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Abstract: Explainable Artificial Intelligence (XAI) and acceptable artificial intelligence are active topics 1

of research in machine learning. For critical applications, being able to prove or at least to ensure 2

with a high probability the correctness of algorithms is of utmost importance. In practice, however, 3

few theoretical tools are known that can be used for this purpose. Using the Fisher Information 4

Metric (FIM) on the output space yields interesting indicators in both the input and parameter spaces, 5

but the underlying geometry is not yet fully understood. In this work, an approach based on the 6

pullback bundle, a well-known trick for describing bundle morphisms, is introduced and applied 7

to the encoder-decoder block. With constant rank hypothesis on the derivative of the network with 8

respect to its inputs, a description of its behavior is obtained. Further generalization is gained through 9

the introduction of the pullback generalized bundle that takes into account the sensitivity with respect 10

to weights. 11

Keywords: Pullback bundle; information geometry; machine learning 12

1. Introduction 13

Explainable Artificial Intelligence (XAI) is generally described as a collection of meth- 14

ods allowing humans to understand how an algorithm is able to learn from a database, 15

reproduce and generalize. It is currently an active, multidisciplinary area of research [1,2] 16

that relies on several theoretical or heuristic tools to identify salient features and indicators 17

explaining the surprisingly performances of machine learning algorithms, especially deep 18

neural networks. From a statistical point of view, a neural network is nothing but a parame- 19

terized regression or classification model, that can be described as a random variable whose 20

probability distribution is known conditionally to external inputs and internal parameters 21

[3] . Unfortunately, even if this approach seems the most natural one, it is not adapted to 22

XAI as no insight is gained on the learning and inference process. Furthermore, it seems 23

that there is a contradiction between the statistical procedure that appeals for models with 24

the smallest possible number of free parameters and the performance of deep learning 25

relying on thousands to millions weights. On the other hand, attempts have been made 26

to design numerical [4] or visual [5] indicators aiming at producing a summary of salient 27

features. 28

XAI is also related to acceptable AI, that is proving or at least ensuring with a high 29

probability that the model will produce the intended result and is robust to perturbations, 30

either inherent to the data acquisition process or intentional. In both cases, it is mandatory 31

to be able to perform a sensitivity analysis on a trained network. In [6], an approach based 32

on geometry was taken and the need of a metric on the set of admissible perturbations 33

enforced. The problem of the so-called adversarial attacks is treated in several papers 34

[7–9] where mitigating procedures are proposed. Adversarial attacks are a major concern 35

for acceptable AI, especially in critical application like autonomous vehicles or air traffic 36

control. From now, most of the research effort was dedicated to the design of such attacks 37

with the idea of incorporating the fooling inputs in the learning database in order to increase 38

robustness. The reader can refer for example to Fast Gradient Sign methods [10], robust 39

optimization methods [11] or DeepFool [12,13]. Unfortunately, while these approaches are 40

Version October 12, 2023 submitted to Entropy https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/entropy


Version October 12, 2023 submitted to Entropy 2 of 16

relevant to acceptable AI, they do not provide XAI with usable tools. Furthermore, they 41

rely on inputs in Rn, or generally in a finite dimensional euclidean space, which is not 42

always a valid hypothesis. 43

There is also a question on why learning from a high dimension data space is possible, 44

and a possible answer is because data effectively lies on a low dimensional manifold [14,15]. 45

As a consequence, most of the directions in the input space will have a very small impact 46

on the output, while only a few number of them, namely those who are tangent to the data 47

manifold, are going to be of great influence [16]. The manifold hypothesis also justifies the 48

introduction of the encoder-decoder architecture [17,18] that is of wide use in the field of 49

natural language processing [19] or time-series prediction [20]. The true underlying data 50

manifold, if it exists, is most of the time not accessible, although some of its characteristics 51

may be known and incorporated in the model. In particular, it may be subject to some action 52

by a Lie group or possess extra geometric properties, like the existence of a symplectic 53

structure. Specific networks have be designed to cope with such situations [21,22]. 54

In a general setting, little is known about the data manifold and its geometric features, 55

like metric, Levi-Civita connection and curvature. However, Riemannian properties are 56

the most important ones as they dictate the behavior of the network under moves in the 57

input space. Recalling the statistical approach invoked before, it makes sense to model 58

the output of the network as a density probability parameterized by inputs and weights. 59

Within this frame, there exists a well-defined Riemannian metric on the output space known 60

as the Fisher Information Metric (FIM) originating from a second order expansion of the 61

Kullback-Liebler divergence. The importance of this metric has already been pointed out in 62

several past works [23,24]. The FIM can be pulled back to the input space, yielding in most 63

cases a degenerate metric that can nevertheless be exploited to better understand the effect 64

of perturbations [25], or to parameter space to improve gradient based learning algorithms 65

[26]. In this last case, however, things tend to be less natural than for the input space. 66

In this work, a unifying framework for studying the geometry of deep networks is 67

introduced, allowing a description of encoder-decoder blocks from the FIM perspective. 68

The pullback bundle is a key ingredient in our approach. 69

In the sequel, features and outputs are random variables, thus characterized by their 70

distribution functions, or their densities in the absolutely continuous case. Within this 71

frame, a neural network is a random variable: 72
Y = N (X, W)

X : (Ω, T ,P) → (E, E)
W : (Ω, T ,P) → (Θ,F )

(1)

Where (Ω, T ,P) is an underlying probability space and (E, E), (Θ,F ) are respectively the 73

input and weight measure spaces Finally, Y is assumed to take its values in the output 74

measure space (O,O). Most of the time, the network has a layered structure so that the 75

expression of N can be factored out as: 76

Y = N (N (. . . , W2), W1) (2)

In many practical implementations, the weights W are deterministic, that is equivalent 77

to saying that their probability distribution is a Dirac distribution. In this case, a neural 78

network can be described as a parameterized family of random variables NW : ω 7→ 79

N (X(ω), W). A special case occur when a single decoder is considered [27], that is a 80

measurable function: 81

f = N (·, W) : Rd → Rm, d ≤ m (3)

with f a smooth mapping, assumed in [27] to be an immersion, that is, for any x, D fx has 82

maximal rank d. Conversely, one may consider an encoder 83

g = N
(
·, W̃

)
: Rn → Rd, d ≤ n (4)
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and assume f to be a submersion. In this paper, the geometry of the complete encoder- 84

decoder network: 85

g ◦ f = N
(
N (·, W), W̃

)
(5)

will be considered, as well as the case d ≥ m, d ≤ n. 86

The article is structured as follows: In section 2, the Fisher information metric is 87

introduced and some formulas, valid when the parameter space is a smooth manifold, are 88

given. In section 3, the pullback bundle is defined and applied to the encoder-decoder case. 89

Finally, a conclusion is drawn in section 5. 90

2. The Fisher information metric 91

In this section, we recall some basic definitions and properties in information geometry. 92

The fundational ideas can be traced back to [28], but the main developments occur quite 93

recently. The reader is referred to [29] for a comprehensive introduction. The exposition 94

below assumes a quite high degree of regularity for the parameterized density families, 95

which is nevertheless a common situation in practice, especially in the field of machine 96

learning we are interested in. 97

2.1. Definitions and properties 98

Definition 2.1. A statistical model is a pair (M, p) where M is an oriented n dimensional 99

smooth manifold and (pθ)θ∈M is a parameterized family of probability densities on a 100

measure space (Ω, T , µ) such that, putting p(θ, ω) = pθ(ω): 101

• For µ-almost all ω ∈ Ω, the mapping θ 7→ p(θ, ω) is smooth. 102

• For any θ ∈ M, there exists an open neighborhood Uθ of θ and an integrable mapping 103

h : Ω → R+ such that, for any ξ ∈ Uθ , |∂θ p(ξ, ω)| ≤ h. 104

• The mapping θ → pθ ∈ L1(Ω, µ) is one-to-one. 105

• The support of pθ does not depend on θ. 106

Assuming p never vanishes, one can define the score l : M× Ω → R as: 107

l(θ, ω) = log p(θ, ω) (6)

For any θ ∈ M: 108∫
Ω

pθ(ω)dµ(ω) = 1 (7)

Thus, using the fact that the assumptions made on family pθ allow swapping derivatives 109

and integrals, it comes: 110∫
Ω

∂i p(θ, ω)dµ(ω) = 0, i = 1 . . . n (8)

where ∂i denotes the derivative with respect to the i-th component of θ in local coordinates. 111

So the score lθ = log pθ satisfies by 8: 112

E[∂ilθ ]pθ
= 0, i = 1 . . . n. (9)

A simple computation shows that: 113

E
[
∂ilθ∂jlθ

]
=
∫

Ω

∂i pθ√
pθ

∂j pθ√
pθ

dµ(ω) = 4
∫

Ω
∂i(

√
pθ)∂j(

√
pθ)dµ(ω), i, j = 1 . . . n (10)

proving that: 114

gij = E
[
∂ilθ∂jlθ

]
= ⟨∂i(

√
pθ), ∂j(

√
pθ)⟩L2(Ω,µ) (11)

Let g be the section of TM∗ ⊗ TM∗ defined by: 115

g = gijdθi ⊗ dθ j (12)
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1 Now, given any tangent vector X = Xi∂i ∈ TθM: 116

g(θ; X, X) = gijXiX j = ⟨∂i(
√

pθ), ∂j(
√

pθ)⟩L2(Ω,µ)

= ⟨Xi∂i(
√

pθ), X j∂j(
√

pθ)⟩L2(Ω,µ)

= ⟨Z, Z⟩L2(Ω,µ)

(13)

with Z = Xi∂i
(√

pθ

)
. Given the assumptions made on the family pθ , g is a thus a positive 117

definite symmetric section of TM⊗ TM, hence a Riemannian metric on M called the 118

Fisher Information Metric (FIM). 119

Remark. The mapping I : θ 7→ √
pθ embeds M as a submanifold of the unit sphere in 120

L2
Ω,µ and the Fisher information metric is just the pullback of the ambient metric in L2

Ω,µ 121

with respect to I . However, in machine learning applications, it is common to consider 122

parameter spaces for which the one-to-one assumption for I is non-valid so that g is only 123

positive semidefinite. The study of the rank of the metric in this case is an important 124

research topic. 125

It is quite fruitful to consider differential forms on M parameterized by Ω. The 126

starting point is the definition of parameterized degree 0 forms. 127

Definition 2.2. A parameterized 0-form is a mapping f : M× Ω → R satisfying: 128

• For almost all ω ∈ Ω, the mapping θ ∈ M → f (θ, ω) is smooth. 129

• For all θ0 ∈ Ω, and all integers n, there exists a neighborhood Un,θ0 and an integrable 130

positive mapping hn,θ0 such that for all θ ∈ Un,θ0 and almost all ω ∈ Ω: |∂n
θ f (θ, ω)| ≤ 131

hn,θ0(ω). 132

Proposition 2.1. Let X be a vector field on TM and f a parameterized 0-form in the previous 133

sense. Then: 134

X(E[ f ]) = E[X( f )] + E[ f X(l)] (14)

with l(θ, ω) = log p(θ, ω)n. 135

Proof. E[ f ] is a degree 0 form on TM. If ψ is the flow of X, then: 136

ψ⋆E[ f ] =
∫

Ω
f (ψ(t, θ), ω)p(ψ(t, θ), ω)dµ(ω) (15)

The assumptions made on f allow swapping derivatives and integrals, so: 137

∂

∂t t=0
E[ f ] =

∫
Ω

∂θ f (θ, ω)X(θ)p(θ, ω)dµ(ω) +
∫

Ω
f (θ, ω)

∂θ p(θ, ω)

p(θ, ω)
p(θ, ω)dµ(ω) (16)

138

Remark. Applying proposition 2.1 to the constant function f = 1 yields E[X(l)] = 0, a 139

result already known by equation 9 140

A parameterized degree k differential form on TM can be defined readily by requiring 141

that the coefficients of the elementary forms dθi1 ∧ · · · ∧ dθik be parameterized differential 142

forms of degree 0. 143

Proposition 2.2. Let α be a degree k parameterized differential form on TM. Then: 144

dE[α] = E[dα] + E[dl ∧ α] (17)

Proof. It is enough to consider a form α(θ, ω) = f (θ, ω)dθi1 ∧ · · · ∧ dθik . Then: 145

dE[α](θ) =
n

∑
j=1

E
[
∂θj f

]
dθj ∧ dθi1 ∧ · · · ∧ dθik +

n

∑
j=1

E
[

f ∂θj l
]
dθj ∧ dθi1 ∧ · · · ∧ dθik (18)

1 The summing convention on repeated indices is used through the document.



Version October 12, 2023 submitted to Entropy 5 of 16

Since:

dα =
n

∑
j=1

(
∂θj f

)
dθj ∧ dθi1 ∧ · · · ∧ dθik (19)

dl ∧ α =
n

∑
j=1

f
(

∂θj l
)

dθj ∧ dθi1 ∧ · · · ∧ dθik (20)

the claim follows. 146

Proceeding the same way as in proposition 2.1, and using Cartan’s homotopy formula, 147

we obtain: 148

Proposition 2.3. Let X be a vector field on TM and α a degree k parameterized differential form. 149

Then 150

LX(E[α]) = E[iXdα] + E[diXα] + E[(iXdl) ∧ α] (21)

When α = dl, equation 21 reads as: 151

LXE[dl] = E
[
iXd2l

]
+ E[d(iXdl)] + E[(iXdl) ∧ dl] (22)

Since E[dl] = 0, it comes: 152

E[d(iXdl)] = −E[(iXdl) ∧ dl] (23)

Given two vector fields X, Y: 153

iYE[(iXdl) ∧ dl] = E[(iXdl)(iYdl)] = g(X, Y) (24)

with g the Fisher metric. Thus: 154

Proposition 2.4.
g(X, Y) = −E[iYd(iXdl)] (25)

Remark. In coordinates, iYd(lXdl) = ∂ijX jYi + ∂jl∂iX jYi, and after taking the expectation: 155

g(X, Y) = −E
[
∂ijl
]
X jYi (26)

This is a well-known result in the Rn case. 156

Let ∇ be an affine connection on TM. The same computation as above yields: 157

Proposition 2.5. Let X be a vector field on TM and α a degree k parameterized differential form. 158

Then: 159

∇XE[α] = E[∇Xα] + E[(iXdl) ∧ α] (27)

When α = dl, we recover E[∇Xdl](Y) = −g(X, Y), showing that while the param- 160

eterized Hessian ∇dl depends on the connection ∇, it is not the case of its expectation. 161

When Ω = M = Rn, µ = dx1dx2 . . . dxn, the Fisher metric is known to be twice the sec- 162

ond order term in the Taylor expansion of the Kullback-Leibler divergence, which can 163

be proved easily by iterating derivatives. More generally, let ∇ be a connection and let 164

θ : ] − ϵ, ϵ[→ M, ϵ > 0 be a smooth curve with θ0 = θ(0), X = θ′(0). e recall that the 165

Kullback-Liebler divergence between two probability densities p, q is defined as: 166

KL(p, q) = Ep[log(p/q)] =
∫

log
(

p(x)
q(x)

)
p(x)dx (28)

The mapping: 167

t ∈]− ϵ, ϵ[ 7→ ξ(t) = KL
(

pθ0 , pθ(t)

)
= Epθ0

[
lθ0(t)− lθ(t)

]
(29)
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is smooth, so Taylor formula applies for t close enough to 0: 168

ξ(t) =
n

∑
i=1

ξ(i)(0)
i!

ti + o(tn) (30)

With: 169

ξ(i)(0) = Epθ0

X(X(. . . X(l)))︸ ︷︷ ︸
i times

 = Epθ0

X(X(. . . dl(X)))︸ ︷︷ ︸
i−1 times

 (31)

If the curve t → θ(t) is a geodesic for ∇, then: 170

X(dl(X)) = (∇Xdl)(X) + dl(∇XX) = (∇Xdl)(X) (32)

And by recurrence: 171

ξ(i)(0) = Epθ0

[(
∇(i−1)

X dl
)]

(X). (33)

The first derivative ξ(1)(0) is readily computed as: 172

−E
[
dlθ0

]
(X) = 0. (34)

The second derivative ξ(2)(0) can be obtained using ∇ as : 173

−E
[
∇Xdlθ0

]
(X) = gθ0(X, X). (35)

Since g is symmetric, g(X, Y) = (g(X + Y, X + Y)− g(X − Y, X − Y))/4, thus 35 charac- 174

terize g at θ0. Higher order terms can be computed by repeatedly applying proposition 2.5 175

and are expressed thanks to the quantities: 176

E
[
(iXdl) ∧∇(i)

X dl
]
(X). (36)

An interesting case occurs when the Fisher metric is non-degenerate and ∇lc is its associated 177

Levi-Civita connection. Normal coordinates at θ0, denoted by xi, i = 1 . . . N, are given 178

by taking an orthonormal basis, with respect to the Fisher metric, (v1, . . . , vN) and letting 179

[30](p. 72): 180

xi
(

expθ0
tjvj

)
= ti (37)

Using the xi, i = 1 . . . N system of coordinates in place of θ, and noting that θ0 corresponds 181

to the origin in normal coordinates, the KL divergence can be approximated at order 2 by: 182

KL(p0, px) =
1
2

xixj (38)

where x =
(

x1, . . . , xN). 183

2.2. The Fisher information in machine learning. 184

In machine learning applications, when the output is a probability distribution, then 185

the Kullback-Leibler divergence is a natural measure for goodness-of-fit. Assuming that 186

the database is given in the form of an iid sample of couples (Xi, Yi)i=1...N , then one can 187

introduce the error function: 188

E(W) =
N

∑
i=1

KL(Yi,N (Xi, W)) (39)
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That may be approximated by: 189

Ẽ(W) = −
N

∑
i=1

1
2

g
(

Yi;
−−−−−−−→
YiN (Xi, W),

−−−−−−−→
YiN (Xi, W)

)
(40)

Where the notation
−→
PQ stands for the tangent vector at P such that a geodesic (for ∇lc) θ 190

with θ(0) = P, θ′(0) =
−→
PQ is such that θ(1) = Q. Taking the derivative with respect to W 191

yields: 192

∂Ẽ
∂W

= −
N

∑
i=1

g
(

Yi;
∂N (Xi, W)

∂W
,
−−−−−−−→
YiN (Xi, W)

)
(41)

∂N (Xi ,W)
∂W being a tangent vector at Yi. 193

We recall the musical isomorphism ♭ : TM → TM⋆ defined by: 194

X♭(Y) = g(X, Y) (42)

and use it to rewrite 41 as: 195

∂Ẽ
∂W

= −
N

∑
i=1

(
∂N (Xi, W)

∂W

)♭(−−−−−−−→
YiN (Xi, W)

)
(43)

In this form, having a critical point of the energy Ẽ with respect to W is equivalent to the 196

vanishing of a totally symmetric multilinear form on TM⊕ TM⋆, the generalized tangent 197

bundle of M. 198

Finally, if ψ : N → M is a smooth mapping, one can take the pullback the Fisher 199

metric on M to obtain a semi-definite symmetric bilinear form on N : 200

ψ⋆g(η; X, Y) = g(ψ(η); ψ′(η)X, ψ′(η)Y) (44)

When ψ is an embedding, ψ⋆g is a Fisher metric on N with pψ(η), η ∈ N as underlying 201

densities. This is the case considered in [27]. 202

As an example of a pullback metric, we are going to investigate the case of the Von- 203

Mises Fisher distribution (VMF) on Sn−1 with density: 204

pκ,µ(x) =
κn/2−1

(2π)n/2 In/2−1(κ)
exp(κ⟨x, µ⟩) (45)

where κ ≥ 0 is the concentration parameter, µ ∈ Sn−1 is the location parameter and Ik is the 205

modified Bessel function of the first kind of order k. The Fisher metric in the embedding 206

space Rn can be deduced from the second moment E
[
xxt] since lκ,µ = log

(
pκ,µ

)
= f (κ) + 207

⟨x, µ⟩. If κ is assumed to be constant, then: 208

E
[
∂µlκ,µlt

κ,µ

]
= E

[
xxt] (46)

Although the expression for E
[
xxt] has been given in [31], we present here an alter- 209

native proof based on the fact that for any integer n, Sn−1 is a suspension of Sn−2. If 210

x = (x1, . . . , xn), then xxt is a matrix whose (i, j) entry is xixj. By the rotation invariance of 211

the VMF, µ can be selected as the first vector of an orthonormal basis, with respect to which 212

x is expressed in components as x = (x1, . . . , xn). If we specialize the first component, then, 213

if i ̸= 1, j ̸= 1: 214∫
Sn−1

xixj pκ,µ(x)dx = cκ

∫ π

0
exp(cos θ) sinn−2(θ)

∫
Sn−2

ξiξ jdσn−2(ξ) (47)
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with xi = sin θξi, i = 1 . . . n − 1 and σn−2 the Lebesgue measure on Sn−2. If i ̸= j, then the 215

integral vanishes by symmetry, otherwise: 216∫
Sn−2

ξiξ jdσn−2(ξ) =
∫ π

0
cos2(ψ) sinn−3(ψ)

∫
Sn−3

dσn−3dψ

=
∫ π

0
cos2(ψ) sinn−3(ψ)dψA

(
Sn−3

) (48)

with A
(
Sn−3) the area of the n − 3-sphere, which is given by the general relation: 217

A(Sn) =
2π

n+1
2

Γ
(

n+1
2

) (49)

Now, observing that [32]: 218∫ π

0
cos2(ψ) sinn−3(ψ)dψ = B

(
3
2

,
n
2
− 1
)

(50)

with B the beta function, the overall expression becomes, after using 49: 219

(2π)n/2Γ
( n

2 − 1
)

In/2(κ)κ
n/2−1

κn/2Γ(n/2 − 1)(2π)n/2 In/2−1(κ)

=
1
κ

In/2(κ)

In/2−1(κ)

(51)

When i = j = 1, then the expression for the second moment becomes: 220∫ π

0
exp(κ cos θ) cos2(θ) sinn−2(θ)dθA

(
Sn−2

)
=∫ π

0
exp(κ cos θ)

(
1 − sin2(θ)

)
(θ) sinn−2(θ)dθA

(
Sn−2

) (52)

The integral is a difference of two terms, each of which can be simplified as before to yield: 221(
1 − n

κ

) In/2(κ)

In/2−1(κ)
(53)

This procedure can easily be applied to an arbitrary moment, each of the integral involved 222

being expressible using In and the Beta function. 223

Remark. Since µ is not a parameterization of the unit sphere, the Fisher metric defined that 224

way is related to an ambient metric in Rn, defined only on the unit sphere. 225

An obvious embedded dimension n − 2 submanifold of Sn−1 is obtained by taking a 226

unit vector ν and computing the intersection of Sn−1 with an hyperplane H defined by: 227

x ∈ H ⇔ ⟨x, ν⟩ = α α ∈]0, 1[ (54)

An elementary computation proves that the intersection locus is a n − 2 sphere contained 228

in H: 229

|x − αν|2 = 1 − α2 (55)

Without loss of generality, ν can be taken as
(
1 0 . . . 0

)
and the embedding can be 230

written easily as: 231(
x1 . . . xn−1

)
7→
(
α λx1 . . . λxn−1

)
, λ =

√
1 − α2 (56)
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The pullback metric is just the original one scaled by 1 − α2. Loss functions related to the 232

VMF distribution are discussed in [33]. 233

3. Pullback bundles 234

In this section, a neural network with weights W is a mapping N (·, W) : I → O, 235

where I (resp. O) is the input (resp. output) manifold of dimension n (resp. m). Both 236

manifolds are assumed to be smooth, and also the mapping NW . This last assumption is 237

valid when the activation functions are smooth, which is the case for sigmoid functions, but 238

not for the commonly used ReLu function. However, smooth approximations to the ReLu 239

are easy to construct with an arbitrary degree of accuracy, so the framework introduced 240

below can be still applied. 241

As mentioned in the introduction, O is further assumed to be a statistical model 2.1 242

with Fisher metric g. This setting is the one of a neural network whose output is a random 243

variable with conditional density in a family pθ , θ ∈ O. 244

When the weights are kept fixed, the only free parameters are the inputs and the 245

network is fully described by the mapping: 246{
N (·, W) : I → O

x 7→ N (·, W) = pθ(x)
(57)

For the ease of notation, the mapping N (·, W) will be abbreviated by NW(·). When 247

the activation functions in the network are smooth, NW(·) is a smooth mapping and its 248

derivative will be denoted by dNW(· · · ). With this convention, the pullback metric of g by 249

NW(·), denoted g̃, is defined by: 250

g̃(X, Y) = g(dNW(X), dNW(Y)) (58)

Unless the network N is a decoder, g̃ is generally degenerated and does not provide I with 251

a Riemannian structure, so an ambient metric h on I is assumed to exist. The triple (I , h, g̃) 252

is called the data manifold of the network. The kernel of g̃, denoted ker g̃, is the distribution 253

in TI consisting of vectors X such that g̃(X, ·) is the zero mapping. At a point x ∈ I , the 254

vectors in TxI belonging to ker g̃ give directions in which the output of the network will not 255

change up to order 1. Figure 1 represents the case of a one dimensional output space and a 256

2-sphere input space. Since the dimension of the output is less than the one of the input, 257

some moves in the data manifold will not induce any change at the output. Unless the

Figure 1. Kernel of the pullback metric.

258

dimension of ker g̃ is constant, this distribution does not define a foliation. However, this is 259

true locally in the neighborhood of points in I such that dNW(·) has maximal rank. Finally, 260

if E Oπ is an r-vector bundle on O, then its pullback by NW(·) will be denoted in 261

short by ENW . We recall that if E has local charts: 262

(Vi, ξi), ξi : Vi ×Rr → π−1(Vi), i ∈ I
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and I has local charts
(
Uj, ϕi

)
, j ∈ J, then ENW has local charts: 263(

Wji = Uj ∩N−1
W (Vi), ψji

)
, ψji : Wji → Wji ×Rr

ψji(x) = ξi ◦ f ◦ ϕj

(59)

The pullback bundle enjoys a universal property that is in fact the main reason for 264

introducing it in our context. 265

Proposition 3.1. Let
(
Ẽ, π̃, I

)
(resp. (E, π,O)) be a vector bundle on I (resp. O)). For any 266

bundle morphism (η1, η0), there exists a unique bundle morphism (η̃1, Id) such that the following 267

diagram commutes: 268

Ẽ Eη0 E

I I O

η̃1
π̃

η1

η̃0

πη0 π

η0

(60)

where πη0 : (x, v) 7→ x and η̃0 : (x, v) 7→ (η0(x), v). 269

This proposition is a classical one and its proof can be found in many textbooks. The 270

one we give below is very simple, using only local charts. 271

The above construction is constructive and thus gives a practical mean of computation. 272

For a network with fixed weights, e.g. a trained one, the derivative dNW can be efficiently 273

computed by back propagation, so the bundle morphism: 274

TI TO

I O

dNW

πI πO

NW

(61)

has a practical meaning. 275

Introducing the pullback bundle gives the diagram: 276

TI TNWO TO

I I O

dNW

πI πNW

ÑW

πO

NW

(62)

The bundle mapping dNW to TNWO is then the association: 277

(x, v) ∈ Rm ×Rn 7→ (x, dNW · v) ∈ Rn ×Rn (63)

The pullback bundle is thus a mean of representing the action of the network on tangent 278

vectors to the data manifold. As an example, the construction of adversarial attacks given 279

in [34,35] can be revisited in this context, extending it to the general setting of network with 280

manifold inputs. 281

The general problem of building an adversarial attack is, informally, to find, for an 282

input point in the data manifold, a direction in which a perturbation will have the most 283

important effect on the output, hopefully fooling the network. Following [35], we define: 284

Definition 3.1. Let h be a Riemannian metric on the input space. An optimal adversarial 285

attack at x ∈ I with budget ϵ > 0 is a solution to: 286

max
v∈TxI ,h(v,v)≤ϵ

g̃(v, v) (64)

Using 38, this optimization program can be viewed as a local approximation to the 287

one based on the Kullback-Liebler divergence: 288
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Definition 3.2. A Kullback-Liebler optimal adversarial attack at x ∈ I with budget ϵ > 0 289

is a solution to: 290

max
y∈I ,h(x,y)≤ϵ

KL(N (x, W),N (y, W)) (65)

The metric g on TO can be pulled back to TNW by letting: 291

gNW (x; v, v) = g( f (x); v, v) (66)

Due to the special form of the criterion, the optimal point is on the boundary, so that finally, 292

the optimal adversarial attack problem may be formulated as: 293

Definition 3.3. An optimal adversarial attack at x ∈ I with budget ϵ > 0 is a solution to: 294

max
v∈UTxI

ϵ2gNW (dNWv, dNWv) (67)

Where UTI stands for the unit sphere bundle with respect to the metric h. Please note 295

that due to bilinearity, the problem can be solved for ϵ = 1, then let the optimal vector be 296

scaled by the original ϵ. From standard linear algebra, if Gx is the matrix of the bilinear 297

form gNW at x and Hx the one of h, then one can find unitary matrices A, B and diagonal 298

matrices Λ, Σ such that: 299

Hx = AtΛA, Gx = BtΣB (68)

Any vector v in UTxI can be written as: 300

V = AtΛ−1/2w, wtw = 1 (69)

So that finally the original problem can be rewritten as: 301

max
w,wtw=1

wt Mt Mw, M = Σ1/2BdxNW AtΛ−1/2 (70)

Which is solved readily by taking w to be the unit eigenvector of M associated with the 302

largest eigenvalue. This is the solution found in [35] when Hx = Id. 303

In many cases, as the above example indicates, it is more convenient to work uniquely 304

in the input space, thus justifying the introduction of the pullback bundle TNWO. From 305

now, we are going to adopt this point of view. 306

Remark. Please note that a section in TNwI is generally not related to a section of the 307

form 63 in either TO or TI due to the fact that dxNW may not be a monomorphism or an 308

epimorphism. The next proposition gives condition for the existence of global sections in 309

TO associated to global sections in TNWO. 310

Proposition 3.2. In the case of a decoding network, when NW is an embedding, there is a natural 311

embedding of bundles TI TNWOi such that the image of (x, v) is (x, dNWv). The pullback 312

bundle then splits as: 313

TNWO = i(TI)⊕ F (71)

where F has rank n − m. 314

Be careful that in this case, a section of the pullback bundle will not define a global sec- 315

tion in TO since some points of the output space may have no preimage by NW . However, 316

by the extension lemma [36](Lemma 5.34, p. 115), it exists local (global if NWI is closed) 317

smooth vector fields on TO extending it. 318

Proof. If NW is an embedding, NW(I) is a submanifold of O and in an adapted chart, a 319

vector field in TNW(I) can be written as v = ∑n
i=1 vi∂i, where the ∂i, i = 1 . . . n are the first 320

n coordinate vector fields. It thus pulls back to a section ṽ of the same form in TNWO. Now, 321

since dNW is injective, ṽ is the image of a unique section in TI , hence the claim. 322
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Proposition 3.3. If ker dNW has constant rank r, then there exists a splitting TI = ker dNW ⊕ F, 323

TNWO = im dNW ⊕ G and bundle isomorphism F → im dNW that coincides with dNW on the 324

fibers. 325

Proof. By Theorem 10.34, [36](p. 266), ker dNW is a subbundle of TI and im dNW a 326

subbundle of TNWO. In local charts, the morphism dNW gives rise to the decomposition: 327

ker dNW ⊕Rr im dNW ⊕Rm−rdNW (72)

with dNW an isomorphism where restricted to Rr. Passing to local sections yields the 328

result. 329

An important case is the one of submersions, corresponding to encoders in machine 330

learning. In this case, r = m and dNW establishes a bundle isomorphism between F and 331

TNWO. The pullback of Fisher-Rao metric g on TO gives rise to a metric gNW on TNWO, 332

but only to a degenerate metric on TI that can, nevertheless, be quite well understood, as 333

indicated below. 334

Definition 3.4. On the input bundle TI , the symmetric tensor g̃ is defined using the 335

splitting TI = ker dNW ⊕ F, by: 336

g(X, Y) = 0, X ∈ ker dNW , Y ∈ TI
g(X, Y) = gNW (dNW X, dNWY), X, Y ∈ F

(73)

Proposition 3.4. There exists a symmetric (1, 1)-tensor on I , denoted by Θ, such that, for any 337

tangent vectors (X, Y) ∈ TI : 338

h(ΘX, Y) = g̃(X, Y) (74)

Proof. From standard linear algebra, there exists an adjoint tdNW to dNW , defined by: 339

gNW (dNWv, dNWv) = h
(tdNWv, dNWv

)
(75)

with, in local coordinates: 340

tN j
i = hil Nk

l gNW
ij (76)

where N (resp. tN ) is the matrix associated to dNW (resp. tdNW) and, as usual, hil = 341(
h−1)

il . The (1, 1)-tensor Θ is then the product tdNWdNW . 342

Remark. Θ is defined even if dNW is not full rank. 343

Remark. All the relevant information concerning dNW is encoded in Θ. As a consequence, 344

the geometry of an encoder is described by this tensor, hence also the one of an encoder- 345

decoder block. 346

Remark. The tensor Θ has expression gpjN
j
i Np

k in a local orthonormal frame, hence is 347

symmetric. 348

Definition 3.5. Let ∇ be a connection on TI . Its dual connection ∇⋆ is defined by the next 349

equation: 350

∇Zh(X, Y) = h(∇ZX, Y) + h(X,∇⋆
ZY) (77)

where Z is any tangent vector in TI and X, Y are vector fields. 351

352

Definition 3.6. A (1, 1)-tensor Θ is said to satisfy the gauge equation [37] if, for all tangent 353

vectors Z: 354

∇⋆
ZΘ = Θ∇Z (78)



Version October 12, 2023 submitted to Entropy 13 of 16

Proposition 3.5. If Θ satisfies the gauge equation 78, then the (0, 2)-tensor defined by: 355

(X, Y) 7→ h(ΘX, Y) (79)

is ∇ parallel. 356

Proof. For any vector fields X, Y and any tangent vector Z: 357

∇⋆
Zh(ΘX, Y) = h(∇⋆

ZΘX, Y) + h(ΘX,∇ZY)
= h(Θ∇ZX, Y) + h(ΘX,∇ZY)

(80)

hence the claim. 358

Θ, being symmetric, admits a diagonal expression in a local orthonormal local frame 359

(X1, . . . , Xn). When there exists a connection ∇ such that ∇⋆
ZΘX = Θ∇ZX for any vector 360

fields X, Z, parallel transport of the Xi, i = 1 . . . n shows that the eigenvalues are constant 361

and the eigenspaces preserved. The existence of a solution to the gauge equation thus 362

greatly simplifies the study of an encoder, as a local splitting of the input manifold exists. 363

The reader is referred to [37] for more details. In fact, the tensor Θ is defined even if for 364

general networks and the splitting may exist in this setting. This is the case when the rank 365

of dNW is locally constant, hence when it is maximal. A practical computation of Θ can be 366

obtained through the singular value decomposition, as prop. 74 indicates. A numerical 367

integration of the distribution given by the first singular vectors gives rise to a local system 368

of coordinates, defining in turn a connection satisfying the gauge equation (the existence of 369

a global solution has a cohomological obstruction that is outside the scope of this paper). 370

Finally, we introduce below a construction that takes into account the weight influence. 371

As mentioned in section 2, the derivative of the network with respect to its weights is 372

adequately described as a 1-form, thus a section of T⋆O. In fact, when the inner layers 373

of the network are manifolds, the parameters are no longer real values and a suitable 374

extension has to be introduced. One possible approach is to take a connection ∇ on 375

the layer manifold L. Considering a point p ∈ L, the exponential exp∇ defines a local 376

chart centered at p. Given a point q in the injectivity domain of exp∇, one can obtain its 377

coordinates as log∇
p q = p⃗q and the activation of a neuron with input q as α( p⃗q), with α a 378

1-from in T⋆L. In this general setting, a manifold neuron will be defined by its input in an 379

exponential chart, a 1-form corresponding to the weights in the euclidean setting and an 380

activation function. Its free parameters are thus a couple (q, α) ∈ TL⊕ T⋆L. This particular 381

vector bundle is known as the generalized tangent bundle. 382

Recalling 43, it is worth to study the pullback of the generalized bundle TO ⊕ T⋆O. 383

The generalized pullback bundle is then TNWO⊕ T⋆NWO whose local sections are gener- 384

ated by the pullback local sections of the form: 385

(x, v(NW(x)), α(NW(x))) (81)

Please note that the pullback can be performed on any layer, internal or input. Most of the 386

previous derivations can be carried out on the generalized bundle, which must be thus 387

considered as a general, yet tractable framework for XAI. 388

4. A numerical example. 389

In this example, the input data are the handwritten digits from the MNIST database. A 390

neural network with the next architecture was coded in torch 2 and trained on the dataset: 391

• First layer: convolutional, kernel size of 3, nonlinearity sigmoid. 392

• Second layer: convolutional, kernel size of 3, nonlinearity sigmoid. 393

• Pooling layer. 394

• Two linear layers. 395

• Softmax layer. 396
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The input metric is euclidean, the output one is the Fisher metric of the multinomial 397

distribution with ten classes, that is given by the matrix: 398
p−1

1 0 . . . 0

0 p−1
2

. . . 0
...

...
...

...
0 . . . 0 p−1

9

+
1

p10

(
1 . . . 1
...

...
...

)
(82)

Since the output space has dimension 9, the pullback bundle also has dimension 9. At 399

an input point x, a point in the pullback bundle is a couple (x, v) with v a vector from 400

R9 at output point NW(x). On the other hand, the image of the input tangent bundle 401

(simply a vector space in our case) has points (x, dNWu) with u an input vector. We are 402

thus considering a bundle mapping (x, dNWu) 7→ (x, dNWu) where the right-hand term 403

has values in the pullback bundle, equipped with the output Fisher metric. Tensor Θ is 404

computed via singular value decomposition, already implemented in torch. We selected the 405

rotation rate of the singular vector associated to the largest singular value as an indicator of 406

the complexity of the decision process in the neighborhood of an input point. The code was 407

adapted from https://github.com/eliot-tron/CurvNetAttack. A detection of outliers from 408

a sample of 1000 points was performed. A visual analysis reveals that they correspond 409

to poorly drawn digits, as indicated in figure 2 where the two digits with the highest 410

curvature indicator are plotted: The first one is labeled "9", which is quite obvious for a

0 25

0

20

0 25

0

20

Figure 2. Samples with the highest rotation rate.
411

human operator, although the final stroke is vertical, while the second is labeled "7", easily 412

confused with a "1". 413

5. Conclusion and future work 414

In this paper, several important constructions originating from information geometry 415

were surveyed and some new ones introduced. The pullback bundle on a layer allows 416

to describe the behavior of a network with respect to the Fisher information metric, and 417

a simple description can be obtained when a gauge equation is satisfied. One important 418

feature of this construction is its ability to fit in a general framework where layers take their 419

inputs on a manifold. 420

Future work involves a companion paper describing computational procedures and 421

examples from real case studies. An study of the properties of the pullback generalized 422

bundle is also in progress. Finally, the case of networks with non constant rank dNW must 423

be considered. It is believed that they give rise to singular foliations. 424
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