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Abstract
The use of Hidden Markov Models (HMMs) in segmenting flight phases is a compelling approach with

significant implications for aviation and aerospace research. It leverages the temporal sequences of flight

data to delineate various phases of an aircraft’s journey, making it a valuable tool for enhancing the anal-

ysis of flight performance and safety. In this work, we implement a multivariate HMM to identify 6 flight

phases: taxi, takeoff, climb, cruise, approach and rollout. We reach a median global accuracy of about

97% over a sample of several thousand flights with a very low number of decoded unlikely transitions.

Regarding several performance metrics, our method is competitive with existing methods in the litera-

ture, such as fuzzy logic. Additionally, it provides, for each point of the flight, a probability of belonging

to each phase. Even in situations where there are missing values in the data, HMMs remain effective,

ensuring that no critical information is lost during the segmentation process. We show that HMMs work

seamlessly with the fine granularity of Flight Data Recorder (FDR) data. HMMs offer remarkable flex-

ibility and adaptability, proving particularly effective when the number or order of phases is unknown

or not predetermined, as is often the case with complex flight scenarios such as helicopter flights. This

adaptability is crucial for handling the diverse range of flight operations that differ from one aircraft to

another. An example is given with the segmentation of an Automatic Dependent Surveillance–Broadcast

(ADS-B) helicopter flight operated by the Swedish National Police.

Keywords: Flight Phase; Hidden Markov Model; ADS-B; Air Traffic Management; Time Series 9

Abbreviations: ADS-B: Automatic Dependent Surveillance–Broadcast, HMM: Hidden Markov Model, RoC : Rate of Climb 10

1. Introduction 11

From a conceptual point of view, there is no trouble in defining flight phases, that is to say different 12

periods within a flight. Common taxonomies are, for instance, provided by the International Civil 13

Aviation Organization (ICAO) [1] or by the International Air Transport Association (IATA) in Annex 14

1 of [2]. Given some trajectory data, flight phase identification aims at segmenting a flight into 15

different phases. More precisely, a segmentation is a partition of data points. 16

This task has been popularizedwith the increasing availability of largeAutomatic Dependent Surveil- 17

lance–Broadcast (ADS-B) datasets, for which flight phases are not labeled. It would be tedious to 18

annotate them manually. A famous example of this rising accessibility of ADS-B data is the devel- 19

opment of the non-profit OpenSky Network that has grown to 5,000 registered receivers all around 20

the world, providing a large historical database [3]. 21

The segmentation of flights has several uses. As stated in [4], flight phase segmentation is utilized 22

to build aircraft performance models. In [5], the mass estimation method for ground-based aircraft 23

climb prediction involves a filtering of climb segments. In [6], flight phase identification is related 24

to delay analysis and safety. As explained by [7], estimating the duration of each flight phase is also 25
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believed to enhance the development of reliable noise or emissions models around airports. 26

To be entirely precise, flight phase identification has several meanings. For the majority of applica- 27

tions, the identification of flight phases is a vertical segmentation problem (say, the identification of 28

the takeoff, climb, cruise, approach and so on). We naturally visualize the different phases by rep- 29

resenting them on the altitude profile. However, there are applications for which horizontal flight 30

phases can also be defined. As recently reviewed in [8], this is the case for conflict detection for 31

which we are also interested in detecting turns. In this contribution, we will focus solely on provid- 32

ing a vertical segmentation. We mostly focus on commercial aviation. 33

A key aspect of flight trajectories is the undefined number of segments to uncover due to different 34

flight frequencies and operations. Even within the same phase, aircraft may climb at different rates 35

or fly at different cruise altitudes. Another specificity is the strong correlation in time and space 36

between two consecutive points of a trajectory. Additionally, trajectory data may be noisy and/or 37

have missing values. 38

These characteristics, along with the variety of air operations, account for the wide diversity of 39

approaches presented in the literature on the subject, whether it be on the side of thresholding 40

methods or probabilistic ones. The segmentation methods used in the literature only occasionally 41

take into account the strong temporal correlation that exists between the data points that make up 42

the flight. For example, the widely popular fuzzy logic method developed in [9] would produce an 43

identical segmentation if the observations were permuted in time meaning that each point would 44

have the same label. 45

Up to our knowledge and despite a well-known plasticity, Hidden Markov Models (HMMs) have not 46

often been used to segment flight phases even though they exhibit very interesting characteristics for 47

this problem. Unlike threshold-based methods or fuzzy logic, HMMs place the temporal aspect of the 48

trajectory at the core of segmentation by modeling the transition probabilities from one flight phase 49

to another. This reduces the number of invalid transitions from one flight phase to another. Using 50

HMMs allows for uncertainty quantification in segmentation, providing the probability of belonging 51

to each class for each point. Unlike supervisedmethods, HMMs require only a very limited number of 52

inputs and do not need a training phase. HMMs have been used for at least three decades in signal- 53

processing applications, especially in the context of automatic speech recognition, but interest in 54

their theory and application has expanded to other fields (environment, biophysics, ecology etc.) 55

[10]. As a result, numerous packages are available for their implementation such as [11]. 56

The contributions of this paper are of various types: 57

• The development of a univariate HMM for the detection of the threemain flight phases (climb, cruise, 58

and approach), as well as a multivariate model for the detection of the taxi, climb, cruise, approach, 59

and rollout phases. 60

• A comparison of segmentation performances with the fuzzy logic approach for the three main flight 61

phases. 62

• The calculation of several performance metrics, ranging from global accuracy to the number of 63

invalid transitions on a sample comprising several thousand flights. 64

• A discussion on the impact of data preprocessing on the quality of flight segmentation. 65

• A discussion about the feasibility of adapting HMMs for the segmentation of a flight for which the 66

phases to be identified are not specified in advance. 67

The paper is organized as follows. First, we provide a brief overview of existing methods as well as 68

common performance metrics in Section 2. Second, the data we use is outlined in Section 3. Then, 69

we present the theoretical framework of univariate HMMs in Section 4 as well as a model to detect 70

the three main flight phases. The detection of additional flight phases is discussed in Section 5 and 71
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falls within the framework of multivariate HMMs. The topics of data preprocessing and adapting 72

models when the phases to be identified are not known in advance are addressed in Section 6. 73

2. Brief review of existing approaches 74

2.1 The two main approaches 75

As put in [12], two main approaches are employed to identify phases from flight data records: logical 76

rule-based decision-making, and probabilistic-based decision-making. 77

Regarding rule-based approaches, several studies have focused on establishing thresholds to seg- 78

ment flight phases [13, 14]. Given the challenge of specifying universal thresholds for flight phase 79

segmentation, the fuzzy logic approach has established itself in the literature as a flexible, simple, 80

and fast method. Early references on the subject include the work of [15]. Several publications [16, 81

9], and its implementation in OpenAP [17] have now made it a widespread method. For each point, 82

it is worth noting that fuzzy logic does not strictly return the probability of belonging to each class. 83

Additionally, it does not consider the temporal nature of the trajectory. Data smoothing is often 84

necessary to achieve good results in practice. 85

Recently, many contributions have framed the problem of flight phase detection as a machine learn- 86

ing task. The use of decision trees classifiers to segment flight phases has been explored in [18]. 87

Some machine learning methods are compared in [8]. Combined K-means clustering and LSTM 88

neural networks have been combined in [19]. Gaussian Mixture Models have been used in [20]. To 89

achieve good results, some methods often require a large number of inputs, often unavailable in 90

ADS-B data. For instance, the engine fan speed is used in [20]. In any case, many steps seem nec- 91

essary in the machine learning literature: selection of the parameters, implementation of a decision 92

tree classifier and clustering of the results in [18], transformation of trajectory data into fixed length 93

sequential data before using an LSTM neural network in [19]. The difficulty of obtaining a reliable 94

training dataset leads some authors to use simulated data [19]. 95

HMMs do not suffer from most of the mentioned limitations, as explained in the sequel. 96

2.2 Performance metrics 97

The comparison of flight phase identification methods is complex on several levels. One initial chal- 98

lenge relates to the number and types of flight phases selected. These can vary greatly depending 99

on whether one considers commercial aviation or general aviation. A second challenge lies in the 100

lack of consensus on the choice of a performance metric. It appears that the latter can be grouped 101

into three main categories: 102

• The traditional metrics for classification problems such as the error rate, precision and recall [13, 14, 103

18, 19, 20] 104

• Metrics that focus on the total duration of each phase [7] 105

• Metrics that examine the transitions that are incorrectly predicted between phases as well as the 106

total number of transitions [9] 107

In all contributions, the results are, of course, initially visualized. Because it is easy to find a degener- 108

ate segmentation that would provide an exact value for the duration of each phase while alternating 109

the flight phases very randomly, it seems reasonable to consider that at least two metrics should be 110

used. The use of classification metrics for each flight phase allows for the detection of the model’s 111

inability to segment some flight moments correctly, while global metrics provide an overview of 112

the model’s average performance. Since certain flight phases last significantly longer than others, 113

the overall accuracy metric must be interpreted with caution. Counting the number of improbable 114

transitions as well as the total number of transitions seems to be crucial in measuring the realism 115
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of a segmentation. From an operational perspective, the aircraft does not spend its time rapidly 116

transitioning between phases. In the following, we systematically consider multiple performance 117

metrics. 118

For each flight phase, we typically define the usual F-1 score as the harmonic mean of precision and 119

recall. If we consider the cruise phase, precision would be the amount of correctly predicted cruise 120

points among all the points the model predicted as belonging to the cruise phase. Recall would be the 121

number of cruise points are correctly identified as such among all the cruise points in the reference 122

trajectory. The F-1 score is a metric commonly used in binary classification tasks. It rewards models 123

that can achieve high precision and recall simultaneously. Using the F-1 score avoids to select a 124

method that would label all points of the flight as belonging to a single phase (maximum recall for 125

that phase but very poor precision), or another one that would consist of not labeling much points 126

as belonging to that phase (poor recall but high precision for that phase). 127

3. Data 128

Because ADS-B data does not provide a ground-truth regarding the segmentation of flight phases, 129

several other options are possible. Synthetic data have been used in [7] to validate the model. Data 130

from an aircraft simulator are employed in [18] and [19]. Flight Data Recorder (FDR) data are en- 131

countered in [20]. 132

Likewise, we have chosen to use de-identified aggregate flight recorded data made available by 133

NASA.Aswritten on the correspondingDASHlink project page, the files contain actual data recorded 134

onboard a single type of regional jet operating in commercial service over a three-year period. While 135

the files contain detailed aircraft dynamics, system performance, and other engineering parameters, 136

they do not provide any information that can be traced to a particular airline or manufacturer. Ap- 137

propriate parties have allowed NASA to provide the data to the general public for the purpose of 138

evaluating and advancing data mining capabilities that can be used to promote aviation safety. 139

In this dataset, flight phases are determined based on the Aircraft Condition Monitoring System 140

(ACMS). It is predictive maintenance tool consisting of a high capacity flight data acquisition unit 141

and the associated sensors that sample, monitor, and record, information and flight parameters from 142

significant aircraft systems and components. There are 8 possible flight phases in the dataset: un- 143

known, preflight, taxi, takeoff, climb, cruise, approach, rollout. Note that the sampling frequency of 144

each sensor is different, resulting in unequal data lengths of the parameters. 145

We focus on data for tail 687 for which there are 5,376 flights. After a few basic data cleaning 146

steps, we are working with 2,868 flights. To be precise, only flights with a duration of more than 147

thirty minutes, for which the main flight phases are documented, are retained for further analysis. 148

Many flights are very short, thus explaining the final size of the sample. Each flight is resampled to 149

1000 points (linear interpolation). For a given observation time, it ensures that each sensor value is 150

available (it solves the sampling frequency problem). Time is scaled so that each flight starts at t = 0 151

and ends at t = 1 (each flight is of different duration). Each flight can be easily visualized, as shown 152

in Figure 1. 153

4. Univariate Hidden Markov Models 154

To introduce some definitions and notations, the basic framework of univariate HMMs is presented 155

in Subsection 4.1. A simple model used for flight phase identification is introduced in Subsection 4.2. 156

4.1 The basic univariate framework 157
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Figure 1. Visualization of a randomly selected flight from the dataset. Altitude, longitude, and latitude profiles [left], flat
view [center], and three-dimensional view [right].

4.1.1 Definition 158

A HMM consists of two parts: 159

• We first consider an unobserved parameter process (or hidden state process) denoted {Ct : t = 1, 2, ...}. 160

It is a sequence of discrete random variables valued in {1, ...,m}. This process is assumed to be a 161

discrete-time Markov chain. It then satisfies the so-called Markov property: 162

∀ t ≥ 2,∀ c1, ..., ct , ct+1 ∈ {1, ...,m} ,P(Ct+1 = ct+1 | Ct = ct , ...,C1 = c1) = P(Ct+1 = ct+1 | Ct = ct ). (1)

That is, conditioning on the history of the process up to time t is equivalent to conditioning only on 163

themost recent valueCt . TheMarkov property can be regarded as a first relaxation of the assumption 164

of independence. The random variables are dependent in a specific way that is mathematically 165

convenient. 166

• We then consider a state-dependent process denoted {Xt : t = 1, 2, ...} (the observation process). It is a 167

sequence of discrete random variables typically valued in N or R. The distribution of this process is 168

assumed to depend only on the current state Ct and not on previous states or observations. It is a 169

conditional independence assumption, ∀ t ≥ 2,∀ c1, ..., ct ∈ {1, ...,m}, 170

P(Xt = xt | Xt–1 = xt–1, ...,X1 = x1,Ct = ct , ...,C1 = c1) = P(Xt = xt | Ct = ct ). (2)

As the Markov chain {Ct } has m states, {Xt } is called an m-state HMM. An m-state HMM has m 171

state-dependent distributions. Every observation is assumed to have been generated by one of m 172

component distributions. The hidden state process selects which of the distributions is active at any 173

time. The state-dependent distributions are defined as, for i = 1, 2, ...,m, ∀ t ≥ 1, 174

pi(xt ) = P(Xt = xt | Ct = i). (3)

That is, pi is the probability mass or density function of Xt if the Markov chain is in state i at time t. 175

We use p as a general symbol for probability mass or density functions. 176

To summarize, an HMM is a special type of a dependent mixture model in which a Markov chain 177

selects the component distributions. 178

4.1.2 Characterization, homogeneity, and stationarity 179

Due to the Markov property, {Ct } is fully characterized by: 180

• The initial state distribution u(1) = (P(C1 = 1), ..., P(C1 = m)) 181

• The one-step state transition probabilities denotedγij(t) = P(Ct+1 = j | Ct = i),∀ t ≥ 1,∀ i, j ∈ {1, ...,m}. 182
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Due to the conditional independence assumption, {Xt } is fully characterised by the state-dependent 183

distributions. 184

Unless stated otherwise, we will always assume that the Markov chains we use are homogeneous, 185

that is ∀t ≥ 1,γij(t) = γij . This hypothesis is classic in the literature on HMMs, and its relaxation 186

is not always necessary to improve the model’s performance. We denote the transition probability 187

matrix as: 188

Γ =

©«
γ11 · · · γ1m
.
.
.

.
.
.

.

.

.

γm1 · · · γmm

ª®®¬ . (4)

Note that it must be the case that: 189

• ∀i,∀j,γij ∈ [0, 1], 190

• ∀i, ∑m
j=1 γij = 1. 191

A Markov chain with transition probability matrix Γ is said to have stationary distribution δ (a 192

row vector with non-negative elements) if δΓ = δ and

∑m
k=1 δk = 1. Homogeneity alone is not 193

sufficient to render the Markov chain a stationary process. It is sometimes useful to assume that 194

the homogeneous Markov chain starts from its stationary distribution (in this case, it is said to be a 195

stationary Markov chain). In the following, we do not make any stationarity assumption. 196

4.1.3 Likelihood 197

Suppose that we have T consecutive observations x1, ..., xT , assumed to be generated by an m-state 198

HMM. To select the HMM parameters for which the model has the highest chance of having gen- 199

erated the observed data, the likelihood should be defined and computed. To be precise, we seek 200

the probability LT of observing the sequence, as calculated under anm-state HMMwhich has initial 201

distribution u(1), a transition probability matrix Γ, and state-dependent probability functions pi. 202

The likelihood is given by: 203

LT = u(1)P(x1)ΓP(x2)ΓP(x3) · · · ΓP(xT )1⊤,

where P(xt ) is defined as the diagonal matrix with i-th diagonal element pi(xt ). If u(1) is the station- 204

ary distribution of the Markov chain, we have u(1) = δ and δP(x1) = δΓP(x1) (which makes the 205

likelihood easier to code in some cases). 206

The matrix expression of the likelihood is computationally very interesting. To evaluate the like- 207

lihood, it is much more efficient to use recursive computation rather than relying on brute-force 208

summation over all possible state sequences (we would have a mT
summands). Indeed, the naive 209

approach separately considerate all possible state sequences that might have given rise to the obser- 210

vations which makes many calculations redundant. 211

A so-called forward algorithm is used to compute the likelihood. We first define the vector αt , for 212

t = 1, 2, ..., T , as: 213

αt = u(1)P(x1)ΓP(x2)ΓP(x3) · · · ΓP(xT ), (5)

with the convention that an empty product is the identity matrix. It follows immediately from this 214

definition that: 215

LT = αT1⊤ (6)

and 216

αt = αt–1ΓP(xt ), t ≥ 2. (7)
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The elements of the vector αt are usually referred to as forward probabilities. Computations go: 217

α1 = u(1)P(x1);
αt = αt–1ΓP(xt ), t = 2, ..., T ;

LT = αT1⊤.
(8)

In practice, the maximization of the likelihood with respect to the parameters can be made numeri- 218

cally. It leads to well-known problems: 219

• Numerical underflow (in the discrete case, the likelihood approaches 0 with probability 1 exponen- 220

tially fast). In this case, it is enough to scale the likelihood computation. 221

• Unbounded likelihood (when we consider continuous state-dependent distributions, it may happen 222

that the likelihood is unbounded in the vicinity of certain parameter combinations). To tackle this 223

issue, the discrete likelihood is maximized instead of the joint density. 224

• Constraints on the parameters (for example, row sums of Γ are equal to 1). A common practice is to 225

reparametrize the model. 226

• Multiple local maxima in the likelihood. A sensible strategy is to use a range of starting values for 227

the maximization, and to see whether the same maximum is identified in each case. 228

Instead of performing a direct numerical optimization, another popular approach is to treat the states 229

as missing and to employ the EM algorithm in order to find the maximum likelihood estimates of 230

the parameters. Yet, direct optimization is advisable when some constraints are added to the model. 231

4.1.4 Local decoding 232

Given the HMM and the observations, one can deduce information about the states occupied by the 233

underlying Markov chain. Such inference is known as decoding. 234

Local decoding of the state at time t refers to the determination of that state which is most likely at 235

that time. To perform local decoding, analogous to forward probabilities, we should define backward 236

probabilities as the elements of the vector βt : 237

β⊤
t = ΓP(xt+1)ΓP(xt+2) · · · ΓP(xT )1⊤, (9)

with the convention that an empty product is the identity matrix. 238

For each time t ∈ {1, ..., T }, one can therefore determine the distribution of the state Ct , given the 239

observations x1, ..., xT , which form states is a discrete probability distribution with support {1, ...,m}. 240

The conditional distribution of Ct given the observations can be obtained, for i = 1, 2, ...,m, as 241

P(Ct = i | X (T )
= x(T )) =

P(Ct = i,X (T )
= x(T ))

P(X (T )
= x(T ))

(10)

=

αt (i)βt (i)
LT

. (11)

For each time t ∈ {1, ..., T }, the most probable state given the observations, is defined as: 242

i∗t = argmax

i=1,...,m
P(Ct = i | X (T )

= x(T )), (12)

where X (T )
is the the history (X1, ...,XT ) and x(T ) is (x1, ..., xT ). This approach determines the most 243

likely state separately for each t by maximizing the conditional probability P(Ct = i | X (T )
= x(T )). 244

Local decoding comes with one crucial advantage: an uncertainty quantification in the decoded state 245

sequence. It is illustrated in Subsection 6.2. 246
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4.1.5 Global decoding 247

Instead of the most likely state for each separate time t, it is often the case that we are interested in 248

the most likely sequence of hidden states. Instead of maximizing P(Ct = i | X (T )
= x(T )) over i for 249

each t (Equation 12), one seeks that sequence of states c1, c2, ..., cT which maximizes the conditional 250

probability P(C(T )
= c(T ) | X (T )

= x(T )). This represents a subtly distinct maximization problem 251

compared to local decoding and is referred to as global decoding. The outcomes of local and global 252

decoding are frequently quite similar, although not identical. There is a highly efficient algorithm 253

for determining this sequence of states, known as the Viterbi algorithm [21]. Details may be found 254

in [10] (Subsection 5.4.2) and in [22] (Subsection 4.5.2). 255

4.2 A univariate model for flight phase identification 256

Suppose an aircraft is observed at integer times t = 1, 2, ..., T . For the moment, we assume that there 257

are no missing values (this assumption is relaxed is the following). For each time index, we observe 258

q values: it could be the position of the aircraft, its speed, the vertical rate and so on. 259

We naturally consider q time series

{
X t =

(
Xt1,Xt2,Xt3, ...,Xtq

)
: t = 1, ..., T

}
. Each series may repre- 260

sent observations of different type. For example, longitude and latitude are circular-valued whereas 261

the altitude is positive or zero. In this section, we focus on the case q = 1. It means that only one 262

time series is used for the segmentation. 263

For the identification of the threemain flight phases (climb, cruise, approach), we begin by presenting 264

an initial model based on the rate of climb (RoC) expressed in ft.min
–1

in Subsection 4.2.1. We 265

illustrate the case in which there are missing values in Subsection 4.2.2. 266

4.2.1 Identification of the three main phases with the rate of climb (RoC) 267

For the first model, we consider the rate of climb (RoC) to identify three flight phases: the climb, the 268

cruise, and the approach. Flight phases may be seen as states. Transitions between the states are very 269

constrained: we should go from the climb to the cruise and from the cruise to the approach. It is very 270

unlikely to jump from the climb directly to the approach. It is impossible to go from the approach to 271

the climb. We naturally specify a constrained 3-state univariate HMM for which the transition graph 272

of the corresponding Markov chain is represented in Figure 2. The transition probability matrix of 273

the first model is: 274

Γ1 =
©«
γ11 γ12 0

γ21 γ22 γ23

0 γ32 γ33

ª®¬ . (13)

The first state is a good candidate to represent the climb phase. To ensure this, the initial distribution

Figure 2. Transition graph of the constrained 3-state Markov chain.

275

is taken to be u(1) = (1, 0, 0) (it is fixed). State 2 refers to the cruise and state 3 to the approach. We 276

use 20 different starting values to increase the chances of finding the global maximum. The state- 277

dependent density we consider for the RoC is the Gaussian one. Initial values are chosen as follows: 278
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• As the climb is known to last for some time, we draw γ11 from the uniform distribution U[0.8,0.95] 279

and we set γ12 = 1 – γ11. Likewise, we draw γ21 fromU[0.01,0.04], γ22 fromU[0.9,0.95] (the cruise lasts 280

some time), we fix γ23 = 1 – γ22 + γ23 (after the cruise comes the approach), γ32 fromU[0.01,0.04] and 281

γ33 = 1 – γ32. 282

• The means of the normal distributions are drawn randomly as well as the standard deviations. Be- 283

cause there are 3 states, there is one mean and one standard deviation per state. 284

The choice of plausible starting values will avoid numerical instabilities. 285

Per se, HMM are unsupervised methods. The model does not return a segmentation involving the 286

original data labels (climb, cruise, approach). Indeed, the states of the HMM are fully data-driven and 287

do not have a predefined interpretation. Yet, the a priori meaning of the states has been integrated 288

into the constraints such that there is no ambiguity in assigning the original labels. Results are very 289

satisfactory. We compare them with a naive segmentation based on the following rules: 290

• If the altitude rate is positive (with some tolerance ε), the phase is said to be the climb. 291

• If the altitude rate is zero (with some tolerance ε), the phase is said to be the cruise. 292

• If the altitude rate is negative (with some tolerance ε), the phase is said to be the approach. 293

The tolerance parameter ε is chosen through trial and error. We also consider a fuzzy logic segmen- 294

tation with values provided in [9]. A visual result for a typical flight is provided in Figure 3. With

Figure 3. Identification results for a typical flight on the altitude profile.

295

the naked eye, the obtained segmentations appear very satisfactory. On this particular flight, there 296

is no striking difference. 297
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We examine four performance metrics to assess the quality of the results. First, we use the global 298

accuracy per flight (proportion of points that are correctly labeled). Second, we compute the F-1 299

score for each phase separately. We also consider the number of unlikely transitions per flight and 300

the number of transitions per flight. In this section, we consider two unlikely transitions: going 301

(directly) from climb to approach and from approach to climb. The empirical distributions of these 302

performance metrics over a subsample of 2,823 flights are presented as several box plots in Figure 4. 303

Among the 2,868 flights, the subsample corresponds to flights that have at least the 3 flight phases of 304

interest. Details on how to calculate the performancemetrics using the fuzzy logic of [9] are provided 305

in Appendix 1 (flight phases are not exactly the same). Regarding the global accuracy, it appears

Figure 4. Box plots of the global accuracy [left box plot] and F-1 scores per state. The crosses correspond to the averages.

306

that our model is very good. The lower performance of the fuzzy logic is surely explained by the 307

absence of any data pre-processing. Discussion on data pre-processing is postponed to Subsection 308

6.1. Allowing a tolerance ε for the naive method explains its good results. The dependency of fuzzy 309

logic on the erratic nature of FDR data logically results in a large number of transitions. While 310

the median number of transitions is 6 for the entire set of reference flights, it is 21 for fuzzy logic, 311

14 for the naive method, and 6 for the HMM. Taking into account the temporal dependence of the 312

points helps avoid too frequent alternation between the phases. The inflation in the number of 313

transitions translates into some unlikely transitions. The median number of unlikely transitions 314

across the entire sample is 0, the same as for the naive logic and the HMM. However, with fuzzy 315

logic, if the data is not pre-processed, at least 50% of the flights have 2 unlikely transitions. Unlikely 316

transitions are inherently quite uncommon with HMMs because small transition probabilities make 317

certain sequences very rare. Crucially, it must be highlighted that there is a non-zero proportion of 318

invalid transitions in the reference data. About 8% of the reference flights in the subsample have 319

at least an invalid phase transition. With our method, 91% of the flights have no invalid transitions 320

(74% for the naive method, 21% for the fuzzy logic if no pre-processing is done). 321

4.2.2 Missing values 322

In the case of HMM, a simple adjustment needs to be made to the likelihood computation if data are 323

missing. Suppose that the value of the RoC is missing at integer time t = k. Let L–kT be the likelihood 324

of the observations. We have: 325

L–kT = u(1)P(x1)ΓP(x2)ΓP(x3) · · · ΓP(xk–1)Γ2P(xk+1) · · · ΓP(xT )1⊤. (14)

The diagonal matrix P(xk) has been replaced by the identity matrix. 326

If one assumes that missingness is ignorable, the ignorable likelihood (Equation 14) is a reasonable 327

basis for estimating parameters. To be more precise, this likelihood may be used if one assumes that 328

data are missing at random as defined by [23]. An important case in which this assumption does not 329

hold is the state-dependent missingness case. Note that it is necessary to include time points with 330
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missing observations to allow the state probabilities to be computed properly (simply ignoring the 331

missing time points is not valid). Missing points may be consecutive or not. Figure 5 shows that the 332

quality of the final segmentation is minimally affected by missing values.

Figure 5. Identification results for a given flight. The initial segmentation [left] can be compared to our one [right]. 500
points are missing in this example (drawn uniformly at random).

333

5. Multivariate Hidden Markov Models 334

In order to detect more flight phases, multiple variables are required, and it is necessary to introduce 335

multivariate HMM. The basic framework is presented in Subsection 5.1. The multivariate model for 336

flight phase identification is detailed in Subsection 5.2. 337

5.1 The multivariate framework 338

In this section, s ∈ {2, ..., q} series are used for the segmentation (multivariate case). We assume 339

that, conditional on C(T )
= {CT , ...,C1}, the random vectors X1, ...,XT are mutually independent. This 340

assumption is called longitudinal conditional independence and is the multivariate counterpart of the 341

univariate conditional independence assumption (Equation 2). 342

Regarding the state-dependent distributions, there are two main things to specify: 343

• The distribution of the random vector X t =
(
Xt1,Xt2,Xt3, ...,Xtq

)
in each of the m states of the pa- 344

rameter process. That is, we should specify: 345

pi(xt) = P(X t = xt | Ct = i),∀t ≥ 1,∀i ∈ {1, ...,m} . (15)

• The m joint distributions, a task that is far from being easy. 346

Once the distributions have been selected, the likelihood of a general multivariate HMM is easy to 347

write down. It has the same form as that of the basic model, namely: 348

LT = u(1)P(x1)ΓP(x2)ΓP(x3)...ΓP(xT )1⊤, (16)

where x1, ...xT are the observations and P(xt) is again the diagonal matrix with i-th diagonal element 349

pi(xt). 350

5.1.1 Contemporaneous conditional independence 351

The task of finding suitable joint distributions is greatly simplified if one can in addition assume 352

contemporaneous conditional independence. The assumption of contemporaneous conditional inde- 353

pendence is that the state-dependent joint probability pi(xt ) is just the product of the corresponding 354
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marginal probabilities. In other words, ∀ t ≥ 1,∀ i ∈ {1, ...,m}, 355

pi(xt ) =
q∏
j=1

P
(
Xtj = xtj | Ct = i

)
. (17)

Note that even when the model is assumed to verify longitudinal conditional independence and 356

contemporaneous conditional independence, the Markov chain induces both serial dependence and 357

cross-dependence in the component series. In the sequel, we will assume longitudinal conditional 358

independence as well as contemporaneous conditional independence. 359

5.2 A multivariate model for flight phase identification 360

For the multivariate model, we consider the rate of climb (RoC), the ground speed (in knots) and 361

the first differences of the ground speed to identify six flight phases: taxi, takeoff, climb, cruise, 362

approach, rollout. Again, flight phases may be seen as states. We naturally specify a constrained 363

6-state multivariate HMM for which the transition graph of the corresponding Markov chain is 364

represented in Figure 6. The transition probability matrix of the multivariate model is: 365

Γ2 =

©«

γ11 γ12 0 0 0 0

0 γ22 γ23 0 0 0

0 0 γ33 γ34 0 0

0 0 γ43 γ44 γ45 0

0 0 0 γ54 γ55 γ56

γ61 0 0 0 0 γ66

ª®®®®®®®¬
. (18)

The first state is a good candidate to represent the taxi phase. To ensure this, the initial distribution

Figure 6. Transition graph of the constrained 6-state Markov chain.

366

is taken to be u(1) = (1, 0, 0, 0, 0, 0) (it is fixed). State 2 refers to the takeoff, state 3 to the climb, state 367

4 to the cruise, state 5 to the approach, state 6 to the rollout. We use 20 different starting values to 368

increase the chances of finding the global maximum. We use Gaussian distributions to set up the 369

state-dependent densities of the RoC. The ground speed is transformed into a binary variable (1 if 370

the ground speed is less than εM = 0.05, 0 otherwise). We use Bernoulli distributions as the state- 371

dependent densities of this variable. Finally, a discretized version of first difference of the ground 372

speed is used. A value of 1 is assigned if the first difference at the point is greater than the quantile 373

q0.995, -1 if the first difference is less than the quantile q0.05, and 0 otherwise. We use multinomial 374

distributions as the state-dependent densities of this variable. The initial values are chosen in the 375

same way as for the univariate model. 376
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Figure 7. Identification results for a typical flight on the altitude profile and on the ground speed profile.

A visual result for a typical flight is provided in Figure 7. Results are very good from a visual perspec- 377

tive. The value of several performance metrics over a subsample are presented in Figure 8. Among 378

the 2,868 flights, the subsample corresponds to flights that have at least the 6 flight phases of in- 379

terest. If F-1 scores are very high, we can observe significant disparities among the flight phases.

Figure 8. Evaluation of the performance. Box plots of the F-1 scores per state. The crosses correspond to the averages.

380

Strikingly, the F-1 score is lower for the takeoff and landing phases. Several reasons can explain 381

this. First, these phases represent a very small number of data points across the entire trajectory 382

(on average 6 points out of 1,000 for the takeoff and 4 out of 1,000 for the landing). Second, it may 383

be necessary to include other variables to more accurately identify the takeoff and rollout phases 384

(considering variables such as pitch angle may be interesting). 385

6. Discussions 386

6.1 Pre-processing data 387

Raw datamay be erratic. To solve this problem, a common practice is to smooth the input curveswith 388

a kernel. The effect of smoothing on the quality of segmentation is quite clear when it comes to the 389

number of transitions. In general, smoothing data tends to result in a lower number of transitions. 390

Using kernel smoothing with a bandwidth value of 0.01 for the RoC and a bandwidth of 0.01 for 391

the ground speed, the median number of transitions drops to 4 with the fuzzy logic. The median 392

number of unlikely transitions drops to zero. To assess the benefits of pre-processing data, we adopt 393

a grid search approach in which we vary the bandwidth values for the RoC and the ground speed. 394
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We observe that the HMM achieves a better overall accuracy with minimal smoothing as illustrated 395

in Figure 9. However, the global accuracy of the naive method and fuzzy logic improves with some 396

smoothing of the RoC. It is not surprising that the bandwidth value of the ground speed doesn’t play

Figure 9. For each method, the median value of the overall accuracy for different bandwidth values. The naive method and
the HMM do not use the ground speed as an input. In abuse of notation, a bandwidth value of 0 means that there has been
no smoothing. A subsample of several hundred flights was selected to limit the calculation time.

397

any role in the evolution of the fuzzy logic global accuracy. Indeed, ground speed primarily serves 398

to segment the ground phase, a phase that is not of interest at this stage of the analysis. 399

When considering the multivariate HMM for detecting 6 flight phases, there is a slow decrease in the 400

median value of the overall accuracy with an increase in the bandwidth value of the RoC (Figure 10). 401

A similar pattern emerges with the distributions of F-1 scores by phase as we observe in Figure 11. 402

The effect of data preprocessing is particularly significant on the decoded number of phases, as 403

observed in Figure 12.

Figure 10. For each bandwidth value of the RoC, box plots of the global accuracy for the multivariate HMM. In abuse of
notation, a bandwidth value of 0 means that there has been no smoothing. A sample of several hundred flights was selected
to limit the calculation time.

404

6.2 Uncertainty 405

Fuzzy logic provides a measure of uncertainty that is not perfect: by its nature, the degree of mem- 406

bership in each class is not a probability. This is not the case with HMMs, for which it is possible to 407

obtain a probability of belonging to each class (Equation 10). For a given point in the flight, the sum 408

of the probabilities of belonging adds up to 1. An illustration is provided for the multivariate model 409

(Figure 13). 410
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Figure 11. For each bandwidth value of the RoC, box plots of the F-1 scores for the multivariate HMM. In abuse of notation,
a bandwidth value of 0 means that there has been no smoothing. A sample of several hundred flights was selected to limit
the calculation time.

Figure 12. For each bandwidth value of the RoC, density of the number of decoded transitions. The distribution of the
number of transitions in the reference data is in red.

6.3 Unknown number of states 411

Unlike fuzzy logic and supervised methods, where it is necessary to know the number of phases 412

in advance, HMMs can be employed even when flight phases are not known. It is the case when 413

extracting continuous flights from a scattered ADS-B datase. Another interesting application is the 414

maneuver detection problem for rotorcraft and fixed-wing aircraft. The order of maneuvers is not 415

predetermined. 416

RegardingHMMs, it not possible to propose amodel with constraints because the sequence of phases 417

is unknown by assumption. The decoding step (local or global decoding) will provide a segmentation 418

with labels that need to be interpreted afterward. The main difficulty with HMM is the following: it 419

won’t be enough to test a different number of states and to choose the best model because in a basic 420

HMMwithm states, increasingm always improves the fit of the model (as judged by the likelihood) 421

at the cost of a quadratic increase in the number of parameters. It is commonmodel selection problem 422

in statistics. In the frequentist approach, a common criterion is the Akaike Information Criterion 423

(AIC): 424

AIC = –2 log LT + 2p (19)

where log LT is the log-likelihood of the fitted model and p denotes the number of parameters of 425



16 Rémi Perrichon et al.

Figure 13. Segmentation of the 6 main phases of the flight using the multivariate HMM and probabilities of belonging to
each class.

the model. The first term is a measure of fit, and decreases with increasing number of states m. 426

The second term is a penalty term, and increases with increasing m. In the Bayesian approach, the 427

Bayesian information criterion (BIC) differs from AIC in the penalty term: 428

BIC = –2 log LT + p logT (20)

where log L and p are as for the AIC, and T is the number of observations. Compared to the AIC, 429

the penalty term of the BIC has more weight for T > exp(2), which holds in most applications. Thus 430

the BIC often favours models with fewer parameters than does the AIC. More theoretical details can 431

be found in [22] (Subsection 2.6.2). 432

We illustrate this use of HMMs with the segmentation of a helicopter flight. We have downloaded 433

some ADS-B data from the Opensky Network’s Impala shell for the helicopter with registration SE- 434

JPU (ICAO24: 4aaa15) operated by the Swedish National Police. We select a flight from June 7, 2021. 435

The flight has a complicated shape as shown in Figure 14. It goes without saying that the obtained 436

segmentation depends largely on the inputs chosen for the HMM. For instance, the detection of 437

hover manoeuvres can only be done correctly with the ground speed variable. 438

We consider a multivariate HMM with the longitude first differences, the latitude first differences, 439

the ground speed (m.sec
–1
), and the vertical rate (m.sec

–1
). We use 100 different starting values 440

to increase the chances of finding the global maximum. For each iteration and for each number of 441

states, we compute the BIC. The final number of states is the one that has reached the lowest median 442

value of the BIC, that is to say 8 in this case as shown in Figure 15. The final segmentation is shown 443

in Figure 16. It is observed that certain states are easily interpretable. States 1 and 3 correspond to 444

climbing phases at medium (state 1) and high (state 3) speeds. State 2 is characterized by significant 445

oscillations in the first differences of longitude and latitude. In fact, these are rotations (as clearly 446

seen with the track angle). State 5 corresponds to very rapid horizontal movement. The same goes 447

for state 7, but the direction is different. State 6 corresponds to a descent. 448
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Figure 14. Visualization of the helicopter flight. Altitude, longitude, latitude, ground speed, vertical rate, and track angle
profiles [left], flat view [center], and three-dimensional view [right]. Time is scaled so that the flight starts at t = 0 and ends
at t = 1. There are T = 297 points. Time resolution is 10 seconds. The track angle is a clockwise angle from the geographic
north.

Figure 15. Distribution of the BIC value for each number of states.

7. Conclusion and perspectives 449

For commercial aviation, and when the number of states is predetermined, the HMM we propose 450

can detect up to 6 flight phases (taxi, takeoff, climb, cruise, approach, rollout). The overall accuracy 451

on nearly 3,000 flights is about 97% (median accuracy). These results are highly competitive with the 452

state-of-the-art literature. When looking at each phase separately, notable differences emerge. While 453

the taxi phase is identified almost perfectly, takeoff and landing appear to be more challenging to 454

detect. We believe that this is primarily explained by the fact that these phases represent, on average, 455

6 and 4 points, respectively, out of the 1,000 points in the trajectory. F-1 scores associated to these 456

flight phases are still very high. In any case, HMMs seem to adapt well to the fine granularity of 457

FDR data. Missing values in ADS-B data do not pose any issues. 458

For each point, it is possible to obtain a probability of belonging to each class, which is not the case 459

with most existing methods (namely fuzzy logic). Depending on operational applications, one may 460

focus on points for which the flight phase is decoded with high confidence. 461

The strength of HMMs lies in their great flexibility. When the number of phases is not known or their 462

sequence is not predetermined (as it is the case with helicopters, for example), HMMs can still be 463

used. We have illustrated this point with a flight example for which the HMMproduces interpretable 464
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Figure 16. Identification results for the helicopter flight.

phases. By working on the inputs, we believe that it is possible to detect the relevant maneuvers for 465

each application. 466

Several exciting aspects fall out of the scope of the paper. First, it would be possible to define new 467

performance metrics. Since flight phase segmentation produces a sequence, it would be interesting 468

to compare the obtained sequence to the one of the reference flight. A first step in this direction 469

would be to investigate distances employed for text analysis. Next, it would be interesting to study 470

the evolution of the segmentation quality by integrating covariates into HMMs. In summary, HMMs 471

offer numerous opportunities for aviation research applications. 472

Appendix 1. Issues with the definition of flight phases 473

Defining performance metrics is complicated by variations in terminology. This is a classic issue in 474

the literature on flight phase detection. For example, there is no such thing as a level flight subphase 475

in our reference flight phase labels. In order to calculate various performance metrics, the subphase 476

is typically identified using fuzzy logic and then renamed climb, cruise or approach. If half of the 477

flight has already been completed and if the altitude is below 10,000 feet, the level flight subphase 478

is labeled approach. If half of the flight is not done and if the altitude is below 10,000 feet, the level 479

flight subphase is labeled climb. Otherwise, it is labeled cruise. These few adjustments allow for 480

accommodating the definition of flight phases used in the reference data. 481

Similarly, if a cruise phase is detected below 10,000 feet with the naive method or the HMM, it is 482

renamed to climb or approach depending on whether half of the flight has already been completed or 483

not. This small adjustment is due to the fact that the altitude profile is not used as an input for these 484

models. It would be possible to avoid this last transformation by incorporating a binary variable 485
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into the model, indicating whether the altitude is above or below 10,000 feet at the cost of a less 486

parsimonious model. 487
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