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I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) are at the heart of the positioning applications. These applications are more and more catered towards highly accurate solutions. However, in urban and suburban environments, the challenge for an accurate positioning solution persists. Indeed, cycle slips on carrier phase measurements [Takasu Tomoji, 2008] and large multipath error on pseudoranges frequently occur. This paper aims at mitigating the effect of large biases introduced to the pseudoranges by multipath by using a mix of robust estimators in detected multipath environments and the WLSE algorithm otherwise.

Authors have investigated the use of robust estimators for GNSS positioning whether it be to compare their performances with WLSE such as [START_REF] Medina | Robust statistics for gnss positioning under harsh conditions: A useful tool?[END_REF] and [Garcia Crespillo et al., 2020] or to incorporate them in Kalman filter algorithms as in [START_REF] Ding | Adaptive robust-statistics gnss navigation based on environmental context detection[END_REF]. They found that robust estimators provided better results than traditional positioning algorithms in challenging GNSS environments. [START_REF] Gaglione | Robust estimation methods applied to gps in harsh environments[END_REF] compares the WLS and a receiver autonomous integrity monitoring algorithm (RAIM with observation subset testing) with a M estimator. He compared these three algorithms in both static and kinematic environments. It was shown that robust estimators outperformed both the WLS and RAIM algorithms regardless of the dynamics of the receiver. Some authors have also modified the parameters of robust estimators according to the estimated GNSS conditions such as [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF] and [START_REF] Ding | Adaptive robust-statistics gnss navigation based on environmental context detection[END_REF]. Their approach is based on using several GNSS parameters such as number of satellites, PDOP etc to vary the weights used in the robust estimations. The weights values vary according to the estimated environment by the classifier. This was done with a neural network for [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF] and with a SVM for [START_REF] Ding | Adaptive robust-statistics gnss navigation based on environmental context detection[END_REF]. [START_REF] Wei | A robust estimation algorithm for the increasing breakdown point based on quasi-accurate detection and its application to parameter estimation of the gnss crustal deformation model[END_REF] aims at detecting outliers to reevaluate the variance of the outliers. Afterwards, they use the new weights to decide if the outlier is small, medium, or large. They use this information to increase the breakdown point of their robust estimator.

The presented algorithm uses a machine learning decision on the multipath conditions to decide if the WLSE algorithm should be used or the robust estimator. The WLSE is optimal when the noise can be assumed as Gaussian. Therefore, when no multipath is detected by the CNN, the optimal estimator can be used. On the other hand, when multipath is detected, the MM estimator is used to limit the impact of outliers. The proposed approach also uses the number of multipath measurements detected to adapt the robust estimator parameters. The mentioned articles do not explore the potential benefits of an adaptive positioning algorithm. Furthermore, the variation of the efficiency and/or breakdown point has only been investigated by authors in separate works with different classifying methods. A study of both parameters is performed to understand which parameter is more beneficial to vary for the positioning solution.

II. METHODOLOGY 1. Detecting Multipath

To detect multipath with a CNN, it needs pre-labeled data. The labeling approach taken in this paper is to use multiple correlator outputs from the tracking stage to compute the discriminator function. The tracking error is then used to determine whether the measurement is affected by multipath or not. This method is briefly discussed in II.1 a) and further detailed in [START_REF] Guillard | Using convolutional neural networks to detect gnss multipath[END_REF]. The architecture and inputs of the CNN are also given in II.1 b).

a) Theoretical Classification

To train the CNN, a method was required to label whether the correlators were affected by multipath or not. The tracking bias was used as it has direct repercussions on the pseudorange as shown in [START_REF] Guillard | Using convolutional neural networks to detect gnss multipath[END_REF]. Since, the tracking bias evaluates the pseudorange bias due to noise and multipath, this metric was chosen to label data.

The tracking bias is computed by finding the delay corresponding to the zero crossing of the discriminator function. Then, multiplying the time bias by the speed of light, the tracking bias is obtained. Once this bias is passed through the low-pass filter of the tracking process, this filtered bias is what is propagated onto the pseudorange measurement. This process is given in ( 1)

-(3). ∃ t 0 ∈ [-T obs , T obs ] such that D(t 0 ) = 0 (1) T r b = ct 0 (2) ρ b = LP F (T r b )
(3) Where:

• T obs is the maximum delay for which the discriminator is observed The transient errors are ignored so the tracking bias is assumed to be only caused by multipath and noise, estimated as zero mean Gaussian noise [START_REF] Legrand | Improvement of pseudorange measurements accuracy by using fast adaptive bandwidth lock loops[END_REF], which can then be expressed as [Braasch, 2017]:

• D(τ )
ρ b ≈ ϵ M P + ϵ N oise (4) 
Hence, any bias exceeding 3 × σ N oise can be considered as caused by multipath. However, labeling every error exceeding this threshold would lead to a lot of measurements being classified as affected by multipath especially in urban and suburban environments.

To establish a new threshold, the idea was to find a value that would be small enough to not cause a large bias in the pseudorange but also large enough to not cause availability issues due to frequent multipath labeling. As GNSS multipath occurs most in degraded environments, the multipath sources can be identified. Indeed, multipath will often come from buildings, the road, or other vehicles. When looking at attenuation factors of common surfaces at normal incidence, a threshold can be established based on materials that yield a tolerable multipath error.

As assumed in [START_REF] Zhao | 28 ghz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in new york city[END_REF], the most commonly encountered materials in challenging environments will be: asphalt, glass, tinted glass, brick, and concrete. Brick is assumed to not be the most common building material. Since it has a high attenuation coefficient, it was decided that any multipath that has a lower amplitude than the ones generated from brick would be tolerated.

Thus, the threshold for multipath can be written as:

T = 3 × σ N oise + b Brick (5) 
Where:

• b Brick is the maximum multipath error caused by a reflection from brick (2.23 and 0.708 meters for GPS L1 C/A and Galileo E1-B in this study)

This gives the following classification:

Decision = |ρ b |≥ T → Multipath |ρ b |< T → Not Multipath (6) b) Using Convolutional Neural Networks
The CNN inputs are obtained thanks to 101 correlator output values, generated with a correlator sampling frequency of 200 MHz, as a function of their delay (with respect to the prompt correlator) and as a function of time yielding a 2D Image. An example of each class (no multipath and multipath) fed to the CNN is presented in Figure 1. Once the images are generated, they need to be passed onto a CNN network so that it can be trained and then tested. The full architecture chosen in this paper is given in Figure 2. The architecture choices of the CNN are further discussed in [START_REF] Guillard | Using convolutional neural networks to detect gnss multipath[END_REF]. 

Robust Estimators

Robust estimators are designed to limit the effect of outliers in the estimation of a given set of parameters. Like the LSE, M estimators are a generalisation of maximum likelihood estimators. They can be expressed as:

M est : θM = min θ N i=1 ρ( r i (θ) σ ) (7) 
Where:

• ρ is the robust loss function

• r is the residual element

• N is the number of residuals

• θ is the parameter to estimate

• θM is the estimated parameter

• σ is the estimated scale of errors

The performance of robust estimators are characterized by three factors:

1. The choice of the loss function, popular choices are the Huber or Tukey's biweight functions.

2. The breakdown point of the estimator, which is the proportion of outliers contained in the dataset at which the robust estimator yields large erroneous estimates.

3. The efficiency of the estimator is its asymptotic behavior and variance when no outliers are present [START_REF] Zoubir | Robust Statistics for Signal Processing[END_REF].

In this work, only M estimators were studied for their effect on positioning solutions. As mentioned in [de Menezes et al., 2021], M estimators are easier to handle as a function bounds the estimator. The S and MM estimators presented are variants of the basic M estimator.

a) M Estimator

This estimator assumes that the observations are independent but not necessarily identically distributed [START_REF] Stefanski | The calculus of m-estimation[END_REF].

To ensure robustness against outliers the residuals must be bounded, so an estimate of the scale of errors (with its computation given in ( 11) is used along with a bounded loss function. To minimize (7), assuming the loss function chosen is differentiable, it can be written as:

∂ ∂θ N i=1 ρ( r i (θ) σ ) = 0 (8) 
By applying the chain rule:

N i=1 ∂r i (θ)/σ ∂θ ψ( r i (θ) σ ) = 0 (9) 
Where:

• ψ is the influence function that must be bounded which is equal to ψ(x) = ∂ ∂x ρ(x) To solve this equation, a weight function is defined, which is equal to w(x) = ψ(x)/x, to make (9) equivalent to a WLSE problem.

N i=1 ∂r i (θ)/σ ∂θ r i (θ) σ w( r i (θ) σ ) = 0 (10)
To estimate the scale of residuals, robust measures of scale such as the inter-quantile range or the median absolute deviation need to be used. This is due to their resistance to outliers unlike the variance which is greatly affected by outliers. The MAD can be defined as:

σ = Med(|x -Med(x)|) (11) 
This scale estimate can be multiplied by a normalizing constant to make the scale estimate consistent with the standard deviation of a normally distributed dataset or other chosen distributions. For the Gaussian distribution the constant of the MAD is roughly equal to 1.4815 [START_REF] Rousseeuw | Alternatives to the median absolute deviation[END_REF]. Therefore (11), for estimated Gaussian distributions, is equal to:

σ = 1.4815 Med(|x -Med(x)|) (12)
To apply (10) for GNSS positioning purposes, the residual is obtained by the linearization of the code pseudorange around a point. The equation is recalled in (13). It is worthwhile to note that, identically to the LSE algorithm, robust estimators can be used to compute the velocity of the receiver with Doppler measurement.

∆ρ j Rx = ∂ρ j ∂x ∆x + ∂ρ j ∂y ∆y + ∂ρ j ∂z ∆z + ∂ρ j ∂cdt Rx ∆cdt Rx + ϵ j ρ,Rx (13) 
Afterwards, the residuals are scaled by the scale estimate. For GNSS purposes, the normalizing constant chosen is for the Gaussian distribution.

Then, based on the selected loss function, the weights for each value are computed. Then the position solution is re-estimated with a process taking into account the new weights, for example the WLSE algorithm. This process is then repeated with the new residuals until a convergence on the position has been reached, which is depicted in Figure 3. 

b) S Estimator

S estimators are a variation of M estimators which minimize the dispersion of the residuals [START_REF] Toka | The comparing of s-estimator and m-estimators in linear regression[END_REF]. These estimators tend to have high breakdown points but at the cost of low efficiency. The S estimator can be defined as:

S est : θS = min θ s(r 1 (θ), . . . , r N (θ)) (14) 
The dispersion of s(r 1 (θ), . . . , r N (θ)) is defined as the solution of:

K = 1 N N i=1 ρ r i (θ) σS (15) 
Where:

• K is the expected value of the loss function for a standard normal distribution

• σS is the estimated scale of errors with the S estimator

To use the S estimator for GNSS positioning, the algorithm is almost unchanged with respect to M estimators presented in Figure 3. First, a targeted breakdown point must be defined for this estimator. The other change comes from estimating the scale residual each iteration instead of computing it from the MAD before scaling the residuals.

c) MM Estimator

MM estimators target a high efficiency and a high breaking point, essentially improving upon the S estimator. To do so, two loss functions are used. One loss function is used to estimate the scale estimate of the residuals like the S estimator. Then the set of parameters is estimated with the S-estimated scale residual. The MM estimator is given as:

M M est : θM = min θ N i=1 ρ M M ( r i (θ) σS ) (16) 
Where:

• ρ M M (x) is the loss function used once the scale residual is estimated

To compute the MM estimator applied to GNSS positioning, the first iteration is where the scale estimate of the S estimator is computed using a loss function for the S estimator ρ S . After this scale estimate has converged, the other iterations use ρ M M as the loss function and the estimated scale of errors.

Algorithm Implementation

As the MM estimator combines the good efficiency of M estimators and high breakdown point of S estimators, the MM estimator was chosen as the robust estimator to be fused with the WLSE.

Assuming the CNN model for each signal is already trained, correlators are then accumulated over a second, in this case the time window corresponding to the correlation of the loop filter. An image per tracked satellite is then generated resembling the inputs presented in Figure 1. Each image is passed onto the corresponding CNN model and yields a decision on whether multipath affects the input correlators or not.

This decision is then passed onto the positioning algorithm. This is a fusion of the robust MM estimator and the traditional WLSE. When multipath is detected by the CNN in at least one measurement, the position is computed using the MM estimator. On the other hand, when no multipath is detected, the WLSE algorithm is used for the position calculation. This algorithm is depicted in Figure 4 for one position computation. WLSE algorithms breakdown with one outlier and are only optimal when the data error sources can be assumed as Gaussian. However, when multipath affects a code pseudorange, its error can not be assumed as Gaussian anymore [START_REF] Matera | Characterization Of Pseudo Range Multipath Errors In An Urban Environment[END_REF].

On the other hand, robust estimators are great for dealing with outliers in data but are not optimal when the errors follow a Gaussian distribution. Therefore, the idea was to design an algorithm that could perform ideally when multipath was not detected in the code pseudoranges while resisting when multipath affected the code pseudoranges. As the CNN model is designed to detect if multipath affects the code pseudoranges, the proposed algorithm was implemented and tested.

Variation of Robust Estimator Parameters

Unlike the LSE algorithm, robust estimators have parameters that can be adapted according to their targeted use. Indeed, the loss function, along with the breakdown point (if using an S or MM estimator), and the efficiency parameter can all be changed according to the application.

Since a CNN is used to detect multipath, the idea was to change the values of the breakdown point of the MM estimator and/or its efficiency for Gaussian distributions according to estimated multipath conditions. Varying the efficiency of the loss function was proposed in [START_REF] Ding | Learning-enhanced adaptive robust gnss navigation in challenging environments[END_REF] and [START_REF] Ding | Adaptive robust-statistics gnss navigation based on environmental context detection[END_REF] with improved accuracy with respect to fixed parameters.

Even though the loss function is a design choice when implementing a robust estimator, changing loss functions according to multipath conditions did not make sense mathematically. Therefore, this parameter was not investigated, and the Tukey biweight loss function was used in the presented algorithm. It was used because its corresponding weighting function brings large residuals towards zero. This implies that code pseudoranges that are largely affected by errors (including multipath) will not impact the positioning solution or only slightly. The Tukey biweight loss function expression is given in (17).

ρ c (x) =    1 -1 -x c 2 3 if |x| ≤ c 1 if |x| > c (17) a) Variable efficiency
The efficiency of a robust estimator indicates how well the estimator performs when there are no outlier affecting the estimator. This is also referred to as the Gaussian efficiency as it is the performance ratio between a robust estimator and the LSE under the nominal noise model [START_REF] Medina | On robust statistics for gnss single point positioning[END_REF]. It can be seen that as c increases, the Tukey biweight loss function tend to the least squares function. Indeed, as the constant parameter c increases, the efficiency of the robust estimator increases. On the other hand, this leads the measurements to affect the positioning solution equally. Therefore, there is a tradeoff between the efficiency under Gaussian conditions and the weighting of measurements in degraded conditions.

Most algorithms set the parameter c in (17) for an efficiency of 95%. Similarly to the breakdown point methods presented in section II.4 b), two methods for varying the efficiency were designed and are described in ( 19) and (20). By varying the efficiency, the parameter c of ( 17) is changed which has impacts on how the measurements are weighted. The efficiency can be defined as [Kafadar, 1983]:

efficiency = minimum variance variance(ρ c (x)) (18) 
Therefore, for a given efficiency, the corresponding constant value c can be computed by solving (18).

Since the proposed algorithm uses the robust estimator only when an outlier is detected, it was thought that the efficiency could be changed. Most algorithms set the parameter c in (17) for an efficiency of 95%. Similarly to the breakdown point methods presented in section II.4 b), two methods for varying the efficiency were designed and are described in ( 19) and (20).

The first method consists in using the estimated proportion of multipath to decrease the efficiency of the estimator. The second method classifies the proportion of multipath measurements into one of four efficiency values depending on its magnitude.

• Proportion of multipath to compute an efficiency: By multiplying the efficiency at 95% with a decreasing exponential, this results in a smaller efficiency but more robustness towards outliers. This method is inspired by [START_REF] Ding | Adaptive robust-statistics gnss navigation based on environmental context detection[END_REF] which used exponential factors to impact the efficiency.

ϵ = ϵ 0.95 exp - M p N ( 19 
)
Where ϵ is the efficiency and ϵ 0.95 is the efficiency at 95% under nominal conditions, M p is the number of multipath measurements, and N the total number of measurements.

• Discrete efficiencies: This method uses the proportion of multipath to assign it to its corresponding breakdown point value. This method tries to limit the impact of erroneous estimation by the CNN which could negatively affect the efficiency of ( 19).

ϵ =                ϵ 0.95 exp -1) if Mp N ≥ 0.75 ϵ 0.95 exp -0.75) if 0.75 < Mp N ≤ 0.5 ϵ 0.95 exp -0.5) if 0.5 < Mp N ≤ 0.25 ϵ 0.95 exp -0.25) if Mp N < 0.25 (20)

b) Variable breakdown point

The breakdown point is the proportion of outlier measurements that would cause the estimator to produce large errors. Its expression is given in ( 21) from [START_REF] Rousseeuw | Robust regression by means of s-estimators[END_REF].

β = min m/N { m N s.t ∥T (Y ′ ) -T (Y )∥ → ∞} (21) 
Where:

• β is the breakdown point

• m is the number of corrupted measurements

• N is the number of total measurements

• Y is the vector of measurements

• Y ′ is the vector of measurements where m measurements of the total N measurements have been corrupted

• T is the estimator Robust estimators aim to have higher breakdown points than LSE algorithms, which are of 1/N . However, doing so induces a loss of efficiency when the model is not affected by outliers. Therefore, increasing the breakdown point comes at the expense of efficiency under nominal conditions.

Most implementations suggest a breakdown point with a fixed value of 0.5 indicating that half of the measurements can be outliers. Since the CNN predicts if each measurement is affected by multipath, then the proportion of outliers at each epoch can be known. Therefore, in the proposed algorithm, the breakdown point variability was tested with two different methods.

One was to use the proportion of multipath affected measurements as the breakdown point. The other method was an adaptation of the one proposed in [START_REF] Ding | Adaptive robust-statistics gnss navigation based on environmental context detection[END_REF] using discrete values of the breakdown point as a function of the outlier proportion.

Similarly to the efficiency, varying the breakdown point influences the parameter c of ( 17) which has impacts on how the measurements are weighted. The corresponding constant parameter c can be computed for a given breakdown point as given in ( 22) [START_REF] Rousseeuw | Alternatives to the median absolute deviation[END_REF].

β = E[ρ c (x)] ρ c (x) (22) 
The breakdown point values for each method are given in ( 23) and ( 24):

• Proportion of multipath as the breakdown point: This method is straightforward and the breakdown point is given as:

β = M p N ( 23 
)
Where β is the breakdown point.

• Discrete breakdown points: This method uses the proportion of multipath to assign it to one of four breakdown point values. This method is a way of limiting the impact of erroneous estimation by the CNN which could greatly impact the breakdown point of ( 23).

β =          0.6 if Mp N ≥ 0.75 0.5 if 0.75 < Mp N ≤ 0.5 0.4 if 0.5 < Mp N ≤ 0.25 0.3 if Mp N < 0.25 (24) III. DATASETS

Set-up and materials

The data was collected in both open-sky and urban conditions. The open-sky collect was used to have data that would not be greatly impacted by multipath. On the other hand, the urban data was used to obtain multipath errors to detect. The data was gathered on GPS L1 C/A and Galileo E1-B, with a 200 MHz sampling frequency. The IFEN SX3 was used as the software GNSS receiver [START_REF] Ifen | Gnss r&d software receiver portfolio[END_REF] and to gather correlator values. The parameters used on the IFEN are given in Table 1. The processed pseudoranges come from the RINEX observation files which are generated by the IFEN SX3 itself. To evaluate the position performance of the proposed algorithm, a reference position has to be used. The Novatel SPAN, presented in III.2, was used as the reference system. The data setup is very simple as it requires two PCs, each connected to either the IFEN or the SPAN. The data setup is illustrated by the diagram on Figure 6. 

Reference System

The SPAN reference system consists of a high-performance IMU and a GNSS receiver. In post processing with Novatel's Inertial Explorer software, inertial and differentially-corrected GNSS observations are combined in a forward-backward smoother. The SPAN GNSS receiver tracks GPS and Glonass constellations whose observations were used in post processing to obtain a more accurate reference trajectory.

Differences between datasets

To quantify the benefit of the positioning solution, four data collects were performed to have different training data for the CNN. This also allowed for the CNN to be trained on three different independent data collects and to test the positioning method on an independent data collect: 

•

IV. RESULTS

In order to demonstrate the benefit of the proposed algorithm, the results presented in this section will treat the four data collects as one whole data collect. This can be done because snapshot positioning is used in the investigated algorithms. Indeed, WLSE and MM algorithms do not use previous information but just the measurements at the current time index. This means that the CDF will group the different data collects into one curve.

The MM estimator is expected to perform better than the WLSE in challenging conditions due to its higher breakdown point and to its capacity to minimize the impact of outliers. On the other hand, the WLSE is expected to outperform the MM estimator in outlier free scenarios. Therefore, combining all data collects as one data collect theoretically allows for both algorithms to showcase their strengths while also demonstrating their weaknesses. The proposed combination of WLSE and MM estimator based on the CNN predicted environment should then maximize both estimators' strengths.

The results are presented for the combination of MM and WLSE algorithms along with their comparative algorithms: using WLSE only and using the MM estimator only. Firstly, the mix of WLSE and MM estimators to compute a positioning solution is investigated without varying the parameters of robust estimators. Then, the variation of the robust estimator parameters with the method presented in section II.4 is studied and discussed.

The number of used satellites does not depend on the variation of parameters. The number of measurements detected as multipath affected are also independent from the parameters of the robust estimator. Therefore, these figures are given in Figure 7 and Figure 8. Since the data collects are used together as one data collect grouped together, sudden drops of used satellites can be observed in these figures. Figure 8 illustrates the number of code pseudorange measurements that have been detected as affected by multipath. The number of affected code pseudoranges is quite high on urban environments indicating that the GNSS conditions are sub-optimal.

On the other hand, there is a low frequency of multipath on the open-sky data collect.

No Parameter Variation

Figure 9 illustrates the CDF of the positioning solution over the different datasets when using the WLSE, MM estimator or the proposed mix of WLSE and MM estimator. It can be seen that the WLSE algorithm outperforms the MM estimator at the beginning of the CDF curve (∼ 40%) as this is the proportion of data that is collected in open-sky data where the WLSE is barely affected by multipath. Therefore, in this portion the MM estimator is affected by a loss of efficiency due to the data being more Gaussian than it would be in multipath heavy conditions. However, as the position solution degrades, coinciding with higher multipath, the MM estimator positioning solution is much better. This confirms that MM estimators outperform the WLSE algorithm in the presence of outliers.

It can also be observed that the best performing algorithm is the proposed mix of WLSE and MM estimator. Even though the 68% and 95% horizontal errors are very similar to the one of the MM estimator, it can be seen that the mix of MM+WLSE outperforms the MM estimator significantly between 20% and 60% of the position outputs. Indeed, there is a 20.6% and 11.0% increase in positioning accuracy in the 20% and 60% horizontal error respectively. This can be explained by the fact that when multipath is correctly detected by the CNN, the mix of WLSE and MM algorithms uses the most optimal positioning solution for the conditions. Indeed, when the MM estimator computes a positioning solution with low error with respect to the reference by mitigating multipath, the mix of WLSE + MM uses the MM estimator as well. On the other hand, the WLSE algorithm is used when there is no multipath detected which also has low positioning error as it mostly used when in open-sky conditions.

The CDF of the WLSE + MM algorithm resembles more the one of the MM estimator as the horizontal error percentage increases. This is due to large multipath errors affecting the positioning solution which is detected by the CNN. Thus, the mixed algorithm only uses the MM estimator in these conditions.

Figure 10 represents the normalized 2D error of each discussed algorithm as a function of the percentage of urban data used with respect to open-sky data. This graph is designed to highlight the benefit of the proposed method in urban and open-sky scenarios and was created with the steps given below.

1. Randomly select 100 epochs from both static and urban datasets to construct one randomly subsampled open-sky dataset and one for urban conditions with a chosen mix of epochs coming from either open-sky or urban environment.

2. Compute the positioning solutions using the 3 algorithms.

3. Take the x-th quantile of the horizontal error for each data mix.

4. For each percentage of urban data, repeat steps 1, 2, and 3 for N iterations for Monte-carlo simulation -chosen as 2000.

5. As there are a cloud of points (N) for each urban/open-sky ratio, take the median of each ratio.

6. Normalize by highest value of the median values to have a range from 0 to 1. Figure 10 illustrates that the MM estimator performs sub-optimally when no code pseudorange outliers are present with respect to the WLSE for all but the 95th quantile. The MM performance is steady and performs much better than the WLSE when the conditions tend to be more urban. For the 95th quantile of the normalized horizontal error, the MM estimator always outperforms the WLSE even in open-sky conditions. This can be explained by the fact that larger residual biases like the atmospheric errors etc can impact the positioning solution and be mitigated by the MM estimator and not the WLSE.

It can be observed that the proposed MM + WLSE algorithm performs similarly to the WLSE algorithm when mostly open-sky data is used for all quantiles. As more urban data is used, the normalized horizontal error of the WLSE rapidly increases and then performs worse than the MM estimator. On the other hand, the normalized horizontal error of the MM+WLSE algorithm increases steadily to eventually match the one of the MM estimator. This illustrates the fact that the proposed algorithm takes advantage of the optimality of the WLSE algorithm when the data is unaffected by multipath while limiting the impact of outliers when multipath affects pseudoranges.

On the other hand, the figure for the 95-th quantile shows that the proposed mix of the MM and WLSE algorithm performs worse than using only the MM estimator. This can be explained by the fact that the proposed algorithm uses the WLSE which, as mentioned earlier, can be still affected by multipath for the 95-th quantile of the horizontal positioning error. Furthermore, due to false estimation of the multipath conditions by the CNN, the WLSE may sometimes be used instead of the MM estimator. However, the difference between the two normalized errors is small, and as the percentage of urban data increases, the proposed algorithm performs similarly to the MM estimator.

Robust estimator parameter variation

This section presents the results of the mix of WLSE and MM algorithm when the efficiency and/ or breakdown point are varied as presented in section II.4. The algorithms discussed have the following notation:

• MM + WLSE E C : Uses a mix of WLSE and MM estimator with a variable efficiency point computed in (19).

• MM + WLSE E D : Uses a mix of WLSE and MM estimator with a variable efficiency point computed in (20).

• MM + WLSE B C : Uses a mix of WLSE and MM estimator with a variable breakdown point computed in (23).

• MM + WLSE B D : Uses a mix of WLSE and MM estimator with a variable breakdown point computed in (24).

Table 3 shows the results of the CDF for all parameter variation methods corresponding to their horizontal error. Table 3 shows that there is no parameter configuration that improves the MM+WLSE algorithm when the efficiency and breakdown point were kept constant for the MM estimator. Indeed, the best parameter variation was to vary the efficiency according to (19) which was worse than when the efficiency was constant.

Algorithm

The efficiency variations based on the multipath conditions do not add any benefit to the robust estimator. Both ( 19) and (20) decrease the efficiency according to the multipath environment. As highlighted by Figure 5, the weights of the Tukey biweight function, for c = 2.5, decreases as residual values increase. However, the value of weights increase again when w > c. Therefore, if the code pseudorange residuals are too high, which can occur in heavy multipath environments, these measurements have even more importance than non-multipath affected ones. However, increasing the efficiency to c = 10 for example, as shown in Figure 5, leads all measurements to almost be weighted equally. Hence, keeping the efficiency value for 95%, c = 4.685 is preferred as it reduces high residual weights and re-increases for a higher c value.

The breakdown point variation did not improve the positioning accuracy of the WLSE+MM algorithm either. This can be explained by the fact [START_REF] Rousseeuw | Robust regression by means of s-estimators[END_REF] does not recommend the breakdown point to be higher than 0.5 and lower than 0.25 which can occur when varying the breakdown point of ( 23) and ( 24). Furthermore, the varying breakdown point of (23) could be wrongly estimated due to a CNN error which would significantly impact the positioning solution. Even though the breakdown point computed by ( 24) reduces the impact of potential CNN errors which is conveyed by its higher positioning accuracy, the discrete mapping applied may be erroneous.

V. CONCLUSION

This paper described an algorithm that uses either the weighted least square estimation algorithm or the MM estimator. The decision to use one or the other is based on the estimated multipath environment. Each code pseudorange is classified as multipath affected or not. The MM estimator is used as the positioning algorithm when one or more measurement is deemed as multipath affected and the WLSE is used when no multipath is detected. This algorithm was proposed to take advantage of the robustness of MM estimators when outliers are present and the optimal WLSE when there are no outliers.

The proposed algorithm showed that it overcomes the loss of efficiency of the MM estimator when no outliers are present and mitigates the positioning degradation of the WLSE in heavy multipath environments. Therefore, this algorithm fuses the benefits of the WLSE algorithm and MM estimator with minimal downsides. When the data is collected in open-sky and urban conditions, it was shown to improve the MM estimator accuracy by 20% and 11% on the 20% and 60% horizontal positioning accuracy. It was also shown that the proposed variation of the parameters of the robust estimator parameters -efficiency and breakdown point-as a function of the number of detected multipaths could be detrimental to the positioning accuracy.

The proposed algorithm was implemented for snapshot positioning. However, snapshot positioning is not the most accurate positioning algorithm. For example, an extended Kalman filter (EKF) would be more robust than the presented algorithm. It is possible to adapt the EKF to use a robust estimator. This was done in [Garcia Crespillo et al., 2017]. Therefore, a future implementation of the proposed algorithm would be to use nominal EKF observation update equations when no multipath is detected and switch to the robust EKF when multipath is detected by the CNN.

  is the discriminator function as a function of the delay • c is the speed of light in m/s • T r b is the tracking bias in meters • LP F is the low-pass filter of the DLL modelled by a Butterworth Filter of order 2 with a bandwidth of B DLL • ρ b is the pseudorange bias induced from the tracking bias in meters

Figure 1 :

 1 Figure 1: Example of each class of the CNN inputs: no multipath (left) and multipath (right).

Figure 2 :

 2 Figure 2: CNN Architecture for Multipath Detection[START_REF] Guillard | Using convolutional neural networks to detect gnss multipath[END_REF] 

Figure 3 :

 3 Figure 3: M Estimator Algorithm for GNSS positioning.

Figure 4 :

 4 Figure 4: Robust Estimator Fusion Algorithm Diagram for one epoch.

Figure 5

 5 Figure 5 illustrates the Tukey bighweight loss and weight functions as a function of the residuals for different parameters of c corresponding to different efficiencies.
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 5 Figure 5: Tukey and LSE bi-weight loss functions (left) and weight functions (right) for different values of c.
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Figure 6 :

 6 Figure 6: IFEN Data set-up to record data.

  12th of September 2022: Dynamic sub-urban and deep urban of 40 minutes • 13th of January 2023: Static open-sky of 1 hour • 20th of March 2023: Dynamic sub-urban and deep urban of 20 minutes • 21st of March 2023: Dynamic sub-urban and deep urban of 45 minutes
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 7 Figure 7: Number of satellites used over the concatenated data collects.Figure 8: Number of detected multipath affected satellites over the concatenated data collects.

Figure 8 :

 8 Figure 7: Number of satellites used over the concatenated data collects.Figure 8: Number of detected multipath affected satellites over the concatenated data collects.

Figure 7

 7 Figure 7 depicts the number of satellites used for the compounded data collect. The open-sky collect is contained between the 2000 and 6000 epoch indices. The other epochs corresponds to the urban collects where the number of satellites fluctuates

Figure 9 :

 9 Figure 9: CDF of the WLSE, MM estimator, and proposed MM + WLSE mix.

Figure 10 :

 10 Figure 10: Normalized horizontal error as a function of the percentage of urban data used with respect to open-sky data for the WLSE, MM estimator, and MM+WLSE algorithms for the 20-th, 50-th, 68-th, and 95-th quantile.

Table 1 :

 1 IFEN 

SX3 Settings for GPS L1 C/A and Galileo E1-B.

Table 2 :

 2 CDF results for 20th, 60th, 68th, and 95th percentage of the horizontal error for the WLSE, MM and proposed MM + WLSE mix.

Table 3 :

 3 CDF results for all algorithm parameter variations.