for reconstructing door-to-door passenger
journeys [32]. This method analyses the sequences of mobile
phone records generated by anonymous mobile device users
over a large period of time (several weeks) to infer their
home location. It focuses on the activities and trips that can
be detected from the daily sequences of records, in order
to determine users’ mobility patterns during a defined study
period. The resulting activity-trip diaries are expanded to
the total population based on home location, by comparing
the available sample of residents in each census unit with
the population figures. These diaries are aggregated in space
and time to produce daily or hourly trip counts between the
defined zones. For this paper, data from January 26, 2022
are collected. Schedules of January 2022 were not available,
but it is reasonable to assume that schedules of January
2023 are sensibly the same as those of January 2022, due
to the seasonality of schedules. The pipeline is configured to
retrieve OD matrices at district level between the 48 cities
selected, covering only trips above 50 km, given the focus of
this study on long-distance travel. The OD matrices include
a segmentation by transport modes (road, rail, air and rail-
air multimodal trips), derived from map-matching techniques

that compare the sequence of mobile phone records with the
supply of each mode (e.g., network, schedules, etc.). The OD
matrices also include segmentation by travel time, using 1-
hour windows. Figure 3 displays the travel demand between
the 48 cities. In total, more than 97,000 people travel on that
day, with a majority of trips between Madrid and Barcelona.
Less than 1% of trips combine air and rail modes, and most
of air-rail transfers take place in Madrid, as presented in Table
II. In order to consider these transfers, associated train stations
are duplicated in the transportation network graph model.

TABLE II. MULTIMODAL PASSENGERS VOLUME PER CITY.

City Number of transferring passengers

Madrid 453
Barcelona 92

Santiago de Compostela 56
Sevilla 45
Málaga 23
Bilbao 12

Zaragoza 6
Murcia 5

Valencia 4
Alicante 4

This demand serves as an input for the optimisation prob-
lem.

C. Optimisation results

Computations are performed on a laptop equipped with
an AMD Ryzen 5 4500U CPU and 16 GB RAM. The
computation time limit is set to two hours and the MIP gap
to 0.5%. The values used for the model are defined according
to the initial schedules and are summarised in Table III. In
a first step, only travel time is considered in the passengers’
generalised cost function (I = {Travel time}).

TABLE III. PARAMETERS OF THE CASE STUDY.

Parameter fair f rail F R k

Value 25 50 1033 1584 20

1) Pool of solutions: Computation information for several
values of λ are summarised in Table IV. Figure 4 dis-

TABLE IV. COMPUTATION INFORMATION.

λ Time (s) MIP gap(%)

0 7200.0 1.03
0.1 7200.0 0.95
0.2 7200.0 0.77
0.3 7200.0 0.68
04 7200.0 0.53
0.5 7200.0 0.59
0.6 5923.8 0.50
0.7 585.7 0.49
0.8 94.8 0.34
0.9 10.8 0.33
1.0 0.4 0.00

plays the value of passenger and CO2 emission criteria as
a function of the weighting parameter λ (as the value of
parameter λ decreases, the weight of the environmental cost in
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Figure 4. Objective function criteria as a function of λ parameter.

the objective function increases (Equation 6)). The sensitivity
analysis shows that slightly considering the environmental cost
(λ = 0.9) has a limited impact on passengers travel time for a
significant saving of CO2 emission. According to the model,
for an increase in total door-to-door travel time of around 200
hours, more than 500 tonnes of CO2 can be saved. This is
equivalent to an increase of 20 minutes of the average door-
to-door travel time (215 minutes on average with λ = 1, for
235 minutes on average for λ = 0.9). Note that, road paths
are not considered here. In practice, the door-to-door travel
time by road could be lower and passengers may choose to
travel by road when possible. The total travel time criterion
would be reduced but the CO2 cost for travelling by road is
not equal to zero. In the following, the λ parameter is set to
0.9.

2) Passenger trips: In the remaining of the study, results
are compared with the initial supply and demand data.

Table V summarises the number of passengers per mode.
In the initial planning, only 700 passengers use a combination
of air and rail to travel. In the optimised planning, this
number raises to more than 12,000 passengers. Consequently,
the number of passengers using only rail on their journey is
reduced by 10%. The number of trips using flights exclusively
is reduced by 13%. Rail trips are less impacted by the solution
as the CO2 cost for travelling by air is higher than the one
by train. Note that some journeys will not be affected by
the synchronisation. In fact, some trips can only be made
by using one mean of transportation. This is particularly true
for trips to/from islands, which can only be reached by air
(boats are not considered here). Similarly, nearby cities are
connected by train and scheduling a flight one these routes is
not relevant. In total, 57% of passengers are not affected by
the synchronisation.

Figure 5 presents the distribution of the total travel times

TABLE V. PASSENGER VOLUME PER TRAVEL MODE.

Initial schedule Optimised schedule

Air only 46,898 40,059
Rail only 50,148 45,357
Air-Rail 700 12,329

Figure 5. Passenger volume per travel time window.

for both the initial and optimised plannings. Note that for the
initial schedule, travel times are obtained with mobile phone
data. For January 26, 2022, 24% of trips above 50 km using
public transportation last between four and six hours. This
duration remains the most represented one with the optimised
air-rail frequency planning. For passengers using only one
leg on their journey, the average door-to-door travel time is
190 minutes, compared with 350 minutes for passengers with
at least two legs. In addition, only 856 passengers have a
door-to-door travel time above eight hours in the optimised
schedule compared with 8,500 in the initial one. Multimodal
solutions result in a significant reduction in CO2 emissions
with minimal impact on passengers’ door-to-door travel times,
leading to an increase in multimodal demand, as shown in
Table V.

Figure 6. Reduction in the number of daily flights per OD pair.
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(a) Flight frequencies - Initial schedule (b) Flight frequencies - Integrated schedule

(c) Train frequencies - Initial schedule (d) Train frequencies - Integrated schedule

Figure 7. Flights (top line) and train (bottom line) frequencies of the initial (left column) and optimised (right column) plannings.

3) Integrated transportation network: Figure 6 displays
the difference between the flight frequency before and after
optimisation for each OD pair. Note that this schedule depends
on the actual demand for that specific day. Results show a
significant reduction in the number of daily flights between
Barcelona and Madrid. Actually, there are 30 fewer flights on
this OD segment (considering both directions) after optimisa-
tion. This decrease can be attributed to the cost-efficiency of
train travel, both in terms of carbon emissions and total door-
to-door travel time. Comparatively, taking the train requires
170 minutes, whereas flying takes 205 minutes. Moreover,
for air connecting passengers, the environmental impact of
these flights outweighs the marginal time savings in reaching
Madrid airport from Barcelona via train. The solution thereby
routes all passengers by rail on that segment. Note, however,
that we did not consider the discomfort induced from shifting
from the train station to the airport in Madrid, since the train
station is not directly at the airport. Transportation operators
can therefore ensure a minimum flight frequency between
Barcelona and Madrid to account for connecting passengers.

One can also observe a large reduction in the number of

TABLE VI. TOTAL FLIGHT AND TRAIN FREQUENCIES.

Initial schedule Optimised schedule

Flights 1033 498
Trains 1584 619

flights between Spanish islands airports (LPA, ACE, IBZ, PMI,
TNF, FUE). Figure 3 reveals that a small number of passengers
travelled between Spanish islands on that day, maybe due to
the winter season. In addition, direct flights from mainland to
islands are now scheduled only from a small number of cities.
In particular, Figure 7 displays the scheduled train and flight
frequencies before and after optimisation. In the optimised
planning, flights between mainland and the Canary islands
are departing from Madrid, and flights to the Balearic islands
are departing from Barcelona. As the CO2 model favours
short distance flights when no train options are available,
travelling from Madrid to the Balearic islands costs less CO2

if passengers use a train from Madrid to Barcelona first, then
catch a flight to Balearic islands. The same phenomenon is
observed in the opposite direction for the Canary islands.
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The total train and flight frequencies for the initial and
optimised planning are summarised in Table VI. For λ = 0.9,
both the total number of scheduled flights and trains are
reduced in the optimised planning, compared with the initial
schedule of January 2023. Regarding flights, the reduction
can be explained by the fact that, as CO2 is considered in
the objective function, the algorithm reduces the number of
flights whenever possible. The total train frequency is also
reduced compared with the initial schedule. One of the main
reasons is, as only trips among the 48 largest cities are taken
into account, short distance trips are left out. For instance, in
the initial schedule, 57 trains are scheduled between Segovia
and Madrid. However, Segovia is not among the 48 largest
cities of Spain; Thus, passengers travelling to/from Segovia
are therefore accounted in our data as passengers travelling
to/from Madrid area. Therefore, these originally planned trains
are no longer included in the new schedule. By considering
the same CO2 model as an estimator for the transportation
network of January 2023, the CO2 cost reduction is evaluated
to 1,800 tonnes. As explained earlier, this value is probably
overestimated as the volume of travelling passengers might
be higher. However, results from the previous section reveals
that CO2 savings can be made by replacing short-haul flights
by train, with a limited impact on passengers door-to-door
journey, as demonstrated on the Madrid-Barcelona segment.

V. CONCLUSION AND FUTURE WORKS

This paper introduces a Mixed-Integer Linear Problem for-
mulation of the air-rail integrated frequency planning problem
that considers both passenger perspective and CO2 emissions.
The frequency planning model proposed handle passenger
preferences such as travel time, price or environmental aware-
ness. Furthermore, travel time is estimated door-to-door, and
not from one station to another, including potential transfers
and station processing times. The model is implemented and
tested on the case study of the Spanish transportation network.
Insights on passenger demand are obtained through the analy-
sis of mobile phone data, used as an input for the optimisation
model. Results show that considering CO2 emission while de-
signing long-distance schedule succeeds in reducing by several
tonnes the carbon footprint of the transportation system, at the
expense of an increase of the average door-to-door travel time
of passengers by only 20 minutes. In particular, short-distance
flights such as Barcelona-Madrid are no longer planned, as
there is a relevant alternative by train. In addition, the number
of trips combining air and rail is increased.

Future works are envisaged. First, note that the scope of
the study is limited to Spain due to data availability. If
an integrated air-rail network should be developed at the
European scale, large-scale demand data are required. Second,
the study is limited to air and rail modes, but one can easily
include other transportation means in the model such as road.
Then, CO2 emission model is developed as a first estimator
but it can be improved by including fleet scheduling in the
optimisation process. Finally, one of the future research tracks
is to extend this model by considering time of the day. Indeed,

the frequency can be estimated per time-window intervals
considering an expected passenger arrival time at destination.
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