Hidden Markov Models and Flight Phase Identification - ENAC - École nationale de l'aviation civile
Pré-Publication, Document De Travail Année : 2023

Hidden Markov Models and Flight Phase Identification

Rémi Perrichon
  • Fonction : Auteur
  • PersonId : 1134443
Xavier Gendre
  • Fonction : Auteur
  • PersonId : 930631

Résumé

The use of Hidden Markov Models (HMMs) in segmenting flight phases is a compelling approach with significant implications for aviation and aerospace research. It leverages the temporal sequences of flight data to delineate various phases of an aircraft's journey, making it a valuable tool for enhancing the analysis of flight performance and safety. In this work, we implement a multivariate HMM to identify 6 flight phases: taxi, takeoff, climb, cruise, approach and rollout. We reach a median global accuracy of about 97% over a sample of several thousand flights with a very low number of decoded unlikely transitions. Regarding several performance metrics, our method is competitive with existing methods in the literature, such as fuzzy logic. Additionally, it provides, for each point of the flight, a probability of belonging to each phase. Even in situations where there are missing values in the data, HMMs remain effective, ensuring that no critical information is lost during the segmentation process. We show that HMMs work seamlessly with the fine granularity of Flight Data Recorder (FDR) data. HMMs offer remarkable flexibility and adaptability, proving particularly effective when the number or order of phases is unknown or not predetermined, as is often the case with complex flight scenarios such as helicopter flights. This adaptability is crucial for handling the diverse range of flight operations that differ from one aircraft to another. An example is given with the segmentation of an Automatic Dependent Surveillance-Broadcast (ADS-B) helicopter flight operated by the Swedish National Police.
Fichier principal
Vignette du fichier
HMM_ENAC_HAL.pdf (13.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04291863 , version 1 (17-11-2023)

Identifiants

Citer

Rémi Perrichon, Xavier Gendre, Thierry Klein. Hidden Markov Models and Flight Phase Identification. 2023. ⟨hal-04291863⟩
154 Consultations
94 Téléchargements

Altmetric

Partager

More