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Abstract—Interferences are an important threat for applica-
tions relying on Global Navigation Satellite Systems (GNSS).
Interferences degrade GNSS performance, and can lead to denial
of service. The most notable intentional interference family
is characterized by its constant envelope, e.g. chirp and tone
interferences. Due to its simple structure, the space to search the
interference contribution yields to complex circles, allowing the
introduction of some latent variables related to those circles.
In order to mitigate the interference effect, we compute the
maximum likelihood estimator of the parameters of interest (time
delay and Doppler shift) in presence of those latent variables.
Thus, we resort to the Expectation Maximization algorithm which
has already been proved to be efficient in such cases. Experiments
conducted on synthetic signals highlight the efficiency of the
proposed algorithm.

Index Terms—Maximum likelihood, Expectation maximiza-
tion, GNSS, Interference, CEM.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) [1] are widely
used not only in applications requiring navigation and timing
information, but also in domains such as Earth observation, at-
titude estimation or space weather characterization. Therefore,
reliable position, navigation and timing information is funda-
mental, especially for critical application such as intelligent
transportation systems or autonomous unmanned ground/air
vehicles. GNSS have become the main source of positioning
data, however they were originally designed to operate in
clear sky nominal conditions, and their performance clearly
degrades under harsh environments. For instance, phenomenon
such as multipath (reflections) [2], spoofing and interferences
(intentional or unintentional) are the most challenging ones,
being a key issue in safety-critical scenarios [3], such as civil-
ian aviation [4]. These effects have been reported in the state-
of-the-art, and several interference mitigation countermeasures
have already been proposed [5]. In the time domain are two
widespread methods: 1) pulse blanking [6], where samples
of the incoming signal corresponding to a power level higher
than a predefined threshold are set to zero, can be performed to
reduce the impact of pulsed interference, and 2) adaptive notch
filtering [7], where the instantaneous frequency of the jamming
signal is continuously estimated through a recurrence equation
in the time domain (hence no transformation in the frequency
domain is required), and the corresponding frequency is then

filtered out from the incoming signal. Similar to the pulse
blanking, the signal can be projected in other domains, such as
the frequency domain through the Discrete Fourier Transform
(DFT), and a threshold can be applied to set to zero suspicious
elements. Another transformation interesting for interference
mitigation is the Karhunen-Loeve Transform (KLT) [8], [9],
based on the incoming signal autocorrelation eigen values and
vectors.

In this article, we propose a new way to reduce interfer-
ence characterized by constant envelope (CE). This family of
interferences represents one of the most important families of
intentional interferences that have been detected in the state
of the art. Examples of those signals are pure tones or time-
varying tones, well known as chirped signals. Due to the
constant modulus property, the space to search the interference
contribution at the receiver yields to complex circles. In order
to characterize these circles, some latent variables can be
defined. The contribution of this article yields to compute the
maximum likelihood estimator (MLE) of the parameters of
interest, i.e., the time-delay and Doppler shift in the presence
of those latent variables. In order to compute the MLE, we
resort to the Expectation-Maximization (EM) algorithm which
has already proven to be asymptotically efficient in such
scenarios. For instance, this algorithm has been proven to
be very effective for N -hypersphere estimation [10]. In order
to evaluate the performance of the proposed algorithm, we
compare our solution with respect to the theoretical limits
of delay and Doppler shift estimation given by Cramér-Rao
bound considering the well-specified [11] and misspecified
[12] conditional signal models.

The article is organized as follows: Section II introduces the
GNSS received signal model when a constant envelope band-
limited interfering signal is attacking the receiver. Section III
details the proposed EM algorithm used for the interference
mitigation under the constant envelope hypothesis. Simulations
results presented in Section IV validates the performance
of the proposed method for two synthetic signal scenarios.
Finally, conclusion are drawn in Section V.

II. SIGNAL MODEL

In this article, we consider a band-limited signal s(t), with
bandwidth B, transmitted over a carrier frequency fc and



traveling at the speed of light c, from a GNSS satellite to
a receiver. The transmitter and receiver are assumed to be in
uniform linear motion such as the distance can be modeled
by a first order d − v distance-velocity model [13]. At the
receiver, a narrow-band signal model is assumed and the
received signal x(t) at the output of the receiver’s Hilbert filter
can be approximated by [11], [14]

x(t) = ρejϕs(t− τ)e−j2πfcb(t−τ) + n(t) (1)

where ρ and ϕ are the amplitude and phase of the complex
coefficient α = ρejφ ∈ C induced by the propagation
characteristics, τ = d/c is the unknown propagation delay,
b = v/c is the unknown Doppler coefficient and n(t) is a
zero-mean white complex circular Gaussian noise. Assume an
interfering signal I(t), unknown and bandlimited within the
frequency band of interest, is also arriving at the receiver. Then
the signal x becomes

x(t) = αs(t− τ)e−j2πfcb(t−τ) + I(t) + n(t). (2)

Considering the acquisition of N = N2−N1+1 samples at the
sampling frequency Fs = B = 1/Ts, and assuming that the
observation window [N1Ts, N2Ts] is short enough to consider
constant amplitude, delay and Doppler shift, the discrete signal
model yields to

x = αµ(η) + I + n (3)

where µ(η) =
[
. . . , s(kTs− τ)e−j2πfcb(kTs−τ), . . .

]T ∈
CN with η = (τ, b) and k ∈ (N1, . . . , N2), I =
[. . . , I(kTs), . . .]

T ∈ CN and n = [. . . , n(kTs), . . .]
T ∼

CN (0, σ2IN ). Moreover, under CE interference, all the com-
ponents of the vector I have the same modulus A > 0. We
therefore propose the parametrization

I = AĨ (4)

such that Ĩ =
[
Ĩ1 . . . ĨN

]T
with |Ĩi| = 1. In other words,

each component of the vector Ĩ belongs to the complex unit
circle. Hence, there exists θ =

[
θ1 . . . θN

]T ∈ [0, 2π)N

such that
∀i = 1 . . . , N, Ĩi = ejθi . (5)

The resulting problem has the following conditional likelihood

p(x|θ, ε) = 1

πNσ2N
e−

1
σ2 (x−αµ(η)−AĨ)

H
(x−αµ(η)−AĨ) (6)

where ε = {ηT , ρ, φ,A, σ2} is the vector gathering the
parameters of interest. The conditional likelihood (6) can be
marginalized w.r.t. θ, leading

p(x|ε) = 1

(πσ2)N
e−

1
σ2 (x−αµ(η))H(x−αµ(η))e−

A2N
σ2

×
N∏
i=1

I0

(
2A

σ2
|xi − αµi (η)|

)
. (7)

However, one cannot derive closed-form expressions for the
maximum likelihood estimators of the parameters in ε from
this expression. One way to bypass this limit is to consider the

variables in θ as missing variables. The EM algorithm [15]
can be handy to evaluate the maximum likelihood estimator
of parameters when missing variables appear in the estimation
framework.

III. EM APPROACH FOR INTERFERENCE MITIGATION
UNDER THE CE HYPOTHESIS

A. Complete likelihood

The complete likelihood of the parameters ε given the
observations x and missing variables θ can be expressed as

Lc(ε;x,θ) = p(x,θ|ε)
= p(x|θ, ε)p(θ).

where p(x|θ, ε) is given in (6). In absence of hypothesis on
the interfering signal, we can take independent uniform priors
on [0, 2π) for the θi’s

p(θ) =

N∏
i=1

1

2π
1[0,2π)(θi) (8)

where 1[0,2π)(.) is the indicator function on [0, 2π), leading

Lc(ε;x,θ) ∝
1

σ2N
e−

1
σ2 (x−αµ(η)−AĨ)

H
(x−αµ(η)−AĨ)

∝ e−
1
σ2 (x−αµ(η))H(x−αµ(η))−A2N

σ2 + 2A
σ2 Re{ĨH(x−αµ(η))}

σ2N

(9)

using ĨH Ĩ = N and assuming θi ∈ [0, 2π) to avoid the
indicators.

B. E-step: conditional distribution

At the t + 1 iteration, the E step of the EM algorithm
consists in an approximation of the loglikelihood (which is
to be maximized) around a previous value of the parameters,
namely ε(t). This approximation is given by

Q(ε|ε(t)) = Eθ|x,ε(t) [logLc(ε;x,θ)] . (10)

This expected value considers the distribution of θ|x, ε(t),
given by

p(θ|x, ε) ∝ p(x|θ, ε)p(θ)

∝
N∏
i=1

e
2A
σ2 |xi−αµi(η)| cos [θi−arg (xi−αµi(η))]

where we used the identity

Re
{
(xi − αµi (η)) e

−θi
}

= |xi − αµi(η)| cos (θi − arg (xi − αµi (η))) (11)

and where
• xi is the i-th component of the vector x
• µi (η) is the i-th component of the vector µ(η)
• arg(.) : C → [0, 2π) is the argument of a complex

number.



We deduce the θi|x, ε(t) follow independent von Mises dis-
tribution with mean γ

(t)
i and spread parameter κ

(t)
i defined

by

γ
(t)
i = arg

(
xi − α(t)µi

(
η(t)

))
(12)

κ
(t)
i =

2A(t)

(σ(t))2

∣∣∣xi − α(t)µi

(
η(t)

)∣∣∣ . (13)

Indeed, the von Mises probability density function with mean
γ and spread parameter κ is expressed as [16, Chap. 3.5]

g(θ; γ, κ) =
1

2πI0(κ)
eκ cos (θ−γ) (14)

where Ip is the modified Bessel function of the first kind and
order p. Going back to (10) and using (9)

Q(ε|ε(t)) = K ′ −N log σ2 − 1

σ2
(x− αµ(η))

H
(x− αµ(η))

− 1

σ2
A2N +

N∑
i=1

2A |xi − αµi(η)|
σ2

Eθ|x,ε(t) [cos (θi − γi)] .

where γi = arg (xi − αµi (η)) .

C. E-step: expectation
We have

Eθi|x,ε(t) [cos (θi − γi)]

=Eθi|x,ε(t)

[
cos
(
θi − γ

(t)
i + γ

(t)
i − γi

)]
=Eθi|x,ε(t)

[
cos
(
θi − γ

(t)
i

)]
cos
(
γ
(t)
i − γi

)
− Eθi|x,ε(t)

[
sin
(
θi − γ

(t)
i

)]
sin
(
γ
(t)
i − γi

)
.

Yet, θi|x, ε(t) has von Mises distribution with parameters γ
(t)
i

and κ
(t)
i . Eqs. (3.5.25) and (3.5.26) in [16] lead

Eθi|x,ε(t)

[
cos
(
θi − γ

(t)
i

)]
=

I1

(
κ
(t)
i

)
I0

(
κ
(t)
i

) ,
Eθi|x,ε(t)

[
sin
(
θi − γ

(t)
i

)]
= 0.

So

Eθ|x,ε(t) [cos (θi − γi)] =
I1

(
κ
(t)
i

)
I0

(
κ
(t)
i

) cos
(
γ
(t)
i − γi

)
(15)

and therefore

Q(ε|ε(t)) = K′ −N log σ2 −
(x− αµ(η))H (x− αµ(η))

σ2
−

A2N

σ2

+

N∑
i=1

2A

σ2
|xi − αµi(η)|

I1
(
κ
(t)
i

)
I0

(
κ
(t)
i

) cos
(
γ
(t)
i − arg (xi − αµi (η))

)
.

(16)

Finally, defining

w
(t)
i =

I1

(
κ
(t)
i

)
I0

(
κ
(t)
i

) (17)

at =
[
w

(t)
1 ejγ

(t)
1 . . . w

(t)
N ejγ

(t)
N

]T
(18)

and using (11) with γ
(t)
i instead of θi, the objective func-

tion (16) can be rewritten as

Q(ε|ε(t)) = A2

σ2
aH
t at −

A2

σ2
N +K ′ −N log σ2

−
(
x− ρejφµ(η)−Aat

)H (
x− ρejφµ(η)−Aat

)
σ2

. (19)

D. M-step: optimisation with respect to σ2

The M step of the EM algorithm consists in updating the
value of the vector of parameters ε as

ε(t+1) = argmax
ε

Q(ε|ε(t)). (20)

Differentiating (19) w.r.t. σ2 yields the update equation(
σ2
)(t+1)

=
1

N

∥∥∥x− ρ(t+1)ejφ
(t+1)

µ(η(t+1))−A(t+1)at

∥∥∥2
+ (A(t+1))2

(
1− 1

N

n∑
i=1

(
w

(t)
i

)2)
(21)

where we used the notation ∥z∥2 = zHz for any z ∈ C.

E. M-step: optimisation with respect to ρ, φ,η

The objective function (19) can be simplified as

Q(ε|ε(t)) =− 1

σ2

∥∥x− ρejφµ(η)−Aat

∥∥2 +K ′′

where K ′′ is independent of ρ, φ and η. We define

Πµ(η) = µ (η)
(
µ (η)

H
µ (η)

)−1

µ (η)
H (22)

Π⊥
µ(η) = IN −Πµ(η) (23)

the projection matrices on the space spanned by Πµ(η) and
on its orthogonal, respectively. We have∥∥x− ρejφµ(η)−Aat

∥∥2
=
∥∥Πµ(η) (x−Aat)− ρejφµ(η)

∥∥2 + ∥∥∥Π⊥
µ(η) (x−Aat)

∥∥∥2 .
(24)

On one hand, maximizing Q(ε|ε(t)) w.r.t. ρ, φ is equivalent
to minimizing

∥∥Πµ(η) (x−Aat)− ρejφµ(η)
∥∥2. But∥∥Πµ(η) (x−Aat)− ρejφµ(η)

∥∥2
=

∥∥∥∥∥µ (η)

[
µ (η)

H
(x−Aat)

µ (η)
H
µ (η)

− ρejφ

]∥∥∥∥∥
2

and this quantity is equal to 0 (hence minimal) for

ρejφ =
µ (η)

H
(x−Aat)

µ (η)
H
µ (η)

yielding to the update equations

ρ(t+1) =

∣∣∣∣∣µ
(
η(t+1)

)H (
x−A(t+1)at

)
µ
(
η(t+1)

)H
µ
(
η(t+1)

)
∣∣∣∣∣ (25)

φ(t+1) = arg

(
µ
(
η(t+1)

)H (
x−A(t+1)at

)
µ
(
η(t+1)

)H
µ
(
η(t+1)

)
)
. (26)



On the other hand, going back to (24), at the optimal we have
(using Pythagora’s theorem)∥∥∥x− ρejφµ(η)−Aat

∥∥∥2 =
∥∥∥Π⊥

µ(η) (x−Aat)
∥∥∥2

= ∥x−Aat∥2 −
∥∥Πµ(η) (x−Aat)

∥∥2 .
Then, maximizing Q(ε|ε(t)) w.r.t. η is equivalent to maximize∥∥Πµ(η)(x−Aat)

∥∥2
yielding to the update equation

η(t+1) = argmax
η

∥∥∥Πµ(η)

(
x−A(t+1)at

)∥∥∥2 . (27)

F. M-step: optimisation with respect to A

The objective function (19) can be expressed as

Q(ε|ε(t)) = A

σ2
xHat +

A

σ2
aH
t x− A

σ2
ρe−jφµ(η)Hat

− A

σ2
ρejφaH

t µ(η)− A2

σ2
N +K ′′′ (28)

where K ′′′ is independent of A. Differentiating this expression
w.r.t. A yields the update equation

A(t+1) =
1

N
Re
{
aH
t

(
x− ρ(t+1)ejφ

(t+1)

µ
(
η(t+1)

))}
.

(29)
We can note that

ρ(t+1)ejφ
(t+1)

=

(
µ
(
η(t+1)

)H (
x−A(t+1)at

)
µ
(
η(t+1)

)H
µ
(
η(t+1)

)
)

(30)

can be injected in (29) to give the update equation

A(t+1) =

Re
{
aH
t Π⊥

µ(η(t+1))
x

}
N − Re

{
aH
t Πµ(η(t+1))at

} . (31)

Note that this equation can be injected into (27) to give

η(t+1) = argmax
η

∥∥∥∥∥Πµ(η)

(
x−

Re
{
aH
t Π⊥

µ(η)x
}

N − Re
{
aH
t Πµ(η)at

}at

)∥∥∥∥∥
2

.

(32)

G. Algorithm:

For t = 0, i.e., for initialization, we might compute{(
η(0)

)T
, ρ(0), ϕ(0),

(
σ2
)(0)}

thanks to the standard MLE
[11]. In other words:

η(0) = argmax
η

∥∥Πµ(η)x
∥∥2 (33)

ρ(0) =

∣∣∣∣∣ µ
(
η(0)

)H
x

µ
(
η(0)

)H
µ
(
η(0)

)
∣∣∣∣∣ (34)

φ(0) = arg

{
µ
(
η(0)

)H
x

µ
(
η(0)

)H
µ
(
η(0)

)
}

(35)

(σ2)(0) =
1

N

∥∥∥x− ρ(0)ejφ
(0)

µ
(
η(0)

)∥∥∥2 . (36)

Once the interference is detected, due to the fact that the inter-
ference is much more powerful than the GNSS signal masked

in the noise, we keep the MLE estimators for η(1), ρ(1)φ(1)

and (σ2)(1), and we initialize the interference power as

A(1) =
1

N

√
xHx. (37)

Then, we compute the von Mises parameters, µ(t)
i and κ

(t)
i ,

and trigonometric moments w
(t)
i , using Eqs. (12), (13) and

(17) respectively. Finally, we update the parameters of interest
in the order η, A, ρ, φ and σ2 with Eqs. (27),(31),(25),(26)
and (21) respectively. Note that Eqs. (32) and (33) don’t have
closed-form expressions. However, a grid search approach can
be used to maximize the corresponding functions. Also, a little
simplification can be made to optimize (27), using (32) where
A(t+1) is replaced by A(t) to update η. With this approach,
the same function can be used to solve both (33) and (32).

IV. EXPERIMENTS

Let us consider the case where a GPS L1 C/A signal [1]
is attacked by a jammer that is generating a linear frequency
modulation (LFM) signal [17], which is defined as

I(t) = ΠT (t)×ejπβct
2+jϕ, ΠT (t) =

{
Ai for 0 ≤ t < T
0 otherwise

(38)
where βc is the chirp rate and Ai is the amplitude. For this
particular scenario, we set the waveform period as T = N ·Ts,
i.e. equal to the integration time. The instantaneous frequency
is f(t) = 1

2π
d
dt

(
πβct

2
)
= βct, and therefore the waveform

bandwidth is Bc = βcT . We consider the case where, after the
Hilbert filter, the chirp is located at the baseband frequency,
i.e., the central frequency of the chirp is fi = 0. Then, the
waveform can be rewritten as,

I(t) = ΠT (t)× ejπβc(t−T/2)2+jϕ. (39)

The mean squared error (MSE) for the parameters of interest
ηT are shown in Figures 1-2, w.r.t. the SNR at the output of the
matched filter (i.e., SNROUT) and considering the following
setup: a GNSS receiver with sampling frequency Fs = 4
MHz, and a chirp bandwidth Bc = 2 MHz, with initial phase
ϕ = 0, amplitude Ai = 40 and integration times T = {1, 2}
ms. The EM algorithm integrates a stopping criterion that
compares each iteration the variation of the noise variance. The
maximum number of iterations is set to 20 and the number of
Monte Carlo is set to 1000 runs. In the results one can observe
i) the

√
CRB (refer to [11]), which represents the asymptotic

estimation performance of the parameters without any source
of interference, ii) the

√
MCRB +Bias2 which represents

the asymptotic estimation performance of the parameters with
an interference source (refer to [12], [18]) and describes the
MSE of the misspecified maximum likelihood estimator [19],
and iii) the Root MSE (

√
MSE) of the proposed EM algo-

rithm. Note that the EM algorithm is not biased and it is able
to correct the effects generated by the interference. Moreover,
we can also verify that the error is almost the same as that
obtained for the MLE under the case without interference.
Such results validate and prove the good performance of the
proposed algorithm.
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Fig. 1. EM algorithm estimator RMSE for time-delay of the GPS L1 C/A
signal received along with a centered chirp signal of bandwidth Bc = 2 MHz
and amplitude A = 40. The sampling frequency is set to Fs = 4 MHz.
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Fig. 2. EM algorithm estimator RMSE for Doppler of the GPS L1 C/A signal
received along with a centered chirp signal of bandwidth Bc = 2 MHz and
amplitude A = 40. The sampling frequency is set to Fs = 4 MHz.

V. CONCLUSION

It is well-documented that interferences may have a huge
impact of the GNSS receivers’ performance. In this article, we
propose an EM algorithm that consider the structure of one of
the most notable family of interferences, i.e., CE, in order to
estimate jointly the parameters of interest along with the CE
of the interference signal. We illustrate the MSE of the time-
delay and Doppler estimation performances of the proposed
EM algorithm considering a chirp interference jamming and a
GPS L1 C/A signal. Results were provided to show the good
performance of the proposed algorithm.
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[8] A. Szumski, “Karhunen-Loève Transform as an Instrument to Detect
Weak RF Signals,” InsideGNSS, pp. 56–64, May/June 2011.

[9] F. Dovis, L. Musumeci, and J. Samson, “Performance Comparison of
Transformed-Domain Techniques for Pulsed Interference Mitigation,” in
Proc. 25th International Technical Meeting of the Satellite Division of
The Institute of Navigation, Nashville, TN, USA, Sept. 2012, pp. 3530–
3541.

[10] J. Lesouple, B. Pilastre, Y. Altmann, and J.-Y. Tourneret, “Hypersphere
Fitting from Noisy Data Using an EM Algorithm,” IEEE Signal Process.
Lett., vol. 28, pp. 314–318, 1 2021.

[11] D. Medina, L. Ortega, J. Vilà-Valls, P. Closas, F. Vincent, and
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[18] C. Lubeigt, L. Ortega, J. Vilà-Valls, and E. Chaumette, “Untangling
First and Second Order Statistics Contributions in Multipath Scenarios,”
Signal Processing, vol. 205, p. 108868, 2023.

[19] S. Fortunati, F. Gini, M. S. Greco, and C. D. Richmond, “Performance
Bounds for Parameter Estimation under Misspecified Models: Funda-
mental Findings and Applications,” IEEE Signal Processing Magazine,
vol. 34, no. 6, pp. 142–157, Nov. 2017.


	Introduction
	Signal model
	EM approach for interference mitigation under the CE hypothesis
	Complete likelihood
	E-step: conditional distribution
	E-step: expectation
	M-step: optimisation with respect to sigma2
	M-step: optimisation with respect to rho,phi,eta
	M-step: optimisation with respect to A
	Algorithm:

	Experiments
	Conclusion
	References

