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Abstract—Air traffic flow coordination at major flow inter-
sections is a key enabler for flow-centric airspace concepts.
This paper develops a flow-centric air traffic flow coordination
framework to improve air traffic flow efficiency through flow
identification, prediction, and re-routing at the Nominal Flow
Intersections (NFIs). To identify the NFIs, a graph-based flow
pattern consistency approach is proposed to model and analyze
daily air traffic flow patterns. To predict future traffic demands at
the identified NFIs, a transformer encoder-based neural network
is adopted to learn the relations among the flow of flights
at the NFIs. The acceptable flow limits at the NFIs are then
determined by phase transitions of the flow efficiency versus
the traffic demand. Finally, to avoid the predicted demand
exceeding the identified flow limit and improve the flow efficiency,
a reinforcement learning-based flow re-routing agent is trained
to dynamically assign alternative routes to air traffic flows based
on the evolving flow states. The agent’s performance is quantified
by the flight time reduction in the flows without exceeding the
flow limits. The re-routing model is trained and tested on a
busy NFI that handles cross-border flows between Bordeaux and
Madrid/Barcelona control centers, using ADS-B data for Dec
2019 in European airspace. Results show that, compared with
the originally planned flows, the travel time of each flight is
reduced by 322.168 seconds on average on a 2-hour basis.

Index Terms—flow coordination, flow-centric, traffic predic-
tion, transformer neural networks, reinforcement learning.

I. INTRODUCTION

The scalability limit of traditional sector-based Air Traffic
Control (ATC) services, i.e., difficulty in subdividing heavily
loaded sectors, is becoming a barrier to the sustainable growth
of air traffic. Researchers have started examining and testing
the concept of flow-centric operation [1], which views the
whole regional airspace and controls groups of flights through-
out their flight segments in a region. It opens the opportunity
to distribute air traffic more efficiently in the airspace without
being constrained by sector boundaries.

One primary challenge in flow-centric operation is the
efficient coordination of air traffic flow at the intersections
to avoid inefficiencies that may jeopardize flight safety [2].
Research focusing on sector-based air traffic coordination,
such as sector traffic prediction and flow optimization for
workload balancing between sectors [3], no longer adapts
flow-centric operations where coordination is primarily used to
avoid potential inefficiencies or conflicts between the intersect-
ing air traffic flows. Therefore, it is crucial to develop a flow-

centric framework that can identify, predict, and dynamically
coordinate the evolving air traffic flows. For instance, traffic
flow can be strategically re-routed when the predicted demand
exceeds the acceptable flow limit at flow intersections.

Effective air traffic flow identification is the cornerstone for
flow-centric air traffic analysis, prediction, and coordination
[2]. In the literature, air traffic flow has been described ac-
cording to airspace configuration, such as the groups of flights
transiting through area control centers, waypoints, sectors, and
airways [4]. Such a characterization of air traffic flow fits the
traditional Air Traffic Control (ATC) paradigm where ATC
units are geographical sectors and flights follow airways con-
sisting of fixed waypoints. However, flow-centric operations
require identifying the evolving air traffic flow patterns, such
as flow locations and structures, disregarding the fixed airways
and sectors. Fig. 1 shows one-day flight trajectories (pink
lines) in French airspace, where nearly 50% above 19500ft
is free route airspace (a potential coupled working method to
flow-centric operations). It can be observed that the positions
of airports and scheduled flights between airports restrict air
traffic to an appropriate pattern of main flows [5]. Thus,
identifying Nominal Flow Intersections (NFI) by constructing
and analyzing air traffic flow patterns is the first enabler of
effective flow coordination.

In addition to NFI identification, effective flow coordination
requires constantly viewing air traffic demand according to the
available capacity at the NFIs. In the literature, aggregated air
traffic flow prediction mainly predicts the number of flights
transiting through different airspace locations, such as entry-
exits, origin-destinations, and air routes [6]. The time series of
traffic demand at single or multiple airspace locations are used
as the input to predict the future demand using Long Short-
Term Memory (LSTM) [7], Convolutional Neural Networks
(CNNs) [8], and Graph Convolutional Networks (GCNs) [4].
While time series flow features provide prediction models
with information on the number of flights, the most important
characteristic of air traffic flow, the ”flow of flights in the
airspace,” can not be depicted by a time series, limiting
the prediction accuracy [9]. Moreover, most flow prediction
models adopt recurrent neural networks, in which data are
processed one after another to learn the sequential relations in
a time series, making it difficult to track long-term relations



in the input sequence [10]. Therefore, developing an effective
flow feature representation to describe the dynamics inside
air traffic flow and a prediction model that can learn relevant
features between sequential elements far from each other is
the second enabler of flow coordination.

Figure 1: One-day flight trajectories in French airspace: flight trajectories are
aggregated as flows connecting major hubs.

Besides air traffic prediction at the NFIs, it is essential to
know the acceptable flow limit at the NFIs, given the NFIs can
be overloaded due to excessive air traffic flows. In traditional
sector-based ATC systems, the sector capacity is usually
quantified as the maximum hourly number of flights that may
enter a sector over a sustainable period while maintaining a
safe, orderly, and efficient traffic flow [11]. Similarly, in flow-
centric ATC systems, if the demand at an NFI exceeds the
acceptable limit, the efficiencies and safety of air traffic flow
at the NFI can be compromised. Airspace capacity estimation
methods in the literature, such as the Monitor Alert Parameter
(MAP) model [12], the full workload model (considering
transit, recurring, conflict, and background workload) [11], the
sector merge/split-based model [13] are primarily tailored to
sector-based operations which cannot accommodate the flow-
centric requirements. Therefore, a flow-centric algorithm for
flow acceptance limit identification at the NFIs is the third
enabler of effective flow coordination.

When the predicted air traffic demand exceeds the corre-
sponding acceptable flow limit at an NFI, a flow coordination
model will be required to re-configure the air traffic demand at
the NFIs in advance to restrict the air traffic flow within a level
not overloading the system excessively [14]. In traditional sec-
tors, air traffic overload is managed by sector operations such
as merging and splitting [15]. Under the flow-centric paradigm,
traffic flow density and complexity change over time, render-
ing static flow control operations underloaded or overloaded.
Dynamic flow re-configuration, such as flow merge/split/re-
routing, gives flow-centric airspace an option to address the
overload at NFIs without compromising the flow demand.
Therefore, developing a dynamic flow re-configuration model
subject to the time-varying traffic flows is the fourth enabler
of efficient flow coordination decisions.

Given the above analysis, this paper proposes a dynamic
air traffic flow coordination framework to identify, predict,
and re-route air traffic flows to enable more efficient flow-
centric airspace management. Firstly, a graph-based flow pat-
tern consistency analysis approach is proposed to identify
nominal air traffic flow intersections (NFIs) in the airspace
through modeling and analyzing daily air traffic flow patterns.
Secondly, a text-enriched flow feature representation is pro-
posed to describe “the flow of flights” in the airspace using
a “text paragraph” composed of the time and flight sequences
at the NFIs. Compared to traditional time series representa-
tion describing “how many flights were in the airspace,” it
describes not only the number of flights but also the flow
patterns shaping the movement of air traffic. A transformer-
encoder-based neural network model is adopted to learn cor-
relations among flow sequences to predict the future traffic
demand at the NFIs. Thirdly, for each NFI, the acceptable
flow limit is determined by identifying the phase transition
of the flow efficiency, characterized by the flight transition
duration from its neighboring NFIs versus the traffic demand
during different periods. Finally, a reinforcement learning-
based flow re-routing model is proposed to dynamically assign
alternative routes to air traffic flows, especially when the
predicted demand exceeds the acceptable limit, considering
the effects of route assignment on flow efficiency and demand
at NFIs during both current and future periods.

II. METHODOLOGY

A. Methodology Overview

The proposed air traffic flow coordination framework con-
sists of four main steps: a) NFI identification through ex-
ploration of air traffic flow patterns; b) NFI flow feature
representation and demand prediction during different periods;
c) NFI flow acceptance limit determination through identifying
phase transitions in flow transition duration; d) NFI flow re-
routing agent design and training using reinforcement learning
to avoid flow excess and improve flow efficiency.

Fig. 2 presents a concept diagram of the proposed frame-
work. Firstly, the proposed method identifies NFIs through
trajectory intersection clustering. The cluster centers are the
NFIs. The number of clusters is determined by graph analysis
of daily air traffic flow patterns, represented by a graph whose
nodes are the NFIs, and edges describing flight connectivity
between the nodes. The optimal number of NFIs is determined
by evaluating the daily graph pattern consistency based on the
node locations and edge structures.

Secondly, inspired by Natural Language Processing (NLP),
the “flow of flights in the airspace” during a period is described
by a text paragraph consisting of the sequences of flights
transiting through the NFIs. In NLP, a sentence consists of
a sequence of words governed by grammar and is used by
neural networks to extract linguistic features for downstream
tasks such as next-word prediction and sentiment analysis
[16]. Meanwhile, the ”flow of flights in the airspace” during
a period consists of sequences of flights at different loca-
tions governed by recurrent traffic flow patterns. Analogously,
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Figure 2: Conceptual diagram of the proposed machine-learned traffic flow coordination Framework. The NFIs are identified through graph pattern analysis.
Then, flow features are represented as the time and flight sequences at NFIs, used by the transformer encoder-based model to predict future demand. Comparing
the prediction and the flow limit can identify the overload at NFIs. Overload can be avoided by alternative route assignment from the flow re-routing agent.

learning from flow features represented by flight sequences
at NFIs during different periods has the potential to achieve
air traffic prediction tasks. Moreover, the transformer encoder
architecture, using the attention mechanism to enable dynamic
highlighting of relevant features between input elements and
parallel sequence processing [17], is adopted to capture the
relations among flows represented by the flight sequences to
predict the flight demand at the NFIs during different periods.

Thirdly, when an NFI is overloaded, air traffic congestion
can be induced, and it will take longer for air traffic transiting
to the overloaded NFI due to regulatory measures such as vec-
toring and speed control [18]. Therefore, the flow acceptance
limit at each NFI is identified as the demand above which the
flow efficiency reduces significantly, i.e., the flight transition
duration from neighboring NFIs to the NFI increases distinctly.

Finally, to improve flow efficiency while preventing adverse
effects of flow re-routing during the current period over future
air traffic, this paper considers flow re-routing as a sequential
decision-making problem [19] where the action of alternative
route assignment to a flow has consequences affecting future
flow efficiency and flow demand at the NFIs. Then, deep
reinforcement learning algorithms are adopted to train an agent
to dynamically assign alternative routes to air traffic flows
based on the evolving traffic flow states, considering the effects
of route assignment on both current and future periods to
reduce flight transition time in the airspace without exceeding
the flow limit at the NFIs. The following sections illustrate the
detailed procedures of the four steps.

B. NFI Identification

This paper identifies the NFIs through flight trajectory
analysis using ADS-B data, including intersection points clus-

tering, daily flow pattern representation, and graph analysis.
1) Intersection Points clustering: A trajectory intersection

point is identified when two flights fly at adjacent flight levels,
and their trajectories intersect when mapped onto the earth’s
surface. The time difference between the two flights passing
the intersection is within 30 minutes, a widely used time
window in the literature on air traffic flow management, flight
planning, and capacity estimation [20].

With the trajectory intersections computed from flight track
data, clustering algorithms are adopted to organize the inter-
section points into representative NFIs. Hierarchical clustering
decomposes the data based on group similarities to find a mul-
tilevel hierarchy of clusters [21]. Considering the hierarchical
organization of air traffic flows connecting regional feeders to
international hubs [22], [23], this paper adopts single-linkage
hierarchical clustering of trajectory intersections to discover
the natural organization of flow intersections:

obj = argmax
V (n)

n−1∑
r=1

n∑
s=r+1

∑
D(r, s)

s.t. D(r, s) = min(dist(xri, xsj))

(1)

where xri and xsj are the i and j-th object in cluster r and s.
n is the number of clusters. V (n) denotes the cluster centers.

2) Flow Pattern Analysis: If the number of clusters is
too large, the clustering result will be susceptible to small
fluctuations in air traffic flow. When the number of clusters
is too small, the identified NFIs can largely deviate from
actual flow paths. The consistent and dependable performance
of airspace users is an essential requirement for improving
ATM system predictability [24]. The identified NFIs should
represent the consistency of air traffic flow patterns while



considering daily flow alternations. Thus, the geographical and
structural consistencies of air traffic flows versus the number
of clusters are analyzed to determine the optimal number. The
flow pattern consistency is evaluated from two perspectives:
a) geographical consistency in NFI locations and b) structural
consistency in flow connectivity between NFIs.

The daily air traffic flow pattern is represented by a weighted
graph G = (V,E) [25], where V is the set of nodes denoting
the NFIs. The flow connectivity between nodes is described
by the weighted edges E. The edge weight is quantified by
the air traffic volume on the edge.

a) Geographical Consistency in NFI locations: A
nearest-neighbor-based analysis is conducted to measure
the geographical consistency of the daily NFI locations.
Given a number of n nodes in the graph Gk constructed
for the k-th day, let Vk = {vk,1, vk,2, ..., vk,i, ..., vk,n}
represent the set of nodes. Similarly, let Vk+1 =
{vk+1,1, vk+1,2, ..., vk+1,j , ..., vk+1,n} represent the set of
nodes in the graph Gk+1 for day k + 1. For each node vk,i
in Vk, the proposed algorithm searches for its nearest node
vk+1,ai in Vk+1 according to the great circle distance [26]. ai
is the index of the identified nearest node of vk,i in Vk+1.

Through the above calculations, the nearest neighbouring
node vk+1,ai

of node vk,i for i = 1, ..., n can be deter-
mined. Similarly, the nearest neighbouring node vk,bj of
node vk+1,j for j = 1, ..., n can be determined. bj is
the index of the identified nearest node of vk+1,j in Vk.
Therefore, two sets of matched node pairs can be obtained:
MPk : (vk,1, vk+1,a1

), (vk,2, vk+1,a2
), ..., (vk,n, vk+1,an

) and
MPk+1 : (vk,b1 , vk+1,1), (vk,b2 , vk+1,2), ..., (vk,bn , vk+1,n).
Then, the geographical consistency of node locations is quan-
tified as the number of mutually matched nodes divided by
the total number of nodes, which is formulated as:

gc1 =
|MPk ∪MPk+1|

n
(2)

|MPk ∪MPk+1| represents the number of node pairs in the
union of MPk and MPk+1, denoted as l in the paper.

b) Structural Consistency in Flow Connectivity: Upon
determining the geographical consistency in NFI locations, the
next step is quantifying the structural consistency in the daily
air traffic flow connectivity between the NFIs. Let Sub =
MPk ∪ MPk+1 represent the set of mutually paired nodes
from graph Gk and graph Gk+1. Ck = {ck,1, ck,2, ..., ck,l}
denotes the nodes in Sub from graph Gk, and Ck+1 =
{ck+1,1, ck+1,2, ..., ck+1,l} denotes the corresponding paired
nodes from Gk+1. Let Wc k and Wk represent the weighted
adjacency matrix of Ck and Vk. The entry wi,j

c k represents
the weight on the edge connecting nodes ck,i and ck,j . The
entry wi,j

k represents the weight on the edge connecting nodes
vk,i and vk,j . The structural consistency of the air traffic flow
patterns is measured by the mutual flow connectivity in the
two graphs. More specifically, it is evaluated by the ratio of
mutual flow connections between the graphs characterized by
nodes Ck and Ck+1 compared to the union of flow connections
in Gk and Gk+1:

gc2 =

∑l−1
i=1

∑l
j=i+1 min(wi,j

c k, w
i,j
c k+1)∑n−1

i=1

∑n
j=i+1(w

i,j
k + wi,j

k+1)
(3)

The optimal cluster number n = Nv is determined by graph
pattern analysis to find the saddle point, i.e., local maxima, of
the daily graph pattern consistency versus the cluster numbers:

P (n) = argmin
n

∑
(P (n)− gc1(V (n))+gc2(V (n))

2 )

s.t. P ′(n) = 0;P ′′(n) < 0
(4)

where P (n) is the polynomial approximation of the average
of gc1 and gc2 (scaled between 0 and 1). As shown in Fig. 3,
the circle marks the identified saddle point Nv on P (n).

Figure 3: Determination of the cluster number through saddle point identifica-
tion on P (n), the polynomial approximation of the average of graph pattern
consistency gc1 and gc2 (scaled between 0 and 1), versus the cluster number.

C. Flow Prediction at NFIs

1) Text-enriched Flow Description: With the Nv NFIs, the
flow features at the k-th NFI is represented as a sequence sk =
{fk,1, fk,2, ..., fk,mk

.} of the mk flights transited through the
NFI during the past period tp, e.g., past one hour. Each flight is
denoted by its callsign text. If no flights are transiting through
an NFI, the callsign sequence for this NFI will be described
by the phrase: “No flights.”. The flow feature in the airspace
during tp can be represented as the concatenation of flight
sequences at different NFIs during tp:

S = Concat(tp, s1, s2, ..., sNv
) (5)

2) Transformer Encoder-based Flow Prediction Model:
The flow features for various periods are the inputs to the
transformer-encoder-based model to learn the flow relations
in the sequence and predict the future air traffic flow. Let S
be the space of all possible input text sequences S and Y
be the space of all possible future traffic demand sequences
Y during the future Np periods. The flow prediction model

f(·) learns the mapping: S f(·)→ Y . Fig. 4 shows the neural
network structure for flow prediction at NFIs, consisting of
tokenization, embedding, transformer encoder blocks, and a
fully connected layer.

a) Tokenization: Given an input sequence, including the
time and the flight sequences at the NFIs, word tokenization
[27] is applied to convert elements in the input sequence S into
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a list of integers X = x1, x2, ..., xm} that can be embedded
into a vector space.

b) Embedding: The token embedding layer converts the
tokenized flow sequence into a list of vectors. Given a token
xi, its embedding TE(xi) ∈ Rdmodel can be represented as:
TE(xi) = Wexi where We is the embedding matrix and
dmodel is the embedding dimension. Positional embedding
PE(xi), generated using trigonometric functions (sines and
cosines) to provide a sinusoidal pattern encoding the position
information, are added to the token embeddings as the input
to the transformer encoders.10/6/22, 6:02 PM transformer_encoderdrawio.png
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Figure 4: Proposed transformer-based framework for the flow prediction
model. For instance, multiplying x2, the embedded vector for the callsign
“AFR378”, by WQ, WK , WV produces the query, key, and value vectors
q2, k2, and v2 associated with “AFR378”. When processing the self-attention
for “AFR378”, its first attention weight related to element “14:15” would
be S( q2×k1√

dk
). Multiplying each value vector by the attention weight and

summing up the weighted value vectors produce the output of the self-attention
layer.

c) Transformer Encoder Blocks: The output of the input
sequence embedding E(X) in which E(xi) = TE(xi) +
PE(xi) is the input to the stack of Ne transformer encoder
blocks to process each element in the input sequence and
compile the information it captures into a context tensor.

Each encoder block has two major components: the multi-
head self-attention mechanism and the position-wise fully
connected feed-forward network [28]. The self-attention mech-
anism allows the encoder to look at other elements in the input
sequence when encoding a specific element. It creates three
vectors, query Q = E(X)WQ, key K = E(X)WK , and
value V = E(X)WV , for each input element by multiplying
the embedding with weight matrices WQ, WK , and WV . The
three vectors are used to score the relevance of other elements
in the sequence against the specific element calculated by:
Softmax( QKT

√
dhead

)V . dhead denotes the dimension of the
head, e.g., the dimension dk of the key. Multi-headed attention
runs through a self-attention mechanism several times in par-
allel, which allows the model to jointly attend to information
from different representation subspaces at different positions
[17]. The output of the multi-head attention is added element-
wise to the original input embeddings and normalized using
layer normalization. Its output, represented by A&N1, is then
passed through the feedforward network FFN(A&N1) of the
encoder block. The final output of the encoder block is:

A&N2 = LayerNorm(FFN(A&N1) +A&N1) (6)

The output from the stack of Ne encoders is forwarded to
a fully connected layer Y = FFN(A&N2(Ne)) to obtain the
flow prediction results for different prediction windows, i.e.,
future period 1, period 2,..., and period Np.

D. NFI Flow Acceptance Limit Identification

When the demand at an NFI is above the acceptable limit
during a period, air traffic congestion can happen, and it will
take a significantly larger time cost for air traffic transiting
to the overloaded NFI on their flight paths due to regulatory
measures such as vectoring and speed control.

During period t, flight transition durations from NFI vj to
NFI vi are denoted as Hij,t. Hij,t is normalized by the daily
minimum duration hij,t regarding t to reduce the effects of
daily fluctuations in air traffic flow:

NHij,t =
Hij,t

hij,t
(7)

Let NHi,t = {NHij,t} denote the normalized transition
duration to vi of all NFIs connected to vi during period t.
Let NHi = {NHi,t} denote the flight transition duration to
vi for all periods t ∈ {1, 2, ..., NT } in the traffic data. Let
ni = {ni,t} denote the corresponding traffic demand during
t ∈ {1, 2, ..., NT }. ni,t is the total number of flights transiting
to vi during t. By fitting the demand values to the transition
duration values, a set of demand values {1, 2, ..., n} and the
corresponding transition duration value {y1, y2, ..., yn} can be
obtained. The flow acceptance limit at vi is determined by
identifying the demand li above which the transition duration
of flights to vi will increase abruptly, which is formulated as:

obj = argmin
li

(li)var([y1, ..., yli ])

+(n− li)var([yli+1, ..., yn])
(8)
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If there is no abrupt change detected, indicating no explicit
trend concerning the flow demand based on the observations,
the flow limit at the NFI is determined as the maximum flow
demand observed.

E. Reinforcement Learning based Flow Coordination

This section adopts reinforcement learning algorithms to
train an agent for flow re-routing to avoid flow excess and
improve flow efficiency. During the t-th period, the agent
assigns a route for a main flow according to the re-routing
policy πθ (at|st) parameterized by θ. πθ (at|st) determines the
agent’s action at ∈ A, i.e., which route to take, regarding the
traffic state st ∈ S. S represents the state space of the traffic
flow described by the traffic volumes at the NFIs. A represents
the action space, consisting of the alternative routes a flow can
take. R (st, at) denotes the agent’s reward of taking action at
in st based on whether the flow excess is avoided and how
much the flow efficiency is improved:

R (st, at) = et

(
T

(0)
t − T

(st,at)
t

)
/Nflights (9)

where et = 1 otherwise 0 if the flow excess is avoided and
no new excess at other NFIs is induced. T (0)

t is original flight
exit time in the airspace during the t-th period, while T

(st,at)
t

represents the time by taking an alternative route at. Nflights

denotes the number of flights transited through the re-routing
area during the t-th period.

The agent’s objective is maximizing the expected cumula-
tive reward over time, represented by the objective function:

J(θ) = E
[∑T

t=0
γtR(st, at)

]
(10)

where T is the learning horizon. γ is the discounting factor.
This paper adopts the Proximal Policy Optimization (PPO)

[29] to train the agent, which introduces a surrogate objec-
tive with a clipping mechanism preventing significant policy
updates to improve sample efficiency and stability:

arg max
θ

E
[
min( πθ(at|st)

πθo (at|st)A
πθo (st, at) , g (A

πθo (st, at)))
]

s.t. Aπ (st, at) = δt + (γλ)δt+1 + ...+ (γλ)T−(t+1)δT−1

g (A) =

{
(1 + ϵ)A, A ≥ 0
(1− ϵ)A, A ≤ 0

δt = R (st, at) + γV π(st+1)− V π(st)
(11)

where πθo (at|st) is the old policy from the previous iteration.
Aπ (st, at) is the Generalized Advantage Estimation (GAE)
estimating the advantage of taking action at compared with the
average action in state st. V π(st) is the state value function
of the expected cumulative reward starting from st. ϵ and λ
are hyperparameters controlling the extent of clipping and the
balance between bias and variance of GAE, respectively.

III. EXPERIMENTAL STUDY

To verify the efficacy of the proposed flow coordination
framework, an experimental study has been carried out on
the French airspace using one-month ADS-B data from 1 to

31 December 2019, comprising 158,856 flights. This study
focuses on the en-route air traffic above 10,000 ft.

A. NFI Identification

This paper calculated the geographical consistency gc1 and
the structural consistency gc2 against different cluster numbers
ranging from 100 to 1500. A “saddle point” is observed for gc1
and gc2 at cluster number 605. Therefore, this paper takes 605
as the number of clusters. The cluster centers are determined
as the NFIs. The 605 identified NFIs are denoted by “NFI1”
to “NFI605” in this paper.

Figure 5: Graph representation for the one-month air traffic flow using 605
NFIs. The area confined by blue dashes is used for testing the flow re-routing
model.

Fig. 5 shows the graph representation for the one-month air
traffic flow with 605 NFIs. This graph can depict the nodal
hierarchy of air traffic flows ranging from regional feeders to
international hubs, such as Paris and Geneva. The en-route air
traffic flows are organized as a series of “spokes” connecting
the traffic hubs or connecting outlying areas to a hub area.

B. NFI Flow Prediction and Flow Limit Identification

The prediction model in this study adopts a stack of 12
transformer encoder blocks: Ne = 12. The model input is the
flight callsign sequences on the identified NFIs during the past
one hour. The model output is the number of flights transiting
through the NFIs in the future 30 minutes. The Mean Square
Error (MSE) between the prediction and the truth is used to
compute the model’s loss function. The number of trainable
parameters is at the level of 108. The training batch size is 16.
The learning rate is 0.00002. Air traffic data from 1st to 19th
December 2019 are used for model training, the following six
days of data for model testing, and the rest six days for model
validation during training.

Table I shows the quantified prediction performance of the
proposed method tested on three busy NFIs in the airspace,
including NFI460 over the Paris area control center, NFI365
over the Geneva area control center, and NFI135 over the
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TABLE I: PREDICTION PERFORMANCE ON THREE MAJOR NFIS OVER THE
PARIS (NFI460), GENEVA (NFI365), AND BORDEAUX (NFI135) AREA
CONTROL CENTERS IN TERMS OF MAE, MSE, MAPE, AND R2 .

NFI MAE MSE MAPE R2

1: NFI460 2.339 12.184 0.217 0.951
2: NFI365 0.800 2.702 0.127 0.978
3: NFI135 0.984 2.929 0.145 0.977

border of Bordeaux and Madrid/Barcelona control centers.
Four metrics are used for the performance evaluation: Mean
Absolute Error (MAE), Mean Squared Error (MSE), Mean
Absolute Percentage Error (MAPE), and R-squared (R2). It
can be observed that the prediction can accurately capture
flow demand changes with MAE values smaller than one and
MAPE values smaller than 0.15 for NFI365 and NFI135. The
R2 values of the prediction on the three NFIs are above 0.95,
showing the predicted values can reliably approximate the true
demand values. A more detailed illustration of the performance
of the prediction model under different prediction windows
and the comparison with other state-of-the-art methods can
refer to the previous paper that specifically focuses on the
flow prediction part of the framework [5].

Calculating the flight transition duration to the NFIs during
different periods and under different traffic flow demands and
observing the point of demand above which the flight transi-
tion durations increase sharply identifies the flow acceptance
limit at NFIs. Fig. 6 shows flight transition duration versus the
flow demand on four example NFIs. The blue circles show the
original observations from the traffic data, the solid red lines
show the fitted curves of the observations, and the pink dashes
bound the 95% confidence intervals of the fitting. The curves
of duration-demand are fitted using third-degree polynomials.
The solid black line indicates the identified acceptance limit
of the NFIs. Such phase transitions are observed on 68% of
the NFIs, while the transition durations to the rest of the NFIs
show no explicit trend concerning the flow demand based on
the observations from the one-month data. The reason may be
that traffic flow demand on these NFIs is below capacity during
this month, so there are no observations for their overloaded
circumstances. The flow acceptance limits on such NFIs are
set as the maximum flow demand observed this month.

The blue lines in Fig. 7 show instances during six days
in December 2019 where the traffic demand on NFI135
exceeded the acceptable limit. The horizontal axis shows the
time, and the vertical axis shows the next 30-minute demand.
NFI135 is a major NFI where cross-border flows between
Bordeaux and Madrid/Barcelona air traffic control centers are
transiting through. Flow demand exceeding the acceptable
limit is commonly observed on NFI135. Thus, NFI135 is used
to demonstrate the flow coordination result to examine the
efficacy of the proposed models in re-routing the traffic flows
to improve flow efficiency.

C. NFI Flow Excess Re-routing

As shown in Fig. 8, the flow originating from NFI 505
(green dot) and heading to NFI279 (blue dot) is the major flow

Figure 6: Flight transition duration (y-axis) versus the flow demand (x-axis)
on four NFIs. The black vertical lines show the acceptable flow limit of the
NFIs.

Figure 7: Instances of flow demand exceeding the acceptable limit are
commonly observed on NFI135 during Dec 2019, where flow re-routing is to
be applied to avoid the overload.

transiting through NFI135 (red dot). Fig. 8 also shows seven
alternative routes that this flow may take, derived from the his-
torical flight trajectories. The reinforcement learning-based re-
routing agent is trained in the environment of the Bluesky ATC
simulator [30]. Given the limited computational resources, the
part of French airspace confined by [42N, 45.5N, 2W, 4E],
shown by blue dashes in Fig. 5, is chosen as the re-routing area
inside which the agent’s actions is generated and rewarded.
The original flight trajectory is used as the planned flight path.
Every 30 minutes, based on the traffic flow state, i.e., traffic
demand at the NFIs during the past 30 minutes, the agent
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dynamically selects one from the seven alternative routes for
the flow “NFI505→NFI135→NFI279” to avoid flow excess at
NFIs and reduce the flight transition time in the airspace.

Figure 8: Alternative routes for air traffic flow transiting through NFI135.

The model is trained with the traffic scenarios during Dec
2019 when the demands exceeded the flow limit at NFI135.
To consider the accumulated effects of the agent’s re-routing
decisions, the length of each training episode is set as 2 hours,
which can also cover the travel time of most flights in the
focal airspace. As shown in Fig. 9, the model converges to
an optimal route assignment policy as the number of training
steps increases. The mean reward of each episode fluctuates
and continues to increase at the beginning and stabilizes at
the value of 322.168 as the training step increases. It shows
that, on average, the travel time of each flight in the re-
routing area is reduced by 322.168 seconds during the 2-
hour re-routing episode compared with the originally planned
flows. Moreover, the explained variance of the value function
increases towards one during training, showing the learned
value function accurately models the environment’s dynamics,
and the predictions accurately match the true returns.

Fig. 10 shows the flow re-routing results from 1150UTC
to 1250UTC on 24 Dec 2019 and 0700UTC to 0800UTC on
21 Dec 2019, where the demand exceeds the acceptable limit.
For the period 1150UTC–1220UTC and 1220–1250UTC, the
assigned flow route is “route 7” and “route 1” in Fig. 8
respectively, while for the period 0700UTC–0730UTC and
0730UTC–0800UTC, the assigned route is “route 6” and
“route 7” in Fig. 8 respectively. Table II compares the traffic
flow excess and efficiency before and after re-routing. It can
be observed that the flow excess at NFI135 is avoided as
the traffic flow demands every 30 minutes are below the
acceptable limit after re-routing. For the 43 flights exiting the
re-routing area during 1150UTC–1220UTC, there is a 9.58-
minute reduction in flight time, and for the 51 flights exiting
the re-routing area during 1220UTC–1250UTC, the reduction
in flight time is 184.87 minutes. During 1150UTC–1250UTC,
there is a total flight time reduction of 194.45 minutes for the
94 flights in the re-routing area. During 0700UTC–0800UTC,

Figure 9: The re-routing model converges to the optimal policy during training.

there is a total flight time reduction of 266.33 minutes for the
100 flights in the re-routing area. After re-routing, air traffic
in the airspace speeds up, and flight transition time is reduced
compared to original flight routes.

Figure 10: Re-routing results for air traffic flow transiting through NFI135.

It is noteworthy that the flight time reduction during the later
periods (1220UTC to 1250UTC and 0730UTC to 0800UTC)
significantly exceeds that observed during the earlier periods
(1150UTC to 1220UTC and 0700 UTC to 0730UTC). This
difference can be attributed to the cumulative effects of flow
re-routing implemented in both the early and later periods,
influencing air traffic throughout the later periods. Conversely,
their effects on air traffic may not manifest fully during the
earlier periods.

IV. CONCLUSIONS

Aiming to contribute to the future flow-centric paradigm,
this paper proposes a flow-centric air traffic flow coordination
framework to avoid overload at major flow intersections and
improve efficiency. First, Nominal Flow Intersections (NFIs)
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TABLE II: COMPARISON OF FLIGHT TRAVEL TIME REDUCTION OF TRAF-
FIC FLOWS BEFORE & AFTER RE-ROUTING.

time (UTC) before after RTE time reduction

flow XS. flow XS. mins/flights

11:50-12:20 (24th) 18 0 9 0 7 9.583/43

12:00-12:30 (24th) 21 3 13 0 \ 133.083/51

12:10-12:40 (24th) 23 5 13 0 \ 174.200/51

12:20-12:50 (24th) 20 2 12 0 1 184.867/51

7:00-7:30 (21st) 18 0 13 0 6 16.167/32

7:10-7:40 (21st) 21 3 11 0 \ 51.683/54

7:20-7:50 (21st) 20 2 11 0 \ 150.583/59

7:30-8:00 (21st) 24 6 10 0 7 250.167/68

were identified through modeling and analyzing the consis-
tency of daily air traffic flow patterns. Then, a text-enriched
description of the flow and movement of flights at the NFIs
was used by a transformer encoder-based neural network to
learn the flow relations to predict future demands at the NFIs.
The acceptable flow limits at NFIs were determined as the
demand above which the flow efficiency, characterized by
flight duration between NFIs, changed significantly. Finally,
a reinforcement learning-based flow re-routing model was
trained to assign alternative routes to air traffic dynamically
to improve flow efficiency and avoid the foreseen overload.
The re-routing agent is tested on the NFI135 handling cross-
border flows between Bordeaux and Madrid/Barcelona air
traffic control centers, using ADS-B data in Dec 2019. After
re-routing, air traffic in the airspace speeds up, and flight
time is reduced compared with using original flight routes. By
integrating accurate flow prediction and dynamic re-routing
capabilities into airspace management systems, flow-centric
airspace can proactively optimize traffic flow, reduce delays,
and enhance safety. This research and findings may contribute
to the development of concepts of operations for flow-centric
airspace.
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