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Abstract: Climate impact models of the non-CO2 emissions of aviation are still subject to significant
uncertainties. Condensation trails, or contrails, are one of these non-CO2 effects. In order to validate
the contrail simulation models, a dataset of observations covering the entire lifetime of the contrails
will be required, as well as the characteristics of the aircraft which produced them. This study carries
on the work on contrail observation from geostationary satellite by proposing a new way to track
contrails and identify the flight that produced it using geostationary satellite infrared images, weather
data as well as air traffic data. It solves the tracking and the identification problem as one, each
process leveraging information from the other to achieve a better overall result. This study is a new
step towards a consistent contrail dataset that could be used to validate contrail models.

Keywords: condensation trails; non-CO2 climate impact of aviation; contrail tracking; matching
contrails with aircraft; image segmentation; instance segmentation; satellite imagery

1. Introduction

Aviation has a significant impact on climate change, as it represents approximately
3.5% of anthropogenic climate forcing [1]. However, if the effects related to aircraft’s CO2
emissions are well known and documented, research is still pending on understanding the
impacts of other non-CO2 emissions.

Condensation trails are one of these non-CO2 consequences of aviation. They are linear
shaped cirrus clouds that sometimes appear behind aircraft flying at high altitudes in high
humidity areas. In certain conditions they can persist a few hours and spread. Sometimes,
groups of persistent contrails can evolve into clouds indistinguishable from natural cirrus,
clouds that would not have appeared without human action, or that appeared sooner than
natural clouds would have.

Human induced cloudiness like contrails has a significant impact on climate, changing
our planet’s radiative balance. It could locally have a cooling or a warming effect, just
like any natural cirrus cloud, by reflecting incoming solar radiation or trapping outgoing
thermal radiation emitted by the earth. Contrails are however estimated to have a net
warming effect [1]. Even if the lifespan of contrails is very short compared to other non-CO2
emissions, contrails still have a strong radiative effect, making it one of the aircraft emissions
with the greatest impact on climate change.

Several different models have been proposed to estimate contrails climate impact [2–6],
but high uncertainties still remain [1]. It is important to validate these models by observation
means. It will therefore be necessary to gather information on the formation of contrails, but
also about their time of persistence and their physical properties along their lifetime.
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It is difficult to study contrail formation, evolution and dissipation from a single mean
of observation. In order to gather information on these three aspects of the models, it is
interesting to use a combination of several observation means, like satellite sensors and
ground cameras.

To be able to combine observations from different data sources such as these, it is
necessary to be able to “identify” each detected contrail to establish the correlation with
contrails detected from the ground.

One solution to do so is to identify the plane that is responsible for the contrail on each
data source. We will call this process “contrail identification” in the sequel. This process
also allows to extract more information than what is visible from raw satellite observation,
such as the altitude of the contrail and the conditions of its formation.

There is therefore a need for contrail detection from several observation means, but
also for contrail tracking and contrail identification. This study presents a way to leverage
several data sources to build a contrail detection, tracking and identification method using
geostationary satellite data. Such a tool could allow to validate several aspects of the
models at once, as well as provide useful information to help combine satellite observation
with other detection methods.

Previous work on contrail observation from satellites have been conducted. Mannstein
et al. [7] proposed a method to detect linear shaped contrails using satellite imagery and
classic computer vision methods. It uses hand-tuned convolution filters, thresholds and
normalization operations. The image used is based on Brightness Temperature difference
between two infrared channels (10.8 µm and 12 µm) and on the Brightness Temperature of
the 12 µm channel of the Advanced Very High Resolution Radiometer (AVHRR). However,
when using only these channels, other features might happen to have similar thermal
signature and shape as contrails. Linear cloud borders as well as some land features like
rivers can therefore be mistaken for contrails using this technique. Mannstein uses the fact
that young contrails have most of the time a very linear shape with a constant width to
discriminate between contrails and other types of features.

In the last decade, major advances have been achieved in the field of computer vision,
made possible in particular by the development of deep learning techniques. These new
techniques have made it possible to carry on the work on contrail detection. Among the
deep learning methods designed to detect contrails, the most widely used in the field of
contrail research is the MIT method from Kulik et al. [8]. This is a Semantic segmentation
method using images computed from infrared channels. It uses open access data from
geostationary satellite Goes16 [9]. It has a spatial resolution of approximately 2 km² at
nadir, which is the point where the resolution is the highest (located directly below the
satellite). Kulik et al. uses a 3 channel image. The red channel, using the 12.3–10.3 µm
Brightness Temperature Difference, indicates optical depth of the clouds. The green channel
(11.2–8.4 µm Brightness Temperature Difference) indicates the particle phase. The blue
channel uses the longwave infrared window (11.2 µm Brightness Temperature), and indi-
cates the temperature of the surface seen in the pixel. Using these three channels allows
to discriminate more easily between contrails and other types of features. As mentioned,
Kulik et al. [8] is using Semantic Segmentation method. It allows to identify all the pixels
that correspond to contrails using a UNet architecture [10]. Kulik et al. is therefore a great
method to monitor contrail coverage like in Meijer et al. [11]. However, when contrails are
crossing each other and overlapping, it can make it difficult to identify individual contrails.
To identify contrails individually, it could be easier to use object based methods like Object
Detection or Instance Segmentation. At the time when this paper is written, we are not
aware of any study using Object Detection or Instance Segmentation methods to detect and
segment individual contrails in satellite pictures. This study therefore presents an Instance
Segmentation model to detect contrails on Goes satellite pictures.

Contrail detection on satellite images is of great importance when trying to validate
contrail prediction models using observation methods, but they won’t account for some
crucial parameters. For example, the time of persistence and the altitude of the contrail will
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be essential to validate the contrail impact models and they are not trivial to estimate from
contrail detection alone, as highlighted in Vazquez- Navarro et al. [12]. In order to help
validate the different physical modelings of contrails, there is a need to gather information
about their conditions of formation. It is very difficult to get it from geostationary satellite
observation because they do not have the resolution to observe the thin young contrails just
after their formation. However, being able to identify the flight that produced the contrail
would allow us to get more information about where and when the contrail was initially
formed, and subsequently about the conditions of formation. There is therefore a need for
a method able to track the contrail over its time of persistence, and for a method able to
identify the aircraft which created the contrail.

To estimate the time of persistence of contrails, Vazquez-Navarro et al. developed a
contrail tracking method that allows to follow the contrail along its whole lifespan [12],
called ACTA (Automatic Contrail Tracking Algorithm). It is based on Mannstein et al. [7]
contrail detection algorithm, using Terra satellite’s MODIS sensor (approximately 1 km²
resolution) to first detect it and the SEVIRI sensor aboard Meteosat geostationary satellite,
with a lower resolution (3 km² at nadir, decreasing with latitude) but a much greater tem-
poral resolution (a full disk picture every 15 min) to track the detected contrail afterwards.
It is also possible to use more localized data that could have better temporal resolution
(Meteosat’s Rapid Scan Service-RSS). ACTA defines a region where it is expected to find
the contrail detected on the previous frame according to the average wind over Europe at
these altitudes before checking if a contrail is actually there. The best way to determine this
region might be to use the actual forecasted wind at the precise position of the detected
contrail. However, altitude information is not directly available when detecting a contrail
on a satellite picture, so it is not possible to use the forecasted wind to predict a precise
position for the next contrail. In ACTA, an average value of the wind speed is used, but it
also assumes that the wind always pushes the contrail towards the east. These assumptions
might cause errors when trying to use the method to run more global studies including
other regions of the world. It also makes it difficult to use the 15 min refresh full disk
product to identify contrails in a situation where several parallel contrails are present.
Using RSS allows for greater temporal resolution (one picture every 5 min), but it produces
images for a much smaller area, which might not be enough to conduct global studies.
It might also fail to discriminate between parallel contrails in areas with high flight density.

modeling and mitigating the effects of contrails has been an important area of research
in recent years. Simorgh et al. [13] refers to a large number of studies aimed at reducing
the climate impact of contrails. Gierens et al. [14] highlights the need for validation of
contrail models. Agarwal et al. [15] and Wang et al. [16] use observational methods to
provide useful information to validate certain aspects of the contrail modeling process.
However, because these studies don’t have access to aircraft type and configuration, it may
be difficult to estimate some parameters such as engine efficiency and emissions that affect
contrail formation, evolution and climate impact. There is therefore a need for a contrail
evolution dataset, including the flight that produced the contrail.

This study presents a method capable of solving the problems of detecting contrails,
identifying the aircraft that generated them, and tracking them throughout the beginning
of their evolution, while they retain their distinctive linear shape. These tasks are not
independent, so separating them and processing them sequentially may lead to a loss of
information. This is why we have chosen to process the identification and tracking at once,
each sub-task benefiting from the information coming from the others. We will show that
processing these tasks at once allows more realistic results than processing them separately.
It is important to note that this study will focus on tracking contrails that have retained
a generally linear shape, and that the addition of a module to track contrails in the next
stages of their evolution will need to be added later. Furthermore, we believe that the
identification of the aircraft that caused the contrail to appear will be easier as long as
it is linear in shape. The task corresponding to the further evolution of the contrail can
therefore be treated independently. The word contrail will hereafter be used to define
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linear contrails. This study will provide data that will allow case-by-case comparisons with
contrail formation and evolution models, knowing the characteristics of the aircraft that
produced them. While validation of contrail climate impact models will require further
work, this study could still provide valuable information.

This paper is organized as follows. Section 2 describes a large set of data sources that
could provide information to solve the problem. It also explains how to build the tools used
to process this data: it proposes a new deep learning based contrail detection technique
and a method to predict the position of the contrail produced by an aircraft at a given
time. Section 3 emphasises the need for a method that solves the tracking process and the
matching process simultaneously, and develops such a method. The remaining Section 4
presents the results of this process on a number of case studies, highlighting the behaviour
of the method. The overall approach is summarised in Figure 1.

Figure 1. The Methodology developed in this study.



Aerospace 2023, 10, 578 5 of 27

2. Data Acquisition and Processing

To build the contrail detection, identification and tracking, several different data
sources are used. The data needs to be processed in order to extract useful information.

2.1. Data Acquisition

We used GOES16 geostationary satellite data as our main satellite imagery provider [9].
GOES16 combines the best available spatial resolution for the channels we need in a geosta-
tionary satellite to this day with a good temporal resolution of 10 min or 15 min between
two full disk images depending on the date of observation. There are also other interesting
features like the CONUS products which produces a picture of the US every 5 min, and
other products that produce pictures of Mesoscale areas but have a temporal resolution of
1 min. The contrail detection is performed on a false color image computed from GOES
infrared channels, using a similar method as Kulik et al. [8]. The only difference resides
in the fact that we used the 10.8 µm infrared channel (clean longwave channel) instead
of the 11.2 µm. It allows for a better contrast between cold clouds and the background as
the clean longwave radiation is less sensitive than other infrared window bands to water
vapor absorption [17]. These images are from a geostationary satellite. We will use an
orthographic projection of the images to minimize distortion as proposed in [8]. The result
of this transformation is shown in Figure 2. To improve the performance of our detection
algorithms, we will also use classic visual enhancing of the pictures by gamma correction
for example.

(a)
(b)

Figure 2. Reprojection of the satellite images: Orthographic projection centered on continental US
allowing to minimize distortion. (a) Geostationary image centered on the US, corresponding to Goes
CONUS product. (b) Reprojected image: the orthographic projection minimizing distortion over
the US.

Our study requires to have access to air traffic data. The ADS-B (Automatic Dependent
Surveillance–Broadcast) tracks of the traffic was provided by the Opensky Network [18].
The ADS-B data are information broadcasted directly by the aircraft about their iden-
tification, GPS coordinates, altitude and ground speed. This information is typically
emitted every few seconds. Opensky network compiles all these messages into an open
source dataset.

Weather data is also needed to simulate the evolution of the contrails. These weather
data will be provided by ERA5 (ECMWF Atmospheric Reanalysis, fifth generation) dataset.
ERA5 is a reanalysis weather dataset, provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) [19]. The data is provided as a regular latitude-longitude grid
with a grid cell size of 0.25°, on 37 pressure levels from 1000 hPa to 1 hPa. The temporal
resolution is one hour. The humidity variables from this dataset will be corrected as
suggested by Teoh et al. in [20]. This correction of ERA5 relative humidity for high altitude
levels was done using measurements from sensors aboard In-service Aircraft for a Global
Observing System (IAGOS) [21].
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A dataset of images associated with labels is needed to train most computer vision
models. In the case of instance segmentation methods, the labels need to be polygons
delimiting the boundaries of the object on the image. It could be human-labeled, or synthetic
data. In the case of hand labelling, a human operator will have to draw the contours of
the objects the model will be trained to detect on a large set of images. It is a laborious
and time consuming task that can sometimes be avoided by generating synthetic images
realistic enough to be able to train our model.

At the time of publishing this paper, we have no knowledge of any Instance Segmen-
tation human labeled dataset of contrails on GOES images. The only existing open source
dataset of this type is the Google-made instance segmentation dataset on Landsat-8 satellite
pictures [22]. However, the difference between GOES data and Landsat data makes it
difficult to use to train a model on GOES imagery. Landsat 8 is a sun synchronous low polar
orbit satellite, and GOES is a geostationary satellite. It means that the contrails labelled
in the Landsat 8 dataset are often not even observable on corresponding GOES images,
because GOES resolution doesn’t allow the very thin young contrails to get detected.

In this case, the synthetic dataset approach could therefore be a solution. The main
priority with this kind of method is to create pictures that are as realistic as possible. In order
to generate this dataset, it was therefore important to use a realistic contrail evolution model,
such as CoCiP (Contrail Cirrus Prediction model). Schumann et al. [2] and its dependencies
provide enough information to implement the model from scratch. It is a parametric model
designed to simulate the formation and the evolution of aircraft induced cirrus, as well as
their micro-physic properties and their climate impact.

CoCiP could be used to simulate realistic looking contrails that could then be added
to GOES images. For more realism, real air traffic data from the Opensky ADS-B dataset
was used. To be able to run CoCiP in a realistic manner, it is necessary to estimate some
of the flight performance, emissions, and have some information about the aircraft that
are not included into ADS-B data. The OpenAP library [23] allows to estimate all required
parameters from the flight profile. The results of CoCiP are added to GOES images in
a realistic manner by using the ice water content and crystal characteristics to estimate
the contribution of the contrail to each pixel of the image, as suggested in Appendix A12
from Schumann [2]. This method provides a good basis to ensure that synthetic contrail’s
features will be similar to real contrails in the dataset.

One of the main difficulties when trying to add synthetic contrails to satellite images
is that the order of magnitude of the contrail’s width is usually of the order of a few pixels
at most. This means that we often need to apply a color to a pixel that is only partially
covered by the contrail. Using the method by Schumann [2], it is possible to calculate
the contribution of the contrail to the color change of each individual pixel, as shown in
Figure 3. This allows to leverage the information computed by CoCip (contrail width,
optical depth. . . ) into our synthetic dataset.

This method is based on the results of CoCip, which is simplifying some characteristics
of the contrails to allow for reasonable computation time. For example, CoCip assumes a
uniform distribution of the ice particles positions and characteristics in the contrail. Given
the resolution of the Goes images, this assumption was realistic enough to allow to train
the contrail detection method.

The training dataset was generated using real traffic data, which means that there
are overlapping contrails in the dataset, as in real-life examples. Interactions with natural
cirrus and other contrails are however not taken into account by CoCip, which means that
there could be unrealistic behaviors in some cases in the dataset. We added a threshold to
limit the maximum optical thickness of overlapping contrails to mimic the real behavior of
such contrails.
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Figure 3. The principle of the method proposed by Appendix 12 of Schumann [2]. It allows to
compute the contribution of each pixel to the optical depth of the simulated contrail according to the
distance between the center of the pixel and the contrail central axis.

Before adding the simulated contrails to real satellite images, it is necessary to compute
the color change they will cause on the pixels they cover. In order to decide what effect each
contrail will have on the color of the pixels it overlaps, we decided to mimic the behavior
of real contrails. About a few hundred contrails were labeled by hand on several satellite
images at different times of the day. The color of each contrail was compared to the color of
the pixels around it. Comparing the contrail with the background will give an estimate of
the color change induced by the contrail. This process is illustrated in Figure 4.

Figure 4. Description of the method used to study the difference in color between the contrail and
the background.

The difference between the average red, green, and blue values of the contrail pixels
and those of the background is used to define the average color change induced by the
contrail, as shown in Figure 4. This value will be addressed as “color difference” in
this study.

A multivariate normal distribution was used to describe the distribution of the color
difference induced by the hand labeled contrails. It was then used to provide a mean color
difference for each simulated contrail in such a way that the distribution of these values
would follow the same distribution as the real contrails. Figure 5 shows the compared
distributions of colors within the hand labeled contrails and the simulated set of colors.
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Figure 5. Comparison of the distributions of the color change induced by the contrail per channel
(red, green blue) between the hand labelled contrails and our synthetic contrail generation method.

In order to generate realistic simulated contrails, the first step is to run CoCip on real
traffic data. Each simulated contrail is then assigned a color, which is its average color
change. The contribution of each pixel covered by the contrail to the total change in color is
computed using Appendix 12 of Schumann [2].

This method results in contrails that look too smooth compared to what is observed
in reality. We decided to model the noise inside the contrail objects with a Gaussian noise
whose parameters were fitted to the manually labeled contrails. This noise is then applied
to the contrail before it is added to the final image. This process made the general shape
and texture of the synthetic contrails look much more similar to real contrails. An example
of the process is shown in Figure 6.

Figure 6. Description of the method used to turn a simulated contrail mask into a synthetic contrail.

This method of generating a synthetic dataset might be biased because it is based
on a simplified contrail model. However, contrails labelled by a human operator on a
real satellite image might be incorrect as well, especially in the situations described as
potentially problematic for the synthetic generation method (contrails mixed with natural
clouds, clusters of contrails. . . ). This method has also the advantage of not being subject to
cases where non-contrail objects are labeled.

The polygons describing the boundaries of the contrails are stored as labels to train
the contrail detection method. In order to build a dataset that could really be used to train
a model, it is important to add the synthetic contrails on pictures in which there are no real
ones. Otherwise, these existing contrails would be labelled as background as they are not in
our dataset, and the model would therefore be confused when trying to predict which class
they are from. This could decrease the accuracy of the detection. An example of synthetic
contrail on a GOES picture is presented in Figure 7.
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(a) (b)
Figure 7. CoCiP simulated contrails turned into a realistic synthetic satellite image. (a) Simulated
contrails from CoCip turned into a set of polygons. (b) Polygons added in a GOES tile free of
real contrails.

2.2. Data Processing
2.2.1. Training a Contrail Detection Algorithm

Mask-RCNN [24] is an Instance Segmentation method that extends the Faster-RCNN
method [25]. The Faster-RCNN is a object detection model that was the state of the art of
the year 2016 on COCO (Common Objects in COntext) dataset [26], which is commonly
used as a benchmark to evaluate the state of the art of object detection. It is based on the
principle of the region-based convolutional neural network [27]. This whole family of
methods are using a multi-stage algorithm. The object detection process can be separated
into three successive main parts: Region Proposal, Features Extraction and Classification.
Mask-RCNN adds a branch for mask segmentation. A ResNeXt [28] combined with a
Feature Pyramid Network (FPN) [29] structure was chosen as the backbone, and pre-
trained on contrail classification tasks. This backbone structure allows the model to be
tuned to better adapt to the size of the objects to be detected.

In order to account for the fact that the contrails are sometimes overlapping, the
non-max suppression process usually included in the model was modified. This process
is meant to avoid that the model detects several times the same object. In the case where
two predicted bounding boxes of the same class overlap so that the quotient of the area
of their intersection over the area of their union is above a predefined threshold, then the
one with the lowest score is ignored, like in Figure 8. As detecting an object several times
will not be an issue for this study, the non maximum suppressor was therefore tuned to
allow for overlapping bounding boxes, even if it means it might detect several times the
same contrail.

The same orthographic re-projection as in Kulik et al. [8] was used. It is an Ortho-
graphic projection centered on 39.8283N latitude and 98.5795W longitude. This projection
reduces the distortion of the image over the United States. The synthetic dataset generation
method allows adding synthetic contrails on small subsets of the GOES image. It was
chosen to extract subsets of 500 × 500 pixels from the 3000 × 2000 pixels reprojected GOES
image, on which were added synthetic contrails to these small images. The polygons
associated with the contrails’ boundaries were stored as labels for the training.

The dataset consists of 5000 synthetic GOES tiles generated with synthetic contrails
for the training, in addition with 1200 test images.

As our method is deep learning based, it is very difficult, if not impossible, to know
with certainty which features are used by the model to discriminate between contrails and
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other objects. It makes it difficult to know what features to add to the synthetic contrails to
improve the results, and which one are missing.

Figure 8. The bounding boxes are overlapping: if not tuned correctly, non maximum suppression
might delete the object with the lowest confidence score even if two different contrails were actually
detected in the first place.

However, it is still possible to give some insights about the answer. First important
feature is the shape of the object. Linear contrails are mostly long and thin linear objects,
often rather distinct from the background. The color of the contrail is also quite important.
They appear in black, grey or dark blue according to the background and the properties of
the contrail. The gradients inside the cloud are also important to take into account.

The objects representing the synthetic contrails are indeed important, but the context
in which the contrails are added is very important as well. Contrails were added in images
in which no natural contrails were present. It means that the deep learning method will
not only learn the characteristics of the contrail class, but also those of other objects. It will
learn that objects resembling contrails but that are not in the dataset are not contrails.

Many of the false positives in methods like Mannstein’s CDA (Contrail Detection
Method) [7] are due to long and thin linear cirrus clouds, or other types of clouds and land
features that happen to have a linear shape and a similar signature as contrails on these
satellite images. In Figure 9, such linear features are present. There were no aircraft the
contrails of which would be in this area at the time the picture was taken. These features
were not classified as contrails by our method, whereas the implementation of CDA from
McCloskey et al. [22] did. The deep learning method seems to have learnt to discriminate
between contrails and this kind of features using the context around it.

Figure 9. This image contains linear shapes that look like condensation trails but are not.
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If false positives were produced by this detection method, their direction and evolution
would be very unlikely to match a flight trace, especially over multiple timestamps, which
would cause them to be ignored by the algorithm described in Section 3.

2.2.2. Inference on Real Images, Projection in Geographic Coordinates and Parallax Correction

The previous Section described the training of the contrail detection model. Our model
is trained to return the coordinates (in pixels) of the polygons corresponding to the bound-
aries of the contrails detected on the small satellite pictures tiles.

In order to get the coordinates of the contrails on full satellite images, a method was
used to divide the full picture into overlapping tiles of the right size. Contrail detection
is performed on each of these tiles in parallel and the results are combined to get the
coordinates in pixels of the contrails on the full size GOES image.

In order to be able to correlate the detected contrails with corresponding weather and
traffic data, we need to get the geographic coordinates from the pixels’ location. As we are
working on high altitude cirrus from a geostationary satellite at latitudes that are far from
equator, it is important to take into account the parallax issues.

Using this model, it is therefore possible to detect the contrails on GOES images and
get the polygons corresponding to their boundaries in geographic coordinates, like in
Figure 10.

(a) (b)
Figure 10. Result of contrail detection on real contrails. (a) Example of an unmodified GOES tile.
(b) Detected contrails on this tile.

2.2.3. Preparing the Air Traffic Data

The goal of our study is to match the contrails with the flight that most probably
produced them. Given a detected polygon at a certain timestamp, the matching problem
is equivalent to the following question: which aircraft could have produced this contrail?
The position of the polygon at a specific time is known, along with the flights’ trajectories
including the position of each flight at each timestamp, and the wind field forecasts.
However, no information is available on how long this contrail has been persisting for.

It is therefore possible to reformulate the question: given wind advection, which plane
was at the right place at the right time so that if it produced a contrail it would correspond
to the detected polygon?

It is difficult to know what part of the flight actually produced contrails. However, by
assuming the aircraft produced a contrail along the whole flight and that it persisted, it is
possible to estimate the position of this hypothetical contrail at the time the polygon was
detected. It is then possible to identify the portion that is the most likely to have produced
the contrail represented by the polygon. It is this small portion that is then used to compute
all the metrics required to solve the matching problem.
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Given a detected contrail at a certain timestamp and a certain flight then such contrail
will be subject to wind advection. It is possible to estimate the position of the hypothetical
contrail advected by the wind at a chosen timestamp. Assuming the plane will have
produced contrail all along its flight, and assuming this contrail has persisted, the position
of this hypothetical contrail will be that of the flight trace advected by the wind and subject
to sedimentation, that will here be represented by applying a fall speed estimated using the
equations from [2]. We will call the flight’s “potential contrail” its “advected trace” from
now on. This advected flight track is shown for several timestamps in Figure 11.

10.0 m/s

30.0
m s**-1

 t0   t1  
 t2  

 t3  
 t4  

 t5  
 t6  

 t7  
 t8  

advected Flight Trace at t0
advected Flight Trace at t1
advected Flight Trace at t2
advected Flight Trace at t3
advected Flight Trace at t4

advected Flight Trace at t5
advected Flight Trace at t6
advected Flight Trace at t7
advected Flight Trace at t8
Flight track

Figure 11. Advection of the Flight Track with the wind. These lines correspond to the position at
which a potential contrail would be located at the indicated time.

3. Methodology

This section presents how to use the various types of data from Section 2 to match
contrails to the flights that produced them, and to monitor their evolution. It shows the
interest of exploiting the time dependence between multiple frames, but also why solving
the matching and tracking of all contrails in the area concurrently could improve the
relevance of the method in crowded areas.

3.1. Single Frame Flights-Contrail Matching

This Section will explain the methodology employed to associate a polygon detected
at a particular timestamp with the flights that could have generated it. As explained in
the previous section, it is possible to estimate where each flight’s hypothetical contrail
would be at time ti, assuming the aircraft had produced a contrail at time tj with tj < ti.
Figure 12 provides empirical insights on how the matching between the flight and the
contrail polygon could be performed.

   t3

   t4

   t5

   t6

   t7    t8

 timestep : t6

Flight track
Contrail Detected on Satellite Image at time t6 

(a)

   t1

   t2

 t3

 t4

 t5

 t6

 t7

 timestep : t6

Flight track
Contrail Detected on Satellite Image at time t6 

(b)
Figure 12. Checking the quality of the matching between a detected contrail and two different flight
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tracks : advected flight track at timestep 6 needs to match the position of the polygon detected
at timestamp 6. (a) Simulated contrail position matches the position of the contrail detected at
timestamp 6. (b) Simulated contrail position doesn’t match the position of the contrail detected at
timestamp 6.

In order to define a first group of candidates, several filters were chosen. It was
decided to only consider flights whose advected trace was within 1 degree of latitude and
longitude from the polygon. The apparent heading difference between the polygon and the
advected flight trace is used as a second filter. All advected traces with an angle of more
than 7° with the polygon will not be considered as potential candidates either. A third
filter was added based on the values of temperature at the location of the flight at the
moment it potentially created a contrail. The maximum temperature for contrail formation
is estimated to be −35 °C. It was decided to reject every trajectory in which the aircraft flew
in an air mass at temperatures above −25 °C.

A more relevant filter using the Schmidt Appleman contrail formation criterion [30]
was also considered, as it could provide a more relevant filter than that using a simple
temperature threshold. However, in a significant number of cases this filtering ignored the
flight that actually produced the contrail, probably because of uncertainties in the prediction
of relative humidity forecast at these altitudes. In general, these cases were very close to the
humidity and temperature thresholds required to satisfy the Schmidt-Appleman criterion,
or very close to an area where this criterion was satisfied.

The result of this filtering process is a set of potential candidates, but this filtering
alone is often not enough to find the aircraft responsible for the contrail.

It could be difficult to define a metric to measure the quality of the matching between
an advected flight trace and a polygon. Given a specific flight and a specific polygon,
several distances were defined.

Since no information is available on which portion of the flights produced the contrail,
it was assumed that the portion of the advected flight path that is closest to the polygon is
the most likely to have generated the contrail, as shown in Figure 13. It corresponds to the
projection of the polygon on the advected flight track. This portion of the advected flight is
used to build the metrics that will allow to discriminate between the candidates. It will be
called the selected portion from now on.

Detected Polygon on Satellite Picture
Advected Flight track
Selected portion of the Advected Flight Track
Smallest geographic distance

Figure 13. Selection of the portion of the flight that most probably produced the contrail.

Once the portion of the advected flight that has potentially produced the contrail could
been identified this method is applied to select a set of probable candidates. Several metrics
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could then be used to discriminate between the candidates. They are computed between
the selected portion and the centerline of the polygon, both re-sampled into 100 evenly
separated points. The first metric used is a mean Haversine geographical distance between
the contrail polygon points and the advected flight trace. It is formulated as follows :

dMean(P, AFT) =
1
|P| ∑

a∈P
inf

b∈AFT
d(a, b) (1)

where P is the list of the points corresponding to the centerline the polygon, |P| the number
of points in the list P, and AFT the points in the corresponding selected portion of the ad-
vected flight trace. d(a, b) corresponds to the Harversine distance between two geographic
points. This metric gives the averaged geographical distance between the two objects.

The main uncertainty about the position of the hypothetical contrail produced by the
flight is the wind induced uncertainty. However, it seems that the uncertainty on wind
speed is more pronounced than that of wind direction. Confidence is higher with a contrail
that has the same heading and a bigger mean distance than a contrail that has a slightly
lower mean distance but has a higher heading difference. In Figure 14, for example, we are
more confident about the contrail/flight match in Figure 14a than we are with that in
Figure 14b.

This is the reason why the Hausdorff distance was chosen as a second metric. It is
defined as follows:

dH(P, AFT) = max

{
sup
a∈P

inf
b∈AFT

d(a, b), sup
b∈AFT

inf
a∈P

d(a, b)

}
(2)

where P is the list of the points in the centerline of the polygon, and AFT the points in the
corresponding selected portion of the advected flight trace.

This score also provides information about the distance between the polygon and the
selected portion. However, by taking the sup value over the distances, this metric tends
to give a greater weight to flights that have the same heading as the contrail, as shown in
Figure 14.

Mean Distance : 0.259    
Hausdorff Distance : 0.272    

Custom Distance : 0.286    

Detected Polygon on Satellite Picture
Advected Flight track
Selected portion of the Advected Flight Track
Smallest geographic distance

(a)

Mean Distance : 0.148    
Hausdorff Distance : 0.295    

Custom Distance : 0.587    

Detected Polygon on Satellite Picture
Advected Flight track
Selected portion of the Advected Flight Track
Smallest geographic distance

(b)
Figure 14. Contrail in the first situation must have a better score than in the second situation.
(a) Contrail parallel to the track. (b) Contrail not parallel to the track.
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Another metric could also be used, defined by:

dCustom(P, AFT) =
dH(P, AFT)2

dMean(P, AFT)
(3)

This new metric gives a greater weight to the flights that are parallel to the polygon,
even more than when using Hausdorff distance.

It is then possible to match the candidate polygons to the flights by optimization.
The matching problem can be formulated as follows: let ai,j ∈ {0, 1} be the binary decision
variable, with i the index of the flight, j the index of the contrail polygon. ai,j = 1 when flight
i matched with contrail j, and ai,j = 0 otherwise. Let ci,j be the flight-contrail correlation
matrix defined by using the inverse of the flight-contrail distance described above.

max
a

J(a, c) = ∑
i,j

ai,jci,j (4a)

s.t. ∑
i

ai,j ≤ 1, j ∈ Contrail Polygons (4b)

The constraint defined in (4b) expresses that each detected contrail could be matched
with at most one flight.

However, it is often not enough to solve the matching problem, especially in areas
with high flight density. Uncertainties in weather data such as wind have an important
impact on the difference between the predicted and observed contrail position. The older
the contrail, the greater the impact of these uncertainties. It has been measured that the
candidate filter described above is susceptible to ignoring the actual aircraft at the source of
the contrail when applied to a contrail older than one hour. Furthermore, the metrics based
on the distance and orientation difference between the predicted and observed position of
the contrail also lose relevance with increasing contrail age.

3.2. Tracking of Contrails Using Time Information

Even with all the different metrics previously defined, there are sometimes several
flights that could still correspond to the polygons at a specific timestamp. In this section,
temporal information is used to help discriminate between these flights. There is therefore
a need for a contrail tracking method.

The lack of information about the altitude of the detected contrails makes it difficult
to use the forecasted wind to find the successor of a polygon in the method developed
in [12]. A workaround was found, but it requires a greater temporal resolution of the
satellite sensors to overcome this problem. In this study, it was decided to use traffic data to
formulate several guesses about the possible altitudes of the contrails, which would allow
an estimate to be made of the wind conditions at that location. This information is used to
find the potential successor of the polygon on the next picture, if it exists.

In order to guess the location of the polygon’s successor on the next frame, the same
method as in the single frame flight-contrail matching from Section 3.1 is used to select the
flights that have the highest probability to have caused the contrail. The altitude of these
different flights are then used to estimate the wind conditions at the polygon’s location.
This wind information allows to move the previous polygon into the several locations in
which a potential successor could be expected.

If we note [xp(t), yp(t)] the coordinates of the centroid of the polygon of the detected
contrail on the Goes picture at time t, zC(t) the probable altitude of the contrail using the
method described above, [xw(xp, yp, zC, t), yw(xp, yp, zC, t)] the wind conditions at point
(xp, yp, zC, t), and ∆t the difference between the timestamps of the two successive pictures,
we have: {

xp(t + ∆t) = xp(t) + xw(xp, yp, zC, t)∆t,

yp(t + ∆t) = yp(t) + yw(xp, yp, zC, t)∆t,
(5)
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The polygons that overlap with this advected polygon and that have a small difference
in heading could be considered to be the successors. For example, in Figure 15, a polygon
from the next frame matches with the polygon selected on the previous frame.

10.0 m/s

20.0
m s**-1

time = 1.546e+09, level = 327.1 [millibars]

Polygon on previous timestamp
Successor predicted location
Corresponding polygon on next timestamp

Figure 15. Selection of the successors of the detected contrail on the next frame.

This advection process is applied using the mean altitudes of all the candidate al-
titudes as described above. Most of the time, the only potential successors are found
using the most probable candidate’s wind values. However, in very crowded areas, other
successors can be found at different altitudes, with other wind conditions. It is at this point
difficult to decide which ones are actually the right successors, but this method still brings
valuable information.

3.3. Combining Both Approaches

Two methods were described in the previous section. The first one allows us to
select the flights that could have produced a contrail detected on a satellite image. It is
however not always able to discriminate between these flights especially in crowded areas.
The second method attempts to identify the polygons that correspond to the same contrail
on the next satellite picture, but it is subject to wind uncertainties and may select two
incompatible successors for the same detected contrail. However, combining information
from both methods can help us accurately discriminate between all candidates.

It is possible to use the method described in Section 3.1 to select a given polygon’s
“flight candidates”, a small set of flights that could have caused the contrail formation.
This filtering process removes the flights that are not close enough, have an advected flight
trace with too much difference in angle with the polygon, or are not flying in a cold enough
area to have produced a contrail.

Based on the procedure from Section 3.2, Algorithm 1 is used to sample the most
probable chain of polygons given the first polygon of the chain and a flight candidate.

Each polygon detected on the satellite images could potentially be the first time a
contrail is seen, so it is possible to iterate on the detected polygons and on their candidates
to generates all the most probable chains starting with each polygon.

Algorithm 2 iterates through all the detected polygons and their respective flight
candidates, and uses Algorithm 1 to generate and evaluate all the most probable chains of
polygons from these.

This method pre-computes a set of “potential chains”, each characterised by a flight,
and a set of polygons, in which will be included the chains representing the true contrails.



Aerospace 2023, 10, 578 17 of 27

It is possible to reformulate the tracking and matching problem into: which of the generated
chains are true contrails?

Algorithm 1 Generation of a chain of polygons from a candidate flight and a first polygon.

procedure BUILD_CHAIN(Polygon, Flight) . Polygon is the first polygon of the chain,
Flight is the flight selected to build the chain

Chain← {Polygon}
Successor ← Polygon
CurrentPolygon← Polygon
while Successor is not NULL do

T ← time at which CurrentPolygon was detected
Weather ← GET_WEATHER(Polygon, Flight, T)

. This function gets weather data at location of CurrentPolygon, at time T, with the
altitude information from Flight.

Successor ← GET_SUCCESSOR(CurrentPolygon, Weather, T)
. This function checks if a potential successor is present on the next frame like shown in
Figure 15

Chain← Chain + Successor
CurrentPolygon← Successor

end while
return Chain, Flight

end procedure

Algorithm 2 Generation and Evaluation the list of possible contrails chains.

PolygonsList← List of all detected Polygons
ChainScores← {}
for Polygon ∈ PolygonsList do

CandidatesList← GET_CANDIDATES(Polygon)
for Candidate ∈ CandidatesList do

Chain← BUILD_CHAIN(Polygon, Candidate)
Score← EVALUATE_CHAIN(Chain, Candidate)
ChainScores← ChainScores + (Chain, Score)

end for
end for

To reduce the amount of unnecessary candidates, it is possible to remove all the chains
that could not realistically be contrails. First, the same filtering as presented in Section 3.1
is used.

Each chain is supposed to represent a whole contrail. This allows for a new type of
filtering, taking for example into account the time between the aircraft passage and the first
detection of the contrail. The resolution of Goes images is a few kilometers squared, which
means that young contrails may not be immediately visible on these images. It can take
anywhere from a few minutes to half an hour for the contrails to become visible on Goes
images. This information can help us filter out the less probable candidates by disregarding
the flights that passed after the first contrail was detected (obviously not a good candidate)
or those that passed too early before it was detected, as it is doubtful the contrail stayed
undetected for such a long period of time. It was decided to ignore the chains for which
the time between the plane passage and the first observation of the contrail is more than
forty minutes or less than one minute.

Other filters could also be added. The first polygon of the chains represents the first
time the contrail is ever observed. The matching between the polygons and the flights is
subject to wind uncertainties. These uncertainties have an impact on the location of the
advected flight trace that needs to be matched with the detected contrail. As the flight
trace is advected for a longer period of time, the uncertainties on its position gets higher.
The matching with an advected flight trace of the first polygon is therefore subject to
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less wind uncertainty. It was decided to set a threshold on the minimum score that the
polygon/flight matching should perform for the first polygon to ensure the quality of the
matching of the beginning of the chain.

Then, having filtered out as many unrealistic chains as possible, it is possible to
formulate a new matching problem.

Let ai,j ∈ {0, 1} be the binary decision variable, with i the index of the flight, j the index
of the chain of polygon. ai,j = 1 when flight i is matched with chain j, and ai,j = 0 otherwise.

Let bj,k ∈ {0, 1} be the chain-polygon correspondence matrix. This matrix is built
beforehand, using the list of all the potential polygon chains. bj,k = 1 when chain j contains
polygon k, and bj,k = 0 otherwise.

Let ci,k be the flight-contrail correlation matrix defined by using the inverse of the
flight-contrail distance described above.

Let di,j be the flight-chain matrix describing the delta of time between the passage of
the aircraft and the first observation of the contrail.

The optimization problem maximizing the score of the matching while choosing
between incompatible options could be formulated as follow:

max
a

J(a, b, c) = ∑
i,j

ai,j ∑
k

bj,kci,k (6a)

s.t. ∑
i,j

ai,jbj,k ≤ 1, k ∈ Contrails, (6b)

∑
i

ai,jdi,j ≤ 40 min, j ∈ Chains, (6c)

∑
i

ai,jdi,j ≥ 1 min, j ∈ Chains (6d)

The first constraint (Equation (6b)) assures that each contrail could only be assigned
to one flight. This is a rather strong assumption because some contrails might sometimes
overlap, but it allows the problem to be modeled using an optimization approach.

The second and third constraints (Equations (6c) and (6d)) correspond to the verifica-
tion that the time between the flight passage and the contrail first detection makes sense:
a contrail that will appear on the satellite picture more than 40 min after the passage of the
aircraft will not be matched with this flight, whatever the score.

By formulating the problem in this way, it is reduced into a MILP (mixed-integer linear
program) type problem. The result of this optimization process is composed of the indices
of the flight/chains that were selected.

The generation of the polygon chains enumerates the possible contrails in an exhaus-
tive way. It means that the final set of possible chains contains numerous incompatible
options. The optimization based method allows one to choose between these incompatible
candidates like shown in Figure 16.

The following paragraph illustrates how the method operates, starting with a reminder
of some of the terms defined earlier.

A frame (as a picture from a video) is a satellite image taken at a specific time. A poly-
gon represents the boundaries of a contrail on a frame, thus at a specific time. It is the
output of the detection method. An advected flight trace represents the predicted position
of the contrail produced by a flight at a given time, assuming that contrails are formed along
the entire trajectory. A chain of polygons is a sequence of polygons describing the positions
of a potential contrail on successive frames. A chain is defined by a first polygon, a flight,
and the list of the polygons that describe the position of the contrail on the following frames.
These chains are built using the Algorithms 1 and 2. A set of selected chains is chosen by
optimization. The optimization process performs choices between the incompatible chains.

On 1 January 2019, at 13:20 UTC, just next to a cluster of contrails, two contrails were
detected in a region in which several aircraft flew a few minutes before. The detection
method detected several objects on the following frames. The situation is described in
Figure 17.
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(a) (b)
Figure 16. Examples of matching including tracking: the flight on the left picture gives a better match
for the first polygon of the chain (on the left), but the evolution of the advected flight track does not
match the evolution of the tracked contrail. (a) The contrail matches the advected flight track over the
whole experiment. (b) The contrail drifts away from the advected flight track even if the first match
is better.

As shown in Algorithm 2, the chain generation process is applied to each detected
polygon. Given a polygon P, a chain is defined for each flight which advected flight trace
passed the filter described in Section 3.1. These flights are what we called the candidates.
For each pair (P, candidate), a chain will be defined by finding all the successors of the
polygon P according to the method described in Section 3.2 given the wind conditions
derived from the information provided by the flight candidate. The result of this iterative
process is a set of chains of polygons, each defined by the flight and the first polygon used
to define it. Given the situation presented in Figure 17, six chains were generated. They are
presented in Figure 18.

Figure 17. The situation at the beginning of the illustration example. Several polygons are detected on
successive frames, and four flights flew in the area moments before the first polygons were detected.

Several chains in the set could be incompatible with respect to the chosen constraints.
In this case, chain 1 (Figure 18a) is incompatible with chain 5 (Figure 18e), because several
polygons are shared between the two chains, and a single polygon cannot be attributed to
a single flight. The score of chain 5 is higher, so we remove chain 1 from the set.
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(a) (b)

(c) (d)

(e) (f)

Figure 18. Chains generated from the situation presented in Figure 17. (a) Chain 1 from flight
AAL944 and polygon 2790. (b) Chain 2 from flight DAL2057 and polygon 3106. (c) Chain 3 from
flight DAL2057 and polygon 3627. (d) Chain 4 from flight RPA4727 and polygon 2824. (e) Chain 5
from flight SWA2163 and polygon 2790. (f) Chain 6 from flight SWA2163 and polygon 3118.

Chain 3’s (Figure 18c) polygons are shared with chain 2 (Figure 18b), and they belong
to the same flight. It could happen when the second polygon corresponding to the contrail
is detected less than 40 min after the contrail formation. In order to not count the same
polygons twice, and because chain 2 also covers more polygons, chain 3 is removed from
the set. The same situation is applied to chains 5 (Figure 18e) and 6 (Figure 18f). Chain 6 is
therefore removed from the set.

Chain 2’s (Figure 18b) polygons are shared with chain 4 (Figure 18d), and they belong
to different flights. Flight DAL2027 passed in the area after flight RPA4727, so it couldn’t
capture the first polygon of the chain captured by flight RPA4727, and the score of its chain
is also lower. Chain 2 is therefore removed from the set.

This process lead to the selection of the two chains presented here in Figure 19.
The main advantage of a method solving the matching and tracking of all contrails at

the same time is that it can use information from the context around the contrail (tracking
three parallel contrails matched with three parallel flights is easier than tracking each
of them separately). Just as the human operator would, the optimization method will
maximize the overall score of the matching, even when wind uncertainty makes the
position of the real contrails slightly different from the predicted ones.
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Figure 19. Final set of selected chains after the optimization process.

4. Case Study
4.1. Results on Contrail Tracking

The method has been applied for example purpose on a 8 h period the 1 January 2019,
from 12:00 UTC to 21:00 UTC, over an area covering the continental US (latitude between
20N and 60N, and longitude between 125W and 40W). A lot of contrails can be observed
during this period. It includes several interesting situations: we have both isolated distinct
contrails, and overlapping contrails in crowded areas. It could therefore be interesting to
describe a few situations encountered.

This case study illustrates the potential of this kind of method in order to build a
dataset of observational data that could be used to help validate the contrail models. It also
shows in which aspect the method could still be improved.

4.1.1. Description of the Case Study

In this 8 h period, 26,394 polygons were detected on the satellite images (note that
a particular contrails can be detected several times in our detection method). There are
8989 distinct flights in the ADSB traffic data over this period in the area. Using the method
described above, and after filtering, Algorithm 2 allowed us to precompute a total of
16,087 distinct chains and to evaluate each one of them.

The optimization process resulted in 3680 chains being selected, with a total of
1552 flights producing contrails at some point during the flight.

The time between the flight passage and the first observation of the contrail is 27 min
on average over the test case. Note that because the time between two frames is 15 min,
this value does not correspond to the time it really takes for a contrail to potentially become
visible on a geostationary satellite image. For example, the use of the Mesoscale product of
Goes 16 (with a time resolution of one minute) should show a different (probably much
shorter) value. This value also heavily depends on the detection method used, and its
ability to detect thin young contrails, not yet very distinct from the background.

Contrail observed persistence time distribution is described in Figure 20. The contrail
tracked for the longer period of time lasted about 4 h in our test case. It is shown in Figure 21.

This contrail was detected on 14 different frames. However, it was already visible on
the frame before the first detection by the algorithm. It is also still visible on the frame after
the last detection by the algorithm, even if at this point it has lost its linear shape. It is also
interesting to note that the detection algorithm only highlighted the part of the contrail
showing a higher contrast with the background.

4.1.2. Isolated Contrails: High Confidence on a Small Set of Examples

Sometimes, isolated aircrafts can cross contrail formation areas. These are often the
most easy contrails to identify and track as there is only one candidate for the identification
of the contrail, and knowing for sure which flight is responsible for creating a contrail
makes the tracking problem much easier to solve, even for long-lasting contrails.
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Figure 20. Distribution of the time of persistence of the tracked contrails.

flight : _ARG1300_e06588
2019-01-01T11:52:59

Contrail creation
time : 11:52:59
time : 12:20:55
time : 12:35:55
time : 12:50:55
time : 13:05:55

time : 13:20:55
time : 13:35:55
time : 13:50:55
time : 14:05:54
time : 14:20:54

time : 14:35:55
time : 14:50:54
time : 15:05:55
time : 15:20:55
time : 15:35:55

Figure 21. A long lasting contrail in the test case.

For every chain of polygons that were generated, we consider that it represents an
isolated contrail if the first polygon of the chain has only one valid candidate according to
the various filters described in Section 3.3. It means that the corresponding advected flight
trace must be close enough to this polygon at the time it was detected, that the aircraft
originally flew in an area in which the temperature was compatible with contrail formation,
and that the time between the passage of the aircraft and the detection of the contrail is
between 1 min and 40 min.

There were several occurrences of these isolated long-lasting contrails in our test case.
For example, over this period of time, 26 isolated contrails, lasting more than 1 h and
detected on at least three successive frames were reported.

These cases are interesting as they provide valuable information about to what extent
the advected flight track is actually close to the corresponding contrail. It also indicates
how this difference evolves overtime, thus giving information about the expected quality
of our matching and tracking method.

They could also be used to test the validity of contrail prediction methods.

4.1.3. Contrails Forming in an Empty Area

Some contrails form in a region in which there were no contrails detected on the
previous frames. There is a high probability that such a chain describes a real contrail,
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and not a subset of an older contrail. Confidence on tracking is therefore higher in this case
than for the contrails forming in crowded areas.

There are 659 contrails detected on at least two frames in this experiment. 535 of
them formed in an empty region, with no polygons in the area on the timestamp before
their formation, while 124 formed in regions where polygons had already been detected.
In order to define these regions, it is possible to select all the different flight candidates
matching this chain of polygon, and use the subsequent wind information to look back
in time if there was any detected contrails matching the predicted positions of a potential
previous polygon.

4.1.4. Performance on Difficult Situations

Even for contrails with several potential candidates with no guarantee about the
quality of the result, it is often possible to qualitatively check the validity of the selected
chains of polygons.

The main advantage of combining wind and traffic data in this method is the ability to
distinguish between close parallel contrails from aircraft flying close to one another. If the
two aircraft produce a contrail, it is possible to choose which chain of polygons is from
which flight, as shown in Figure 22.

A tracker without wind information could misidentify the successor of a polygon,
leading to incorrect results. A tracking method that does not take into account the fact that
a contrail can only have been issued by one aircraft would also risk associating the same
contrail with several aircraft, or incorrectly associating a contrail to an aircraft that did not
produce any.

The interest of our method in this context is to restrict the successor search to avoid
selecting a polygon belonging to another contrail to continue tracking. It therefore allows
parallel contrails to be correctly identified and tracked.

In this example, there are only two aircraft with a high enough score to have produced
the contrails. Their positions relative to the proposed chains makes it easy for a human to
check which contrail was produced by which flight. In this case, it is therefore possible to
assess whether the method proved successful.

flight : _AAL1281_ab7394
2019-01-01T12:34:59

flight : _UAL1750_aa7e7c
2019-01-01T12:35:59

Contrail from flight : AAL1281
Contrail from flight : UAL1750

Figure 22. Matching and tracking two contrails close and almost parallel: difficult without wind and
traffic data.

4.2. Limitations

This method allows to extract valuable information from the traffic data and the
satellite images, but some limitations have to be highlighted.
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4.2.1. Detection Based Tracking Algorithm

This method is a detection based tracker. To be able to correctly track an object through
the successive frames, it is important that the object is detected on all of these frames.
The consistency of the detection method is therefore of great importance for the quality of
the overall result. In our case, it is not uncommon to lose track of a contrail because it was
missed by the detector after a few frames.

The detection method is also trained to detect only linear contrails. It can sometimes
continue to detect them when they lose their linear shape, but cannot detect them when
their appearance becomes too similar to natural cirrus. It is also difficult to detect sub-pixel
wide contrails and contrails with low optical depth, which reduces the contrast with the
background, especially in areas with natural cirrus and other contrails.

4.2.2. Lack of Confidence for Short Lived Contrails

The method presented in this study relies among others on contrail’s observed wind
advection to discriminate between potential candidates. In this context, the longer the
contrail persists, the greater the confidence will be. In fact, the drift due to differences
between predicted and observed wind will become more visible with a longer persistence
time. Therefore, when the contrail has a short lifetime (visible on only one or two frames),
the use of observed advection provides less information, thus leading to a higher risk of
contrail misidentification (matching with the wrong flight).

Observation of the contrail evolution also allows to remove most detection false
positives. It means that if the model detected a feature on the satellite image that is not a
contrail, there is only a small risk that an aircraft advected flight trace matches perfectly
with this false contrail on several timestamps. However, it is possible that it matches on
only one frame. This is why a contrail lasting only one frame in our results has a higher
risk to actually be a false positive from the detector.

In the test case chosen here, 1690 contrails visible on only one frame were identified.
Over these 1690 contrails, 493 formed at a place and time where only one flight could match
them with a sufficient score.

4.2.3. Wind Uncertainties over Large Periods of Time

When studying a contrail lasting several hours, it is not uncommon to witness a “drift”
between the predicted and the observed contrail’s locations. This is not a problem to study
the beginning of the contrail lifetime, but after a few hours, the contrail might have drifted
too far away from the predicted location. Another flight could then happen to match the
contrail better the contrail at this point, leading to misidentification.

This would mean that the method will lose track of the original contrail, and attribute
a contrail to the second aircraft, even if it might not have produced one. To solve this
problem, a factor could be applied to the longer lasting contrails to give them a greater
weight against this kind of issue. However, a dataset of ground truth contrail tracking and
matching would be needed in order to correctly set these parameters.

4.2.4. Lack of Validation Data

The only other contrail tracking method published to this day is ACTA [12], which
is applied to Europe. No dataset about contrail identification and tracking was published
either. We were therefore unable to access data that could be used to further validate our
model. It is however likely that improvement could be made confronting the model with
ground truth data. An example of a possible way to improve this method was discussed in
the previous paragraph. It could also be interesting to get more quantitative information
on the performance and robustness of our method.
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5. Conclusions and Future Work
5.1. Conclusions

This study presents a novel approach to monitor contrails throughout their evolution
and to identify the aircraft responsible for their formation. This method leverages air
traffic data, weather data as well as geostationary satellite images to achieve this task.
It improves the reliability of the tracking and the flight identification problems by solving
them together.

The aim of this study is not to allow an exhaustive monitoring of all the contrails at a
given time, but to allow the identification of a set of contrails for which the tracking and
the flight matching can be done with a given confidence. Such a dataset could then be
combined with data from ground cameras, other types of satellites, or sensors to create a
dataset of identified contrails that provides information on the different phases of contrail
evolution. Although much of the climate impact of contrails is caused by cirrus contrails
that have already lost their linear shape, we believe it is interesting to use the period when
they still have it to identify the aircraft that caused them and to provide useful information
for initiating the tracking of the contrail in its spread form. This study will therefore be
important in order to join several observation methods, each characterising different aspects
of the contrails. Ultimately, this will allow progress to be made in the validation of climate
impact models of contrails.

To be able to build a dataset in order to help validate contrail climate impact models,
there is a need for information on the formation of the contrail, on its evolution, and on
its physical properties all along its persistence time. This study proposes a way to gather
information about the evolution of the contrail, but it will need to be supplemented by
other data sources to gather information on the other aspects. However, the use of this
method allows to easily merge the dataset with other means of observation, as the aircraft
that produced the contrail is well identified.

5.2. Future Work

The limitations of our method described in Section 4.2 point to potential future work
extending this study. In order to conduct more global studies, contrail detection on satellite
images still needs to be improved. The consistency of the detection in particular needs
improving. It will also be interesting to use more global air traffic data, including for
example satellite based ADSB data improving the results over the oceans.

In order to further improve the results of the method, there is a need for a ground
truth dataset to help adjust the different parameters and metrics used here.

It is already possible to use the information generated by our method to validate
several aspects of the contrail simulation models. However, in order to be able to validate
the climate impact modeling, this method needs to be coupled with a radiative forcing
estimation method. It will also be necessary to be able to track the contrails beyond the
period in which they maintain their linear shape. We believe that our method provides a
good way to initialize such a tool by identifying the flight causing the contrail and tracking
the first positions of the linear contrail.
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