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Abstract

In spite of the significant effects of COVID-19, UAM operations are still expected to grow smoothly and

healthily in the near future. If such dense UAM traffic relies on tactical planning to resolve conflicts in a

decentralized control scheme, urban airspace could soon be heavily congested and airspace complexity could

be overwhelming. In this paper, we propose a Quasi-dynamic Air Traffic Assignment (QATA) model, which

aims to allocate traffic flows among air routes in the planning horizon in order to organize UAM traffic flows

and reduce air traffic congestion and complexity within a centralized strategic planning scheme while meeting

the demand and respecting some criteria. Firstly, UAM traffics are modeled as flows that operate on a 3D

two-way UAM route network. Next, the QATA problem is formulated as an optimization problem involving

network dynamics to minimize the air traffic complexity evaluated by the linear dynamical system and

congestion defined by traffic density and energy consumption. A simulation-based rolling horizon framework

is introduced to decompose the QATA problem into several modified static air traffic assignment problems

in each time interval. In order to overcome the limitations of conventional dynamic traffic assignment

algorithms, a simulated annealing algorithm using parallel computing and a novel neighborhood generation

strategy is proposed to efficiently optimize the problem. By applying the model to a pre-designed large-scale

UAM route network in Singapore’s urban airspace, Experimental studies demonstrate the performance of

the proposed framework and its applicability. Parallel computing can achieve up to three times faster than

the original algorithm. The proposed algorithm significantly reduces the value of the objective function

by (32.20 ± 0.29)% in 143.47 ± 3.74 seconds at the 95% confidence interval of 100 experiments, far better

compared to the representative conventional dynamic traffic assignment algorithms. This study could be

useful to assist air traffic control authorities and air navigation service providers in addressing various issues

in unmanned traffic management.

Keywords: Urban Air Mobility, Unmanned Traffic Management, Air traffic Assignment, Air Traffic
Complexity, Unmanned aerial vehicle, Air traffic flow management



1. Introduction

Urban Air Mobility (UAM) offers on-demand or scheduled air transport services within metropolitan
areas. This concept employs unmanned and manned aerial vehicles for cargo or passenger carrying with
high automation. Despite the huge impact of COVID-19 lasting more than two years, UAM operations are
expected to grow smoothly and healthily on a global scale in recent years (FAA, 2020a, Chen et al., 2022).5

Balakrishnan et al. (2018) estimates that for a metropolis such as Paris, the demand for UAM vehicles for
deliveries could be as high as 8,333 per hour by 2035. Doole et al. (2020) even made a nearly eight-fold
forecast for the same scenario. However, congestion in the urban environment is growing steadily while
available airspace remains roughly the same. To this end, various industry (Singireddy and Daim, 2018,
Lascara et al., 2019), academia (Low et al., 2014, Doole et al., 2021), and government-led (FAA, 2020b, Jang10

et al., 2017, Geister, 2017, Sunil et al., 2015) initiatives have been developed to integrate UAM operations
into the current air transportation system. These projects aim to minimize negative impacts on existing
ATM systems by structuring UAM operations in constrained low-altitude urban areas, such as class G
airspace (Bauranov and Rakas, 2021). The airspace is further segmented into several altitude layers, and
UAM vehicles are expected to operate in fixed route structures and follow the corresponding procedures,15

rules, and performance requirements.
Similar to Air Traffic Management (ATM), Unmanned Traffic Management (UTM) can be divided into

four stages: airspace organization and management, air traffic flow management, separation provision, and
collision avoidance, ranging from the most preventive to the most reactive level. The first two elements
involve strategic planning, which has a long look-ahead time, whereas the last two elements are part of20

tactical planning that involves measures with short-term effects. When the density of UAM operations
reaches a high level, strategic planning is required to organize the airspace and manage the air traffic flow
with the support of automated UAM operations on a highly-integrated UAM route network (Hill et al., 2020,
Evans et al., 2021, Ng, 2020). In addition, strategic planning could also ease the pressure on tactical planning
stages and increase the overall safety, efficiency, capacity, and predictability of the air transportation system.25

The architecture of the UTM system can be broadly classified into three categories: decentralized, cen-
tralized, and federated. In the decentralized architecture, each Provider of Services for UAM (PSU) assumes
responsibility for managing a group of UAVs within its designated airspace by providing conflict resolution
services, which rely on autonomous and distributed data exchange between PSUs. This architecture is cur-
rently the most widely used in industrial applications as it allows aircraft to select their preferred routes30

and maintain safety through the use of tactical collision avoidance systems, such as sense-and-avoid (Yu and
Zhang, 2015). The federated architecture of the UTM system combines both decentralized and centralized
features (Patterson et al., 2021). It enables distributed data exchange among different entities, with multiple
UTM service providers responsible for managing UAVs within their designated airspace. The centralized
architecture of the UTM system is characterized by a single PSU with a centralized control center that is35

responsible for managing all UAVs within the urban airspace by collecting, processing, and disseminating
relevant information to all UAVs involved. This study specifically focuses on the centralized UTM system,
as it has been suggested that centralized UTM systems offer significant advantages for high-density and com-
plex UAM operations in densely populated metropolitan areas, particularly during the strategic planning
phase (FAA, 2020b, Prevot et al., 2016, Goodrich and Barmore, 2018). It is important to emphasize that not40

all aspects and phases of this UTM architecture require centralization. While air traffic flow management
in the strategic planning phase benefits from centralization, other functions such as information sharing,
geo-awareness, fleet management, and conflict detection and resolution can be provided in decentralized or
federated ways. In addition, the needs, scalability, requirements, and regulations of different regions or ar-
eas may vary, leading to the adoption of diverse UTM approaches. Consequently, the architecture of future45

UAM applications may involve a combination of decentralized, federated, and centralized UTM systems
(Bauranov and Rakas, 2021). This approach allows for flexibility and adaptability in UTM operations, as
different components can be tailored to specific needs and implemented using the most suitable architecture.
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As a strategic planning model deployed in centralized systems, air traffic assignment turns out to be a key
aspect in designing new operation concepts and supporting automated decision-making in UAM. It refers to50

a broad optimization term related to routing and flow control in air transportation systems (Delahaye and
Puechmorel, 2013a). The first model of air traffic assignment is developed as early as in 1954. This model
addressed the assignment for a given fleet to carry an anticipated traffic load over several routes at the
minimum cost. Since then, a variety of traffic assignment models have been developed for solving routes and
slot allocation problems (Farges and Delahaye, 2001, Deschinkel et al., 2002, Delahaye et al., 2005, Nosedal55

et al., 2014), air traffic flow management (Strub and Bayen, 2006, Bertsimas et al., 2011, Zhang et al., 2012,
2015), en-route network management (Delahaye and Puechmorel, 2013b, Haouari et al., 2009), etc. Some
other air traffic assignment studies have been carried out for different purposes, including noise reduction
(Netjasov, 2008, Ganić et al., 2018, Chatelain and Van Vyve, 2018, Ho-Huu et al., 2019), and emission
reduction (Economou et al., 2007, Mirosavljević et al., 2011, Ho-Huu et al., 2019). In the context of UTM,60

most research has focused on UAV task assignment (Jiang et al., 2017, Zhou et al., 2018, Cheng et al.,
2019, Liu et al., 2019). Nevertheless, a majority of previous research dealt with individual aircraft from a
microscopic perspective. For high-density UAM traffic, the Eulerian approach, which focuses on analyzing
aggregate measures and characteristics of traffic flow as a whole, is preferred over the Lagrangian approach
of tracking individual trajectories (Bombelli, 2017). Given the uncertainty of actual take-off times during65

planning and the challenges of tracking each trajectory, the Eulerian perspective provides a macroscopic
view of traffic flow, considering overall patterns and congestion levels. While the Lagrangian approach is
capable of addressing current real-world problems, it can pose challenges due to computational complexity
and calibration difficulties when envisioning future scenarios where the quantity of UAM aircraft in urban
airspace may differ significantly from the existing number of aircraft (Mollier et al., 2019).70

To provide a comprehensive evaluation of the level of disorder in the UAM route network, it becomes
essential to aggregate the dynamics of individual vehicles into the air traffic flow to gain insights into the
overall flow characteristics. In terms of aggregate measures, Congestion is an important estimator of traffic
conditions. However, it is highly correlated with traffic density. Without involving traffic dynamics, the
congestion reveals only partial information about the traffic condition. For example, in a ground-based Air75

Traffic Control (ATC) system, air traffic controllers may continue to accept structured air traffic flow when
airspace capacity is exceeded but may refuse disordered air traffic even if the capacity threshold is not reached
(Delahaye and Puechmorel, 2013a). It is well established that the disorder of traffic situation is ultimately
associated with the difficulty and effort of managing air traffic in the specified airspace (Prandini et al.,
2011). This term is defined as air traffic complexity, which is an intrinsic measure involving the dynamic of80

air traffic, independent of airspace structure and ATC systems. Numerous air traffic complexity metrics have
been explored, including convergence metric (Delahaye and Puechmorel, 2000), geometric metric (Delahaye
and Puechmorel, 2000), proximity metric (Delahaye and Puechmorel, 2000), clusters metric (Histon et al.,
2002, Koca et al., 2019), Grassmannian metric (Delahaye and Puechmorel, 2013c), König metric (Essén,
1993, Delahaye et al., 2002, Juntama et al., 2020), collision metric (Radanovic et al., 2018), graph-based85

metric (Isufaj et al., 2022), optimal control-based metrics (Lee et al., 2007), machine learning-based metrics
(Zhang et al., 2021), etc. Although these metrics have been demonstrated to be effective in typical traffic
situations, most metrics are not designed for complex and dense traffic. In addition, the spatial-temporal
information is not taken into account in many of the previous works. To address these challenges, Linear
Dynamical Systems (LDS) is introduced in this study to measure the complexity of air traffic and has been90

successfully applied in many studies (Delahaye and Puechmorel, 2000, Delahaye et al., 2002, 2004, Delahaye
and Puechmorel, 2010, Treimuth et al., 2015, Juntama et al., 2022). With a strong theoretical framework,
LDS evaluates the air traffic complexity by describing the evolution of a given traffic situation. It is able to
efficiently quantify the level of disorder and interaction between a large number of aircraft.

The route choice of each traveler is influenced by the route condition of the UAM network, which in turn95

is determined by the route choices and flow patterns observed at different time intervals (Chiu et al., 2011).
To determine the optimal traffic flow pattern in traffic assignment, a two-step process is required (Ameli
et al., 2020a): (1) Constructing the route network by identifying feasible paths between Origin-Destination
(OD) pairs, and (2) Calculating the optimal path flow based on demand and network dynamics. Previous
studies by the authors (Wang et al., 2021, 2022a,b) have contributed to both steps. For the first step,100
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Wang et al. (2022a) developed a methodology to design route networks for future UAM operations, aiming
to minimize noise impact while maximizing flight safety and efficiency. On the other hand, Wang et al.
(2021) and Wang et al. (2022b) focused on the second step by decreasing the intrinsic air traffic complexity
of UAM operations. Wang et al. (2021) introduced a Static Air Traffic Assignment (SATA) model for 2D
UAM transport networks and proposed a hybrid algorithm based on Dafermos’ Algorithm (DA) to optimize105

the problem. Wang et al. (2022b) extended this work to 3D UAM operations. A two-step algorithm that
incorporates Simulated Annealing (SA) and DA is introduced to approximate the optimal solution. However,
some assumptions of these models, such as static demand and static network loading, are impractical given
the complex and ever-changing traffic conditions. It is crucial to include temporal information in network
dynamics. Additionally, these optimization methods were primarily designed for small-scale networks, and110

their performance may deteriorate when applied to larger networks.
In this paper, we propose a Quasi-dynamic Air Traffic Assignment (QATA) framework to allocate high-

density traffic demands, estimated within a planning horizon, to paths between ODs in existing air trans-
portation networks. The goal is to minimize air traffic complexity and congestion. The term quasi is due
to the fact that the demand is discrete in time. Initially, the UAM route network is represented as a graph,115

with links modeled as volume segments and nodes representing vertiports, delivery stations, and waypoints.
In the centralized control scheme, a QATA problem is formulated to obtain an optimal flow pattern from
a macroscopic perspective by structuring the high-density hourly UAM traffic into flows. Traffic dynamics
and flow propagation is considered in the model. The objective function consists of the air traffic complex-
ity metric based on LDS and congestion related to flow and energy consumption. To efficiently solve the120

QATA problem, we propose a simulation-based rolling horizon framework. By decomposing the original
problem into several sub-problems, a modified Static Air Traffic Assignment (SATA) problem is addressed.
Traditional optimization algorithms used for dynamic traffic assignment, which are based on path-swapping
descent direction methods, are often unsuitable for realistic problems lacking an analytical form or involving
costly criteria evaluated through complex simulation processes (Ameli et al., 2020a). Moreover, these algo-125

rithms do not perform well in larger-scale networks (Patriksson, 2015). To this end, a Parallel Simulated
Annealing (PSA) algorithm that utilizes parallel computing and a novel neighborhood generation strategy
is introduced to efficiently solve the QATA problem. This study is one of the first attempts to conduct air
traffic assignments for dynamic UAM operations from a macroscopic perspective. Based on the previous
discussion, the contribution of this paper is summarized as follows:130

• a macroscopic formulation of the QATA problem is introduced to handle high-density time-varying
demands in future UAM route networks;

• aggregate measurements of air traffic complexity and congestion are modeled based on the intrinsic
characteristic of UAM traffic dynamics, flow distribution, and energy consumption;

• within the simulation-based rolling horizon framework, a PSA algorithm using parallel computing and135

a novel neighborhood generation strategy is developed to efficiently optimize the QATA problem;

• validation of the proposed model through a scenario of parcel delivery service with high-density traffic
volume in a large-scale UAM route network in Singapore’s urban airspace.

2. Quasi-dynamic air traffic assignment model

2.1. Problem description140

NASA developed a framework to measure the UAM Maturity Level (UML) (Goodrich and Theodore,
2021), which is intended to categorize significant phases during the evolution of the UAM transportation
system from the current state to a highly developed future state. The problem addressed here focuses on
the mature state of UML, which corresponds to high-density and complex UAM operations in a densely
populated area. Given time-dependent demands between vertiports and delivery sites, UAM flights are145

expected to operate as flows from origins to destinations following air routes in the existing UAM route
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network in low-altitude urban airspace. The path flow patterns optimized by the QATA model will be
provided to operators during the pre-flight planning phase.

The planning horizon is discretized into K equal time intervals. The time-varying demand Dw,k refers
to the assigned flow on OD pair w at time interval k, which can be obtained in advance from Providers of150

Services for UAM (PSU) and Supplemental Data Service Provider (SDSP) services (FAA, 2020b).
The UAM route network is modeled as a directed graph G(V, E) consisting of a set of nodes V and a set

of links E . A node v represents either a waypoint, a vertiport, or a delivery station. Their coordinates are
fixed. A link e represents an airway that connects a pair of nodes. All links are directed and can be classified
into horizontal links Eh and vertical links Ev. Furthermore, Ev includes upward links Eu and downward links155

Ed. Let W be the set of OD pairs. For each OD pair w, we denote Pw the path set consisting of all feasible
paths between w in G.

The main symbols and variables used in the following sections are listed in Table 1.

Table 1: Nomenclature used in this paper.

Term Description

Air route network
G UAM route network
e ∈ E A link in the set of links of G
Eh, Eu, Ed Horizontal, upward, and downward links
v ∈ V A node in the set of nodes of G
w ∈ W An OD pair in the set of OD pairs of G
p ∈ Pw A path in the set of feasible paths connecting OD pair w
Ue UAM volume segment of link e
Av Cylindrical airspace around node v
g ∈ ge A point in the set of grid points of link e
Zv Intersection zone of node v
γ Set of proportions for all paths flows in all OD pairs during the planning horizon
γw,k Set of proportions for all path flows in OD pair w in time interval k
γp,k Proportion for path flow in OD of p in time interval k
τp,g Free-flow travel time from the origin of a feasible path p to a point g ∈ p
Fwg,p,k Average flow that traverses a grid point g on path p of OD pair w in time interval k

F̂g,k Accumulative path flow on a grid point g in time interval k
f in
e,k, f

out
e,k Inflow and outflow of link e in time interval k

f c
e Traffic flow capacity for link e
Dw,k Demand of OD pair w in time interval k
ρg,k Traffic density of point g in time interval k
se,k Average speed of UAM traffic flow on link e at time interval k
αe Energy consumption factor of link e
δe,p = 1 if link e is contained in path p, otherwise 0
δeg,p = 1 if the link e containing grid point g belongs to path p, otherwise 0

2.2. UAM route network modeling

On the basis of the operation volume segment developed by FAA (2020b), each link e in the route160

network is modeled as 3D blocks of airspace, referred to as UAM volume segment Ue. It is a performance-
based 3D route segment consisting of corridors designed to support one-way or two-way point-to-point
UAM operations. All UAM vehicles operating within the volume segment should follow specific rules,
procedures, and performance requirements with support from the PSUs. The size of Ue is determined by the
performance capabilities of the UTM infrastructure and UAM system. For example, with higher navigational165

performance, UAM vehicles are allowed to operate in smaller volumes (Decker and Chiambaretto, 2022).
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The number of parallel 3D blocks for each UAM segment is denoted as Ns. Figure 1 illustrates an example
of two-way UAM volume segments with Ns = 3 for a link e ∈ E and its inverse link e′. As shown in Figure
1a, each volume segment is composed of several air lanes, which are further divided into grids representing
the associated flow information. The center points of grids on a volume segment Ue are denoted as density170

points ge, which is illustrated in Figure 1b. Each point g ∈ ge is characterized by static properties including
coordinate (xg, yg, zg), the direction of velocity θg if it belongs to a horizontal link, and dynamic properties
in time interval k including average flow speed sg,k and density ρg,k. Thereinto, the θg and sg,k correspond
with the traffic flow traversing the grid. The grid width is denoted as Lw. Given a predefined standard
grid length Ll, the coordinates of density point ge are calculated from the coordinates of endpoints of the175

associated link such that all grid length Lg equals Ll except the mid-grid length is in [Ll, 2Ll[, as each link
cannot be divided equally by Ll. Due to the large differences in the length of horizontal and vertical links,
Ll has different values Lh and Lv for horizontal and vertical links, respectively.

(a) 3D representation of two-way UAM volume segments. (b) The top view of Figure 1a.

Figure 1: An example of two-way UAM volume segments.

In this study, the amount of air traffic flow distributed per grid segment g during time interval k is
defined as the traffic density ρg,k:180

ρg,k =
F̂g,k
sg,k

(1)

where F̂g,k is the accumulative path flow on point g and is given later in equation (11).

2.3. Mathematical formulation of QATA problem

2.3.1. Decision variables and constraints

The decision variables in this problem are the proportion of path flow in OD pairs during the planning
horizon. Unless otherwise noted, path flow refers to the flow that passes through the origin of a path. Rather185

than link-based models that require traffic control for each link, the benefit of this formulation is that it can
provide accurate path-based flow allocation results, which can facilitate the decision-making process. Such
decision variables can be formulated as follows:

γ = {γw,k|w ∈ W, k = 1, . . . ,K} (2)

where
γw,k = {γp,k|p ∈ Pw}, w ∈ W, k = 1, . . . ,K (3)

The decision variables are non-negative and satisfy the conservation law:

γp,k ≥ 0, p ∈ Pw, w ∈ W, k = 1, . . . ,K (4)∑
p∈Pw

γp,k = 1, w ∈ W, k = 1, . . . ,K (5)

Then, the path flow can be derived as:190

Fp,k = Dw,kγp,k, p ∈ Pw, w ∈ W, k = 1, . . . ,K (6)
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The non-zero path flow should be greater than a threshold to make it meaningful for the assignment:

Fp,k ∈ {0} ∪ [Ft, Dw,k], p ∈ Pw, w ∈ W, k = 1, . . . ,K (7)

Unlike static formulation, the flow may not traverse a link on a path all the time during a given time
interval. To model the propagation of traffic flow, we first introduce the travel time at free-flow conditions
from the origin of a feasible path p to a point g on this path:

τp,g =
∑
e∈pg

Le
se

+
d(vf

g, g)

seg
, g ∈ p, p ∈ Pw, w ∈ W (8)

where pg is the truncated route segments from the origin of path p to point g, vf
g is the final node of pg,195

Le is the length of link e, se is the free flow speed on link e, and eg is the link containing point g. Figure
2a gives an example for calculating the travel time from the origin of a path to a point g under network
representation.

Since τp,g > 0, then ∃N ∈ N and τε ∈ [0, Td[ such that

τp,g = NTd + τε, (9)

where Td is the common duration for all time intervals. The average path flow for a path p on a certain200

point g during the k-th time interval can be calculated as the weighted average of flows in the previous N -th
and (N + 1)-th time interval uniformly distributed in each corridor, where the weight is linked to the time
gap τε:

Fg,p,k =
1

Ns

[
(1− τε

Td
)Fp,k−N +

τε
Td
Fp,k−N−1

]
, p ∈ Pw, w ∈ W, k = 1, . . . ,K (10)

This rationale can be interpreted in Figure 2b, a case τp,g < Td. The path flow in time intervals [t0, τp,g],
[t1, τp,g], and [t2, τp,g] are flows from previous time steps that cannot be finished. Thus the average path205

flow on a point g in each time interval has to be calculated across two timesteps in that case.

(a) Network representation of travel time from the ori-
gin O to a point g.

(b) The real-time path flow through point g given the
path flow for two time periods Fp,0 and Fp,1 when
the travel time τp,g is less than the duration of time
interval Td.

Figure 2: Illustration of the travel time and the real-time path flow at point g on a path p connecting OD pair w in an example
network.

The accumulative path flows on a point g except for nodes in a k-th time interval can be derived as:

F̂g,k =
∑
w∈W

∑
p∈Pw

Fg,p,kδeg,p, g ∈ G \ V, k = 1, . . . ,K (11)

The flow on a link e in time interval k can then be defined with two parts: the inflow f in
e,k and the outflow

fout
e,k , where f in

e,k is the total flow of Ns grid points on link e that is closest to the start point es:

f in
e,k =

∑
g∈gs

F̂g,k, gs = arg min
g′s⊂ge,|g′s|=Ns

∑
g∈g′s

d(g, es), e ∈ E , k = 1, . . . ,K (12)
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and fout
e,k is the total flow through the Ns grid points on link e that is closest to the end node ed:210

fout
e,k =

∑
g∈gd

F̂g,k, gd = arg min
g′d⊂ge,|g′d|=Ns

∑
g∈g′d

d(g, ed), e ∈ E , k = 1, . . . ,K (13)

with d(a, b) the Euclidean distance between point a and b.
Due to the limited traffic flow capacity f c

e for each link, the link inflow and outflow are constrained so
that the average flow speed se,k can be specified as a reasonable value independent of the traffic density:

f in
e,k ≤ f c

e , e ∈ E , k = 1, . . . ,K (14)

fout
e,k ≤ f c

e , e ∈ E , k = 1, . . . ,K (15)

where f c
e is the traffic flow capacity for link e.

2.3.2. Objectives215

Firstly, we introduce the congestion cost Ge,k for each link e in time interval k. In addition to evaluating
the traffic density of incoming and outgoing flow, the energy consumption of the air traffic flow on each link
is taken into account. Ge,k is defined as follows:

Ge,k =
∑

R∈{in,out}

aαef
R
e,k + bfRe,k

2
, e ∈ E , k = 1, · · · ,K (16)

where a, b are coefficients, and αe is the energy consumption factor of link e defined to model the UAM
operational efficiency according to the characteristics of links:220

αe =

 Leϕh, e ∈ Eh
Leϕu, e ∈ Eu
Leϕd, e ∈ Ed

(17)

with ϕh, ϕu, and ϕd the efficiency coefficient per distance unit for horizontal Eh, upward Eu and downward
links Ed, respectively.

The linear and quadratic form of link flow represents respectively the energy of displacement and the
energy to maintain the free flow speed. The purpose of coefficients a and b is to pre-weight these terms. A
feasible selection of these coefficients in the literature is a = 1/|ᾱf̄k|, b = 1/(4f̄2

k ) (Delahaye, 1995), where225

ᾱ =
∑
e∈E αe/|E|, f̄k is the average flow of all links in time interval k:

f̄k =

∑
e∈E

f in
e,k + fout

e,k

2|E| (18)

Although the formulation of congestion cost is inspired by traditional ATM studies (Delahaye, 1995), the
selection of coefficients does not rely on dimensional quantities but rather on relative weights assigned to flow
and different energy consumption factors, which enables the extension of the formulation of congestion cost
to the context of UTM. However, as mentioned previously, the congestion only reveals partial information230

about the complexity of UAM traffic. For example, Figure 5 gives four traffic scenarios with the same traffic
density, but with very different complexity in managing the traffic. To access the interdependency between
congestion and the difficulty of managing air traffic, the objective function takes into account the air traffic
complexity cost and congestion cost.

In 3D UAM route networks, the air traffic complexity mainly occurs at intersections. The interactions235

between the different amounts of path flow from different directions can be complicated. Before modeling
the complexity cost, we first define cylindrical airspace Av around each node v. One way to determine the
size of Av is to include the first Nr rows of the grid closest to node v in the horizontal and vertical direction.
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The density points involved in the cylinder are the observations to measure the air traffic complexity. Figure
3 provides an example of the cylindrical airspace around a node, which is connected by several one-way or240

two-way links. The density points involved in the cylinder are used to measure the air traffic complexity
around the node.

Figure 3: Example of cylindrical airspace around a node to measure the complexity of air traffic

The Linear Dynamical System (LDS) provides a strong theoretical framework for evaluating the intrinsic
air traffic complexity by measuring the local disorder and interaction of UAM vehicles in a given zone of
airspace. By representing the behavior of the system using a set of linear equations, the LDS model can245

effectively capture and quantify the level of disorder and interaction among a large number of aircraft,
independent of airspace structure and ATC system. In addition, LDS contributes to improving situational
awareness by providing a predictive framework that assists in anticipating and understanding the future
behavior of UAM vehicles within specified airspace (Delahaye et al., 2022).

In three-dimensional Euclidean space, the LDS has the following form:250

ẋ = Ax + b (19)

with x the state vector, ẋ the speed vector. A ∈ R3×3 a coefficient matrix, and b ∈ R3 a coefficient vector.
To fit the observations of the aircraft in each cylindrical airspace Av around node v at time interval k

with LDS, we propose a Weighted Minimum Mean square Error (WMMSE) criterion. Traffic density ρg,k is
added in this formulation to indicate the importance of traffic flow on each grid g to the LDS over the time
interval k. The WMMSE is given by:255

min
A,b

∑
g∈Av

ρg,k‖ẋg,k − (Axg + b)‖2 (20)

where xg = (xg, yg, zg)
> is the position vector of point g. The speed vector of a point g depends on the type

of associated link eg:

ẋg,k =

 sg,k(cos(θg), sin(θg), 0)>, eg ∈ Eh
(0, 0, sg,k)>, eg ∈ Eu
(0, 0,−sg,k)>, eg ∈ Ed

(21)

where sg,k is the average flow speed on eg in time interval k, and θg is the heading of flow.

The coefficient matrix Â and coefficient vector b̂ that minimizes the WMMSE can be calculated by
Singular Value Decomposition (SVD). The calculation details of minimizing the WMMSE is outlined in260

Appendix A. Wang et al. (2022b) provided a proof that enables us to partially characterize the qualitative
behavior in terms of the evolution of the LDS by examining the eigenvalues λ = {λ1, λ2, λ3} ∈ C3 of the

coefficient matrix Â. In this study, these eigenvalues indicate the complexity of the air traffic involved in the
LDS. More specifically, the real part of each eigenvalue determines the stability of a particular component
of the system state (Sayama, 2015). The positive real part of an eigenvalue is associated with the expansion265

mode and introduces divergence. The negative real part is associated with the contraction mode and
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introduces convergence. Furthermore, the larger the absolute value of the real part of λ, the faster the LDS
evolves. In terms of the imaginary part of λ, it has no impact on the stability of LDS as it determines the
rotation tendency of the system. Those dynamics of LDS related to λ can be described in the complex plane
in Figure 4.270

Figure 4: Evolution properties of the LDS in relation to eigenvalues of associated coefficient matrix A

To bring theory closer to practice, four typical 3D traffic situations (translation, rotation, convergence,
and divergence) and the eigenvalue loci of λ associated with each situation have been presented in Figure
5. The translation and rotation cases are two typical organized traffic situations with no potential conflict
at that moment, as the distance between trajectory points remains constant. As we can see in Figure 5a
and 5b, the real part of all eigenvalues is zero. In the convergence case, according to Figure 5c, the relative275

distances between trajectory points decrease with time. The eigenvalues are real negative, indicating that
the LDS evolves in a contraction mode. A high level of air traffic complexity occurs as the trajectory points
are converging. In the divergence case, according to Figure 5d, the real part of eigenvalues is positive, which
corresponds to an expansion mode. The trajectory points are diverging and their relative distances increase
with time, which avoids potential conflicts.280

In sum, the translation, rotation, and divergence cases are linked to organized traffic situations, while the
convergent case indicates unorganized traffic. Therefore, the eigenvalues with a negative real part represent
disorderly traffic, and larger the absolute value represents more complex traffic conditions. Furthermore,
it is important to note that most real-world traffic situations are often a combination of these typical
scenarios. By blending different proportions of translation, rotation, convergence, and divergence, it becomes285

possible to represent and analyze a wide range of complex traffic dynamics that occur in practical air
traffic scenarios. This flexibility in combining typical situations allows the associated LDS for providing a
quantitative framework to study the mixed traffic situations and the intricate nature of real-world air traffic
complexity.

We then define the complexity cost Xv,k for each node v over a time period k as the sum of the absolute290

value of negative real parts of λ of the LDS in the cylindrical airspace Av:

Xv,k =

3∑
i=1

|min(Re(λi), 0)| (22)

In order to better understand how the LDS-based air traffic complexity metric relates to air traffic
assignment, we will provide an example for further explanation. It involves two most common scenarios in
structured airspace: a merging case, where two flight paths converge and then continue as a single flow, and
a crossing case, where two flight paths intersect without merging.295

These two scenarios are visualized in Figure 6 within the context of SATA. In each scenario, upstream
links have 100 link flows. Density points that are adjacent to each other are set 1km apart, and the average
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Figure 5: Eigenvalue loci for four typical traffic situations in three-dimensional airspace. The black dots represent the observed
trajectory points of aircraft, the red arrows indicate their speed vectors, and the blue arrows indicate the speed vectors estimated
by the LDS at equidistantly-partitioned points.

flow speed is 10 m/s. In the merging scenario, the traffic complexity calculated by equation (22) is notably
high, approximately 6. Conversely, the crossing scenario has negligible complexity, approximating zero.

In a merging scenario, as the two traffic flows come together, they need to merge into a single flow. This300

requires careful speed and altitude adjustments to maintain safe separation between all aircraft, thereby
increasing the associated air traffic complexity. In contrast, in a crossing scenario, while there is a point of
intersection, aircraft are typically separated vertically to maintain safety. This simplifies the control task
compared to the merging scenario, leading to a lower air traffic complexity. It’s also worth noting that in
our case, the crossing traffic flow is symmetric, which can potentially lead to a complexity metric of zero.305

This results from the fact that symmetric flows essentially balance each other out and no additional control
efforts are needed for deconfliction.

These observations also align with simulation results from the Bluesky simulator, which indicate that the
crossing case has a higher capacity compared to the merging case, and also exhibits more effective tactical
deconfliction (Chen et al., 2022, 2023).310

Finally, the objective function C is defined as the weighted sum of the air traffic complexity and conges-
tion of UAM operations:

C = (1− φ)

K∑
k=1

∑
v∈V

Xv,k + φ

K∑
k=1

∑
e∈E

Ge,k (23)

where φ ∈ [0, 1] is the weighting parameter to control the cost of each group. Since these two costs measure
the disorder of air traffic from different perspectives, they can be seen as independent of each other. The
parameter φ should be selected to balance the magnitude of the total complexity cost and congestion cost315

to make them equally important.

3. Optimization algorithm for the QATA problem

3.1. Simulation-based rolling horizon framework

Conventional traffic assignment algorithms assume the cost function to be convex and separable with
respect to link flow, which is not always true in real operations. For example, in some complex traffic320
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Figure 6: A toy example of integrating the LDS into air traffic assignment

situations such as the intersection of several links with dense traffic flow, the cost function can be modeled
to evaluate the air traffic complexity in a non-separable way, such as equation (22). In addition, the cost
function may be also non-convex in some cases, even without analytical form.

Figure 7: Flowchart of a simulation-based framework for solving the QATA optimization problem. The simulation module
includes the UAM representation of the route network, and the optimization module contains the optimization algorithm in a
nested loop over OD pairs and rolling horizons.

As a consequence, a simulation-based framework is proposed to solve the QATA problem. The associated
flowchart is shown in Figure 7. The framework begins with an initial path flow pattern. To provide high-325

quality initial flow patterns to improve the efficiency of the simulation module, we investigate a randomized
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approach based on the All-Or-Nothing (AON) assignment to initialize flow patterns with relatively low
objective values. For each OD pair w and time interval k, firstly, a path flow pattern is randomly generated.
Then, based on the current path flows, we define the path cost in the following form:

Cp,k = (1− φ)
∑
v∈p

Xv,k + φ
∑
e∈p

Ge,k, p ∈ Pw, w ∈ W, k = 1, · · · ,K (24)

Then, the AON assignment is performed on paths in Pw:330

γp,k =

{
1, p = arg min

p∈Pw

Cp,k

0, otherwise
(25)

This initialization strategy is adapted to the objective function. It is able to provide an initial path flow
pattern with relatively low air traffic complexity and congestion, which will improve the efficiency of the
optimization algorithm.

Two main modules are contained in this framework: the simulation module and the optimization module.
The simulation module includes the modeling of a 3D route network under UAM representation. Together335

with the network dynamics, it supports calculating the characteristics of the route network and the objective
function C . In the optimization module, a rolling horizon approach is introduced to address the QATA
problem in the planning horizon by decomposing the original problem into several sub-problems. This
approach results in substantial savings in computational time while preserving the relationship between the
different time intervals. Each sub-problem k can be formulated as a modified SATA problem, with the340

objective function as

Ck = (1− φ)
∑
v∈V

Xv,k + φ
∑
e∈E

Ge,k, k = 1, . . . ,K (26)

and constraints defined by equations (4)-(15).

Figure 8: General strategy of the optimization module to approximate the optimal flow pattern of QATA using rolling horizon
approach. This example includes six time intervals and the maximum time gap is less than the duration of the time interval.
Inner loops are conducted for each OD pair in each time interval.

In order to evaluate Ck, previous time intervals {k − 1, · · · , k − Nmax} should be considered, where
Nmax = dmaxg∈p,p∈Pw,w∈W τp,g/Tde. Indeed, due to the residual demand, except for the first time interval,
the flow pattern in each time interval is determined based on the results of Nmax previous time intervals.345

Figure 8 gives the scheme of the rolling horizon, corresponding to the case in which the maximum time gap
is less than the time interval Td, that is, Nmax = 1. In this study, the time length of each rolling horizon
and the time shift are both set to Td. The start time and the end time of each rolling horizon are aligned
with each time interval. Sliding along the time axis, the rolling horizon begins at t0, and the optimization
algorithm is applied in the time interval [t0, t1]. Next, the rolling horizon is shifted by Td, and the current350
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interval for optimization becomes [t1, t2]. The receding process is repeated until the final rolling horizon
[tK−1, tK ] is reached. Since the maximum time gap in this example is less than the duration of the time
interval, in Figure 8, only the current and last time intervals are involved to calculate Ck in time intervals
k = 1, · · · , 5. The path flow is updated in each OD according to the cost function or performance indicators.

The optimization module, as shown in Figure 7, directly controls and updates the decision variables γ in355

a nested loop over OD pairs and sub-problems. This formulation strengthens the connection between sub-
problems by collaboratively adjusting the decision variables involved in each rolling horizon. A simulated
annealing algorithm using parallel computing and a novel neighborhood generation strategy is proposed as
the optimization algorithm in the optimization module, which will be introduced in the next section. Thus,
based on the current decision variables, the simulation module generates the flow pattern for calculating360

the value of objective function C , which guides the optimization module to approximate the optimal QATA
solution with low air traffic congestion and complexity. Finally, each outer loop performs a convergence test.
If the stopping criterion is reached, the whole framework will be terminated.

The main advantages of this framework can be listed as follows:

• The route network has been already designed in the previous study. A feasible path set is created in365

advance for each OD. Each feasible path set includes K-shortest paths that minimize operational cost,
efficiency cost, and safety cost of the route network. This avoids the heavy computation of searching
shortest paths and extra cost function evaluation for large-scale route networks.

• The rolling horizon approach in the optimization module can reduce the problem size and computa-
tional burden of cost function evaluation. The decision variables involved in each rolling horizon are370

collaboratively updated to strengthen the connection between sub-problems. Moreover, it also enables
a refined optimization with fewer uncertainties in the search space.

• Other than most traffic assignment algorithms based on several simulation environments, only one
simulation environment will be created for each individual process, which improves the calculation
efficiency.375

3.2. Parallel simulated annealing algorithm

As the QATA is an optimization problem with continuous variables and a non-differentiable objective,
from the operational point of view, a near-optimal solution is required, rather than a globally optimal
solution, which exists theoretically but is difficult to achieve in the limited computational time. The meta-
heuristic algorithms are very suitable for such problems. They are capable of handling NP-hard problems380

with high-dimensional state spaces. The SA is a commonly used non-population-based metaheuristic op-
timization algorithm. Analogous to physical annealing in metallurgy, it has the stochastic convergence
property (Kirkpatrick et al., 1983). In this study, we redesign the classical SA algorithm and introduce a
PSA algorithm with a novel neighborhood generation strategy and parallelized cost function evaluations to
efficiently optimize the simulation-based QATA problem.385

The asymptotic convergence of the SA to the global optimum is highly dependent on the selection
of neighborhood (Fleischer and Jacobson, 1999). For the QATA problem, we propose a novel strategy
to generate the neighborhood solution. The pseudocode is presented in Algorithm 1. To generate the
neighboring solution that moves effectively and efficiently, we focus on transferring the flow from one path
to another in each OD pair in each transition. The outflow and inflow paths are chosen randomly, whereas390

the outflow path is chosen only from the paths with the non-zero flow. To avoid redundant operations on
paths with less traffic, we determine the transferring flow σ by comparing the flow of outflow path γpi,k with
the threshold Ft/Dw,k (line 6). If γpi,k is larger, the flow to be transferred will be drawn from a uniform
distribution between zero and γpi,k. Otherwise, the outflow path will transfer all its flow. In this way, only
constraints (14) and (15) are required to be ensured, and all other constraints are satisfied.395

Given a neighboring solution, we need to update the objective function to determine whether to accept
this solution. Due to the separability of the objective function (26) of rolling horizons, it is noteworthy
that the objective function may be updated through the simulation module without involving all decision
variables, by calculating the incremental difference of the objective function value. To further speed up the
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optimization algorithm, the objective function is evaluated in parallel. Unlike problem-independent par-400

allelization methods that involve frequent evaluations of the objective function (Onbaşoğlu and Özdamar,
2001), we design a problem-dependent parallelization approach by dividing ∆Cw,k among multiple threads.
As the evaluation of the objective function is computationally expensive, especially in solving the WMMSE
and computing the eigenvalues, the objective function is only calculated if necessary and updated incremen-
tally. The pseudocode of this parallel computing strategy is formulated in Algorithm 2. After completely405

computing the objective function (23), for each OD pair w and rolling horizon k, we first generate the
neighboring solution and submit the evaluation of associated complexity costs to the task queue (lines 2-4).
The task queue is executed concurrently by multiple threads and placed in a completed task queue (lines
5-7). A thread pool is used in this process to avoid latency. The congestion costs are not involved in
parallel computing as they are straightforward to compute. The change in the objective function value of410

neighboring solutions is computed based on the completed task queue (lines 8). The Metropolis criterion is
used as the acceptance criterion (Metropolis et al., 1953). If the generated neighboring solution is accepted,
the current solution and costs will be updated in terms of the impacted paths (lines 9-13).

Also note that, after the cost evaluation and update for each time interval, the complexity cost for the
next time interval is required to be completely computed to update with the modifications of the flow pattern415

in the last time interval.

Algorithm 1 Neighborhood generation method for QATA problem

1: procedure NeighborhoodGeneration(γw,k)
2: do
3: γ̂w,k ← γw,k
4: p1 ← path randomly selected from P with non-zero flow
5: p2 ← path randomly selected from Pw different from p1

6: σ ←
{

uniform(0, γp1,k), γp1,k ≥ Ft

Dw,k

γp1,k , γp1,k <
Ft

Dw,k

7: γ̂p1,k ← γp1,k − σ
8: γ̂p2,k ← γp2,k + σ
9: while (Constraint (15) is not satisfied)

10: return {p1, p2}, γ̂w,k
11: end procedure

PSA is stopped if any of the following stopping criteria are met:

1. (Ĉ − Ĉc)/Ĉ < 0.1%, if the best objective value Ĉc of current temperature is improved less than 0.1%

than previous one Ĉc;

2. Tc < 10−4Tinit, if the current temperature is less than 10−4 of initial temperature.420

4. Experiments

We develop a parcel delivery scenario involving intensive UAM operations within a centralized control
scheme, specifically implemented in Singapore’s urban airspace. The associated UAM route network is
shown in Figure 9b. It was designed by Wang et al. (2022a) to maximize network efficiency and flight
safety and to minimize noise impact on the population. There are a total of 7 vertiports and 12 delivery425

sites distributed throughout the city, resulting in a total of 84 OD pairs. This UAM network consists of
five horizontal layers connected by a limited number of vertical links. The connections and geographical
locations of these vertiports and delivery sites are visualized in Figure 9a. The candidate paths between each
OD pair are selected using the K-shortest path search algorithm with diversity (Liu et al., 2017). Some basic
topology features of the UAM route network are summarized in Table 2 for each layer and the network in430

order to offer insights into the network’s connectivity, clustering patterns, and assortative mixing behavior.
These features include the number of nodes, the number of links, Average Degree (AD), Average Clustering
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Algorithm 2 Incremental parallel cost calculation and update

1: procedure CostEvaluation(γw,k, X, G)
2: TQ← ∅ . Task queue
3: p̂, γ̂w,k ← NeighborhoodGeneration(γw,k)
4: TQ← ⋃

v∈p̂
Xv,k(γ̂w,k)

5: do
6: TQcomp ← Invoke(TQ) . Concurrent execution by multiple threads of tasks submitted to TQ,
7: until all tasks have been completed
8: while (TQ 6= ∅)
9: ∆Cw,k ← (1− φ)

∑
v∈p̂

(Xv,k −Xv,k(γ̂w,k)) + φ
∑
e∈p̂

(Ge,k − Ge,k(γ̂w,k))

10: if Accept(∆Cw,k) then
11: γw,k ← γ̂w,k
12: Xv,k ←Xv,k(γw,k), v ∈ p̂
13: Ge,k ← Ge,k(γw,k), e ∈ p̂
14: end if
15: return X, G, γw,k
16: end procedure

Coefficient (ACC) (Saramäki et al., 2007), and Degree Of Assortativity (DOA) (Newman, 2003). According
to hourly demands given in advance, a certain type of UAVs make deliveries from vertiports to delivery sites
in this UAM route network. However, due to the presence of dense obstructions at low altitudes, the UAM435

route network offers limited route options, posing significant challenges in optimally assigning the UAM
traffic flow. We summarize the parameter settings of the proposed simulation-based framework in Table 3.

(a) Connection of OD pairs between delivery sites and verti-
ports.

(b) Network representation.

Figure 9: 3D UAM route network in Singapore’s urban airspace.

The time-varying traffic demands (Figure 10) are focused on six peak hours of the day, from 09:00-
10:00 to 14:00-15:00. For future high-density UAM operations, these demands are simulated based on the
expected hourly number of parcel delivery UAVs in metropolitan areas predicted by Doole et al. (2020) and440

the distribution of hourly demand between several ODs for an urban network during a day (Deng et al.,
2019).

To evaluate the effectiveness and performance of the proposed PSA, we also conduct a comparison study
with representative conventional DTA algorithms for this QATA problem. Ameli et al. (2020b) made a
cross-comparison between optimization algorithms for DTA and suggested that most conventional DTA445
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Table 2: Basic topology features of different altitude layers and the UAM route network.

Network Number of nodes Number of links AD ACC DOA

Network layer at 150ft 51 96 4.57 0.35 -0.19
Network layer at 175ft 62 145 5.27 0.41 -0.12
Network layer at 200ft 85 216 5.20 0.32 0.31
Network layer at 225ft 89 199 4.47 0.24 0.23
Network layer at 250ft 45 89 3.96 0.18 0.33
The whole route network 332 745 5.00 0.23 0.23

Table 3: parameters setting in the experiment.

Module Parameter Value Description

Simulation
module

Lh 0.15 (km) Grid length of horizontal volume segment
Lv 1e-3 (km) Length of grid on vertical volume segments
Lw 0.03 (km) Grid width
sh 54 (km/h) Speed for horizontal link eh
sv 15 (km/h) Speed for vertical link ev
Ns 3 Number of lateral points on each side
Nr 3 Number of rows of the grid included by cylin-

drical airspace
Ft 20 (veh/h) Meaningful flow threshold e
f ce 1.5e4 (veh/h) Traffic flow capacity for link e
ϕh 0.2 Efficiency coefficient for horizontal links
ϕu 1 Efficiency coefficient for upward links
ϕd 0.02 Efficiency coefficient for downward links
φ 0.9 Weighting parameter in objective function

Optimization
module

Tinit 100 Initial temperature
Ntr 100 Number of iterations at each temperature
α 0.9 Cooling rate
ε 0.01 Small variation for numerical derivation in DA

Figure 10: Simulated hourly UAM traffic demands for each OD pair from 09:00-10:00 to 13:00-14:00.
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algorithms including the method of successive average (Robbins and Monro, 1951) and its extensions (Lu
et al., 2009, Sbayti et al., 2007) only exhibit good performance in small-scale networks and classical DTA
problem formulation. They also proposed a Probabilistic Method (PM) that has better performance in
a medium or large-scale network. In addition, we also compare PSA with another commonly used traffic
assignment algorithm, namely Dafermos’ Algorithm (DA) (Dafermos and Sparrow, 1969, Dafermos, 1971,450

1972), which has been used and performed well in our previous studies. These algorithms are also integrated
into the simulation-based framework described in Figure 7. The details of these comparative algorithms can
be referred to in Appendix B.1. The stopping criteria for these algorithms are in accordance with PSA.
Note that, due to the limitations of traditional traffic assignment algorithms for this QATA problem in terms
of network size, traffic volume, and mathematical formulation, we only select representative algorithms for455

comparison with our proposed algorithm to demonstrate the performance of PSA on UAM route networks
with high-density traffic volume, high complexity, and congestion. All algorithms are implemented in Java
on a laptop equipped with Intel®i7-12700H CPU and 16GB DDR5 RAM.

4.1. Performance analysis of PSA algorithm

4.1.1. Parallelization performance460

To evaluate the computational time improvement of the proposed acceleration strategy in terms of SA, we
conduct the experiment on this scenario by increasing the number of threads from 1 to 20. It is noteworthy
that the single-thread case is similar to a sequential process. For each number of threads, we record 10,000
times the CPU time for a transition in different temperatures throughout the optimization process of SA.

Figure 11 shows the boxplots of the computational time of a transition in PSA for different numbers465

of threads. It can be noted that the performance is not significantly improved when more than 8 threads
are used. The results indicate that the proposed parallel strategy can result in a speedup of nearly three
times over the sequential approach by using a sufficient number of threads. The CPU time per transition of
PSA using 20 threads can be reduced to (9729± 2.5)× 10−5s in 95% confidence interval. It is quite efficient
since each transition includes the cost evaluation and update for all OD pairs and all time intervals, which470

is K|W| = 504 times in this studied case. Averaged over each operation, Algorithm 2 only takes less than
0.2ms.

Figure 11: Run time for a transition in PSA with the different number of threads. The median is indicated in green. The lower
bound and upper bound of the box represent respectively the first and third quartile. The whiskers above and below the box
include the values between the 5th and 95th percentiles.

4.1.2. Comparison with conventional traffic assignment algorithms

In addition to the objective function, the flight efficiency in the UAM route network is also measured to
ensure that it is at an acceptable level. Two indicators are introduced, including average travel time t:475

t =

K∑
k=1

∑
w∈W

Dw,k

∑
p∈Pw

γp,k
∑
e∈p

Le/se

K∑
k=1

∑
w∈W

Dw,k

(27)
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and average path length l:

l =

K∑
k=1

∑
w∈W

Dw,k

∑
p∈Pw

γp,k
∑
e∈p

Le

K∑
k=1

∑
w∈W

Dw,k

(28)

For all algorithms, We performed 100 experiments with different random seeds, where the random seeds
control the initial values and the inherent randomness of the algorithm. Table 4 illustrates the experimental
results of all aforementioned algorithms. 95% Confidence Interval (CI) for the standard normal distribution
is used to report the results, and the format is the sample mean plus/minus margin of error. The best result480

in each column is underlined. In addition, Figure 12 visualizes the reduction of objective function values
obtained by these algorithms. As the performance of DA and PM is close, we additionally compare the
objective function values produced by these two algorithms.

Table 4: Performance comparison of PSA and representative conventional DTA algorithms in terms of computation time,
objective function, and flight efficiency for a 95% CI.

Models Computation
time (s)

Value of objective
function

Complexity cost Congestion cost Average travel
time (s)

Average
path length
(km)

Initial - 99081.42± 368.48 585380.95±3627.11 45048.14±27.92 1201.94± 0.41 17.84± 0.01
PSA 143.47±3.74 67157.45± 146.87 302743.55± 1574.53 40981.22± 36.90 1233.61± 0.48 18.28± 0.01
PM 12.315± 4.30 95926.01± 122.50 557388.35±1260.06 44652.42±65.67 1231.31± 0.57 18.23± 0.01
DA 502.15±6.68 94361.08± 236.84 541264.75±2368.71 44705.12±26.23 1198.18± 0.38 17.78± 0.01

Figure 12: The reduction of objective function value after optimization of different algorithms compared to the initial state
and the performance comparison between PM and DA. The boxplot is represented in the same way as Figure 11.

As for representative conventional DTA algorithms including DA and PM, there is no significant reduction
in the value of objective function compared to PSA. This result may be explained by the fact that several485

assumptions for conventional DTA algorithms are not fully satisfied in the QATA formulation. In particular,
the objective function does not have an analytical form and is not guaranteed to be convex, which may make
traditional DTA algorithms easily fall into local optima. Another important point lies in the scale of the
problem. With high-density traffic volume and large network size, traditional DTA algorithms may not be
applicable to this scenario. In terms of the computation time, PM is much lower than other algorithms.490

DA takes the longest computation time, but the objective function value of DA is better than PM. DA also
produces the flow pattern with the best flight efficiency.

In view of the proposed model PSA, the value of the objective function is significantly reduced by
(32.20 ± 0.29)%. In the objective function, the complexity cost has been reduced by almost half. There
is a limited reduction in congestion of nearly 10%. A possible reason could be the limited path selection495
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in the network and the low congestion level of the initial flow pattern. The computation time of PSA is
also satisfying, considering the large size of the network, the high-density traffic volume, and the heavy
computation involved in the LDS. The differences in average travel time and path length are quite small
compared to the best results, which demonstrate that the flight efficiency of flow patterns obtained by
PSA is not degraded. In summary, the proposed PSA algorithm is able to output the flow pattern with a500

significantly decreasing air traffic complexity and low congestion in a reasonable time, without degrading
the flight efficiency, which supports the primary objective of this study.

To further analyze the optimization results at the operational level, the path flow allocation, link flow
allocation, air traffic complexity, and congestion in the UAM route network will be presented in the following
sections.505

4.1.3. Path flow allocation

To initiate our analysis, we present the initial and PSA-optimized path flow allocations for comparison.
The x-axis denotes the index of paths, while the y-axis corresponds to the index of time intervals, spanning
from 09:00-10:00 to 14:00-15:00. Dashed white lines separate adjacent OD pairs. The color attributed to
each path at each time interval represents the corresponding path flow.510

the initial path flow allocations in each time interval are illustrated in Figure 13. Due to the high amount
of paths in each OD pair, the initial path flow allocations are segmented into 4 subfigures. As can be observed
in Figure 13, the demand is completely allocated to a specific path in each OD pair. Although the initial path
flow pattern following the AON strategy has a low congestion level, there is still considerable potential to
reduce air traffic complexity by better distributing traffic on various candidate paths. Additionally, in many515

OD pairs, the demand is assigned to the same path across all time intervals. The impact of the residual path
flow in previous intervals on the current time interval requires the consideration of their interdependency.
For each OD pair, it could be a preferable solution to have different flow allocation results for different time
intervals.

The path flow distribution optimized by PSA is represented in Figure 14. A significant difference com-520

pared to Figure 13 can be observed in that the demands for each OD and time interval can be assigned to
multiple paths. In addition, most OD pairs have different path flow patterns across time intervals. This
fact demonstrates that after being optimized by PSA, the candidate paths can be sufficiently and optimally
utilized to mitigate congestion and air traffic complexity. The optimization results can be accurately and
clearly provided to ATC service providers and aircraft operators for implementation in the form of the525

number of flows on each path in each time interval.

4.1.4. Link flow allocation

Another important illustration lies in the link flow allocation. Figure 15 presents the initial link flow
allocation in each time interval in the network representation. The color representation is logarithmic to
cover a large range of link flow values. According to all subfigures, the traffic flow is mainly distributed530

on the three lower layers and the vertical links connecting them. The two upper layers are not fully used,
especially the top layer. In accordance with the initial path flow distribution result in Figure 13 that the
demand is assigned to the same path in many OD pairs across all time intervals, the link flow distribution
is similar for different time intervals.

The link flow distribution optimized by PSA is shown in Figure 16. Compared with the initial link flow535

pattern in Figure 15, the link flows are distributed in all layers. It is also worth noting that, in network
layers with few links and low connectivity such as the top layer and bottom layer, the links are assigned
with relatively less flow. An explanation could be that UAM operations in these layers are more likely to
introduce congestion and air traffic complexity. On the contrary, the link flows are densely concentrated in
the middle layers and the vertical links connecting them. Since there are more route choices in these layers,540

a large number of link flows can be enabled to operate without bringing high congestion and air traffic
complexity. Furthermore, given with time-varying demand for each time interval, the link flow patterns in
these subfigures are slightly different, with regard to the amount of link flow and link usage.
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Figure 13: Initial path flows distribution in different time intervals.

4.1.5. Air traffic complexity and congestion

To evaluate the air traffic complexity and congestion, we illustrate the initial and optimized complexity545

cost and congestion cost in the network representation in Figure 17 and Figure 18, respectively. The color of
each node represents the complexity cost, and the width of each link represents the congestion cost. As can
be seen in Figure 17, the initial flow pattern involves high complexity costs. Each layer has a large number of
nodes with a high level of complexity. The congestion mainly occurs in vertical links, especially the vertical
links connecting the bottom three layers. This fact also demonstrates that initial flow patterns are mainly550

assigned in the lower layers. After optimization by PSA, it can be seen from Figure 18 that the complexity
cost has been obviously reduced to a low level, especially for nodes in the three middle layers. Even for the
top layer and bottom layer that have limited route choices, PSA is still capable of mitigating the air traffic
complexity. The complexity cost of almost all nodes has been decreased to below 2000. With respect to the
congestion cost, unlike Figure 17 in which the traffic congestion is mainly concentrated on vertical links, in555

Figure 18, a large part of congestion is distributed on horizontal links in each layer. Except for Figure 18(a),
the congestion on vertical links is also reduced. The optimized flow pattern allows congestion to be spread
throughout the network to reduce overall air traffic congestion.
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Figure 14: Distribution of path flows optimized by PSA in different time intervals.

We further explain the variations from the initial flow pattern to the optimized flow pattern in terms
of complexity cost per node and congestion cost per link. This is visualized in Figure 19 and Figure 20,560

respectively. Each figure includes a colorbar, denoting the changes in cost values. Essentially, we aim to
provide a clearer understanding of the extent of cost variation from Figure 17 to 18 from a global perspective
rather than within the context of the UAM network representation. This allows us to capture and understand
the network-wide effects of the QATA model and the implications of the cost variations.

Taking a closer look at Figure 19, the majority of changes were made to reduce the complexity associated565

with nodes across various time intervals. This is particularly evident for nodes initially characterized by
high complexity, where a substantial decrease can be observed.

As depicted in Figure 20, a significant portion of air traffic congestion has been alleviated on numerous
links across different time periods. However, it is important to note that despite the overall reduction,
there are instances where congestion has increased on some links. This pattern is in accordance with the570

information presented in Figure 18. The strategy, instead of concentrating on the mitigation of congestion on
specific links, seeks to optimally distribute congestion across the entire UAM route network. This optimally
distributed congestion allows for more efficient use of the UAM network’s capacity and a more effective
UAM system.
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Figure 15: Initial link flow distribution across various time intervals in the UAM route network.

Figure 16: Optimized link flow distribution in the UAM route network across different time intervals.

5. Discussion and conclusions575

To tackle the time-varying demand of dense UAM operations in the near future, we formulate a macro-
scopic QATA model within a centralized strategic planning scheme. This model seeks to efficiently allocate
and organize traffic flows on routes within the UAM route network over the planning horizon, with the goal
of alleviating congestion and reducing air traffic complexity.

Firstly, the UAM route network is characterized as a directed graph. Air routes are represented as580

volume segments. Vertiports, delivery stations, and waypoints are modeled as nodes. We then configure
the QATA as an optimization problem that considers constrained capacity, propagation of traffic flow, and
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Figure 17: Representation of the initial air traffic complexity and congestion respectively on nodes and links of the UAM route
network across various time intervals.

Figure 18: Representation of air traffic complexity and congestion optimized by the proposed model respectively on nodes and
links of the UAM route network across various time intervals.

time-varying demand. The objective function involves complexity cost based on the LDS and congestion
cost based on energy consumption and traffic density.

In order to solve this problem, a simulation-based rolling horizon framework is proposed to decompose the585

QATA problem into sub-problems for each time interval. To overcome the limitations inherent in traditional
traffic assignment algorithms, we propose the PSA as the optimization algorithm, which is a metaheuristic
algorithm that employs parallel computing and a novel neighborhood generation strategy.

Experiments are conducted on a previously designed large-scale UAM route network for a high-density
parcel delivery scenario in Singapore’s urban airspace. The results in terms of parallelization performance,590

algorithmic comparison, path flow allocation, link flow allocation, and complexity and congestion costs in
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Figure 19: Dynamic variations in complexity costs per node from initial to optimized flow patterns.

Figure 20: Dynamic variations in congestion costs per link from initial to optimized flow patterns.

network representation, demonstrate that our model can efficiently reduce congestion and air traffic com-
plexity to satisfactory levels. Furthermore, the paths are sufficiently utilized and the flows are intelligently
allocated.

In addition to the theoretical significance of this study, our proposed framework can also assist or provide595

advisories to ATC authorities and ANSP in addressing a series of problems, such as unmanned air traffic flow
management, air traffic assignment, UAM traffic flow analysis, Urban airspace complexity measurement, and
UAM route network evaluation.

5.1. Limitations and future research

Nevertheless, there exist certain constraints and shortcomings within this paper. Although centralized600

UTM systems offer significant benefits, as the current UTM concepts highly rely on private-public partner-
ships where the role of ATM is given to private PSU or UAS Service Supplier (USS), it is not guaranteed
nor clear that such private organizations would be incentivized to share information in a way conducive to
centralized UTM. In future research, the focus will be on exploring the safe and efficient operation of UAM
in a federated scenario that involves a mix of entities or traffic, assuming that the technology in that period605

will meet a higher level of maturity for UAM.
Another interesting area of future research lies in the integration of the Lagrangian perspective within

our existing framework. A microscopic optimization model for managing individual flights can be performed
based on the results obtained from the QATA model. It has the potential to yield more optimal solutions
and enhance computational efficiency for classic air traffic flow management problems.610
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Appendix A. Weighted minimum mean square error estimation of linear dynamical system

In order to transform equation (19) representing a LDS into matrix forms, we can rewrite the LDS as:

V = CX (A.1)

In the case of this paper,

X =


√
ω1x1

√
ω2x2 · · · √ωNxN√

ω1y1
√
ω2y2 · · · √ωNyN√

ω1z1
√
ω2z2 · · · √ωNzN√

ω1
√
ω2 · · · √

ωN

 (A.2)

620

V =

√ω1vx,1
√
ω2vx,2 · · · √ωNvx,N√

ω1vy,1
√
ω2vy,2 · · · √ωNvy,N√

ω1vz,1
√
ω2vz,2 · · · √ωNvz,N

 (A.3)

C =
[
A | b

]
(A.4)

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (A.5)

b =
[
b1 b2 b3

]>
(A.6)

and N is the number of observations.
If the dimension of a LDS is DLDS ∈ N+ , then V ∈ RDLDS×N , X ∈ RDLDS+1×N , and C ∈ RDLDS×DLDS+1.625

The error criterion E can be reformulated as

E = ‖V −CX‖2F (A.7)

where ‖‖F represents the Frobenius norm.

The WMMSE aims to find the matrix Ĉ that minimizes the error criterion:

Ĉ = arg min
C∈RDLDS×DLDS+1

E (A.8)

To this end, the gradient of E2 is calculated as:

∇CE = −2 (V −CX) X> (A.9)

∇CE = 0 allow us to calculate Ĉ. If XX> is invertible, namely the columns of X are linearly independent,630

the LDS problem has a unique solution:
Ĉ = VX+ (A.10)

where X+ is the pseudo-inverse of X:
X+ = X>(XX>)−1 (A.11)

The matrix X may not be full-rank or the LDS could be ill-conditioned in some rare cases. To avoid
numerical problems associated with the determinant when inversing the matrix XX>, Singular Value De-
composition (SVD) was proposed to solve this problem. X can be decomposed as:635

X = LΣR> (A.12)
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where L ∈ RDLDS+1×DLDS+1 and R ∈ RN×N are unitary matrices. L and R are not unique, which can be
composed respectively by the eigenvectors of XX> and X>X. Σ ∈ RDLDS+1×N is a rectangular diagonal
matrix with non-negative values on the diagonal.

XX> ∈ RDLDS+1×DLDS+1 is a symmetric matrix, and the square roots of its eigenvalues are the singular
values of X. The singular values of X can be sorted in descending order: σ1 ≥ σ2 ≥ · · · ≥ σr, where r is the640

rank of X and r ≤ min(DLDS + 1, N). Then, Σ is then defined as:

Σ =

σ1 0 · · · 0 0 · · · 0

0 σ2 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · σr 0 · · · 0

0 0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 0 0 · · · 0



 DLDS + 1− r

N − r

(A.13)

where the elements of the last N − r columns and DLDS + 1− r rows are 0.
According to Equation (A.12), X+ can be formulated as :

X+ = RΣ+L> (A.14)

where R ∈ RN×N , LT ∈ RDLDS+1×DLDS+1. Σ+ ∈ RN×DLDS+1 can be formulated as:

Σ+ =

1
σ1

0 · · · 0 0 · · · 0

0 1
σ2
· · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 1
σr

0 · · · 0

0 0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 0 0 · · · 0



 N − r

DLDS + 1− r

(A.15)

where the elements of the last DLDS + 1− r columns and N − r rows are 0.645

Ĉ is thus given by:
Ĉ = VRΣ+L> (A.16)

Finally, Â can be extracted from Ĉ according to Equation (A.4).
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Appendix B. Representative conventional algorithms for dynamic traffic assignment

Appendix B.1. Dafermos’ algorithm

Dafermos’ Algorithm (DA) is a widely used sequential decomposition algorithm for traffic assignment650

problems (Dafermos and Sparrow, 1969, Dafermos, 1971, 1972). In the inner loop of each time interval k,
DA successively optimizes on each OD w to decompose the problem into a sequence of simpler ones. Starting
from an initial flow pattern, the global cost function converges by transferring flow from the most expensive
path pw,max to the least expensive path pw,min in terms of the marginal cost C ′p, where

pw,min = arg min
p∈Pw

C ′p (B.1)

pw,max = arg max
p∈Pw,Fp>0

C ′p (B.2)

and655

C ′p(f) =
∂C

∂Fp
(B.3)

In our problem, the dominant eigenvalue of the LDS involved in the cost function is also dependent on
the path flows. Thus, the derivative of the cost function does not have an analytical form. We use numerical
differentiation to estimate the marginal cost:

∂C

∂Fp
= lim
ε→0

C (Fp + ε)− C (Fp)

ε
(B.4)

New path flow pattern F̂w is updated using the following rule:
F̂p = Fp, ∀p ∈ (Pw − {pw,min, pw,max})
F̂pw,min = Fpw,min + σw

F̂pw,max = Fpw,max − σw
(B.5)

where σw is the solution in [−Fpw,min , Fpw,max ] that minimizes C and satisfies the constraints. To facilitate660

the computation, σw is selected from a set of size Nd uniformly discretized from interval [−Fpw,min , Fpw,max ].

Appendix B.2. Probabilistic method

The Probabilistic Method (PM) (Ameli et al., 2020b) is a trip-based algorithm based on the swapping
probabilities. In iteration i, a fraction of 1/(i+ 1) of vehicles on non-least-cost paths swaps to the path with
the minimum cost. For each path p in OD w in time interval k, the swapping probability is given by the665

following formula:

Pr(pswap = 1) =

Cp,k − min
p∈Pw

(Cp,k)

Cp,k
(B.6)

where pswap is a binary decision variable for swapping.
This algorithm does not require step size information. Furthermore, the ranking process can be avoided.
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