
HAL Id: hal-04136230
https://enac.hal.science/hal-04136230

Submitted on 21 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metaheuristic for Optimal Dynamic K-Coloring
Application on Band Sharing for Automotive Radars
Sylvain Roudiere, Vincent Martinez, Pierre Maréchal, Daniel Delahaye

To cite this version:
Sylvain Roudiere, Vincent Martinez, Pierre Maréchal, Daniel Delahaye. Metaheuristic for Optimal
Dynamic K-Coloring Application on Band Sharing for Automotive Radars. sensors mdpi, 2023, 23
(5765), �10.3390/s23125765�. �hal-04136230�

https://enac.hal.science/hal-04136230
https://hal.archives-ouvertes.fr

Citation: Roudiere, S.; Martinez, V.;

Maréchal, P.; Delahaye, D.

Metaheuristic for Optimal Dynamic

K-Coloring Application on Band

Sharing for Automotive Radars .

Sensors 2023, 23, 5765. https://

doi.org/10.3390/s23125765

Academic Editor: Andrzej Stateczny

Received: 2 June 2023

Revised: 16 June 2023

Accepted: 18 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Metaheuristic for Optimal Dynamic K-Coloring Application on
Band Sharing for Automotive Radars
Sylvain Roudiere 1,* , Vincent Martinez 2, Pierre Maréchal 3 and Daniel Delahaye 4

1 Artificial and Natural Intelligence Toulouse Institute, Université Fédérale Toulouse Midi-Pyrénées,
31000 Toulouse, France

2 NXP Semiconductors, 31100 Toulouse, France; vincent.martinez@nxp.com
3 Mathematical Institute of Toulouse, 31400 Toulouse, France; pierre.marechal@math.univ-toulouse.fr
4 École Nationale de l’Aviation Civile, 31400 Toulouse, France; daniel@recherche.enac.fr
* Correspondence: sylvain.roudiere@univ-toulouse.fr

Abstract: The number of vehicles equipped with radars on the road has been increasing for years and
is expected to reach 50% of cars by 2030. This rapid rise in radars will likely increase the risk of harmful
interference, especially since radar specifications from standardization bodies (e.g., ETSI) provide
requirements in terms of maximum transmit power but do no mandate specific radar waveform
parameters nor channel access scheme policies. Techniques for interference mitigation are thus
becoming very important to ensure the long-term correct operation of radars and upper-layer ADAS
systems that depend on them in this complex environment. In our previous work, we have shown
that organizing the radar band into time-frequency resources that do not interfere with each other
vastly reduces the amount of interference by facilitating band sharing. In this paper, a metaheuristic
is presented to find the optimal resource sharing between radars, knowing their relative positions
and thereby the line-of-sight and non-line-of-sight interference risks during a realistic scenario. The
metaheuristic aims at optimally minimizing interference while minimizing the number of resource
changes that radars have to make. It is a centralized approach where everything about the system
is known (e.g., the past and future positions of the vehicles). This and the high computational load
induce that this algorithm is not meant to be used in real-time. However, the metaheuristic approach
can be extremely useful for finding near optimal solutions in simulations, allowing for the extraction
of efficient patterns, or as data generation for machine learning.

Keywords: automotive; channel access policy; cooperation; genetic algorithm; interference mitigation;
metaheuristic; optimization; radar; simulated annealing; V2X

1. Introduction

The use of advanced driver assistance systems (ADAS) in the automotive domain
has been expanding significantly over the past decade. These systems are expected to
be present in 700 millions cars by 2030 [1,2]. This means that approximately 50% of cars
will be equipped with radars. They will enable more secure road traffic by anticipating
potential collisions and ensure safer driving. However, a rapid increase in radar on the road
without regulation on how to share the available radar band will likely lead to harmful
interference being generated [2], whose effects can vary from reducing the range of the
radar, blinding it, or generating false targets [3]. Multiple projects have been started to
investigate the automotive radar interference mechanisms, such as the European funded
project MOSARIM [2] and the publicly funded German project IMIKO [4].

Automotive radars’ self-interference is a generic problem that applies to all of the
allocated radar bands. The 24 GHz band has been phased out since 2022 [5], and automotive
radar applications have been moved to the 76–81 GHz band. Regional standardization
bodies such as ETSI in Europe provide requirements for the maximum peak and mean
transmit powers [6] (the different values for the 76–77 GHz and 77–81 GHz bands [7,8]).

Sensors 2023, 23, 5765. https://doi.org/10.3390/s23125765 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125765
https://doi.org/10.3390/s23125765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0000-9313-1453
https://orcid.org/0000-0002-4965-6815
https://doi.org/10.3390/s23125765
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125765?type=check_update&version=2

Sensors 2023, 23, 5765 2 of 24

Additionally, new bands around 140 GHz are being investigated [9] and arguably bring
fundamentally similar challenges. However, these automotive radar standards do not
mandate specific channel access scheme policies nor specific radar waveforms, thereby
leading to potential interference due to the absence of coordination between the actors.

Automotive radars are used for a wide range of driving assistance applications. Long-
range radars (LRR) are commonly used for adaptive cruise control (ACC) or automatic
emergency braking (AEB), whereas medium and short range radars (MRR/SRR) find appli-
cation in blind spot detection (BSD) or lane change assist (LCA), for example. Depending
on the application, radars will have different characteristics in terms of range and velocity
measurements and field-of-view.

Moreover, extensive research is being conducted on new types of hardware and
antenna systems for automotive radars. For instance, there is extensive research on the
topic of imaging radars [10,11] or SAR [12–14], as well as other techniques such has
MIMO radars.

This paper focuses on LRR-frequency-modulated continuous wave (FMCW) radars as
they are the most common today, but the metaheuristic proposed can be applied to any
type of radar, including non-vehicular radars such as road-side units.

Conversely, our previous work on the subject [15], and ref. [16] focused on avoiding
interference using a communication channel such as V2X (vehicle to everything). V2X
usually defines an ad hoc network in the 5.9 GHz ITS (intelligent transport services) band,
and regional implementations (e.g., ETSI ITS-G5 in Europe) can be based either on the IEEE
802.11p/bd Wi-Fi standard, or on the 3GPP standards such as 4G LTE-V2X and 5G NR
V2X [17]. It might also be possible to use 6G joint data communication and sensing (JCAS) in
the future, a topic being vastly investigated [18], with some potential for automotive ADAS
applications. In short, we explored the possibility to avoid interference from happening,
as opposed to the class of signal processing techniques that aim at repairing the signal once
interference has already happened.

In this paper, a graph coloring approach is explored to minimize the amount of
interference. Indeed, when considering the use of orthogonal waveform by the radars
(two radars using orthogonal waveforms do not interfere with each other), avoiding all
interference can be translated into a graph coloring problem where the nodes are the radars,
their colors are the waveform used, and the edges are the line-of-sight between them.
Considering that road traffic is not stationary and that the number of available orthogonal
waveforms is finite and known, the problem is similar to a dynamic K-coloring problem.
Finding a K-coloring for a given snapshot of the road traffic can be quite easy depending on
its complexity and the number of colors/waveforms available. That is why, in addition to
avoiding interference, the metaheuristic presented in this paper also aims at minimizing the
number of color changes made by each radar as it increases the stability and predictability
of the system.

The results obtained are close to the optimal radar band sharing as they avoid all
interference while being extremely stable. The metaheuristic method cannot be translated
directly into a mitigation strategy as it requires the knowledge (present and future) of all
radars, their line-of-sight, and the environment, and it also requires a lot of computation
power. However, the results are close to the optimal radar band sharing as they avoid all
interference while being extremely stable. These results can then be used to extract patterns
or as data input for advanced AI techniques. As the metaheuristic supposes a perfect
knowledge of the environment, future techniques using it for training would benefit a lot
from technologies such as collective perception and sensor fusion to have a close enough
understanding of the environment.

The paper is organized as followed. Section 2 will present the current state-of-the-art
on graph coloring algorithms. Section 3 details the simulation environment built to extract
the graph on which the metaheuristic is applied. Section 4 describes how each of the
graph’s components are built. The metaheuristic is shown in Section 5 with its results in
Section 6, followed by a conclusion in Section 7.

Sensors 2023, 23, 5765 3 of 24

2. State of the Art
2.1. Automotive Radar Interference Mitigation

Current automotive radar interference mitigation strategies rely for the most part on
signal processing to repair the signal that has been interfered with. These methods rely on
the system’s capabilities to detect interfered samples and reconstruct the interference-free
signal, or at least reduce the impact of the interference on the overall radar performances.
These strategies can work very well when dealing with few interferers, but as automotive
radar usage is predicted to grow in the coming years [1], these techniques might not be
enough. Multiple projects such as MOSARIM [2] and IMIKO [4] have identified categories
of interference mitigation strategies with their respective estimated mitigation power. These
techniques include but are not limited to changing chirps transmit frequency in presence
of interference, randomizing chirps length, repairing interfered signals, or using specific
polarization depending on the radar location on the car.

Some papers are studying the possibility of using a communication channel to define
a channel access policy, such as RadChat [19], which proposes a new radar with com-
munication capabilities included in its design to share predefined radar band resources.
RadarMAC [20], on the other hand, takes a more centralized approach where vehicles
are connected to a base station that orchestrates the sharing of the available resources
depending on the radars positions. These techniques yield reductions in the amount of
interference but do not focus on finding the theoretical optimal sharing of the radar band.

2.2. The Vertex Coloring Problem

The vertex coloring problem (VCP) has received a lot of attention for real world
applications in many different fields of engineering such as scheduling [21], register allo-
cation [22], communication networks [23], or frequency assignment [24], just to name a
few of them. The VCP is known to be NP-hard [25], meaning that only small instances
(<100 vertices) can be solved with an exact algorithm in a reasonable computation time.
However, real world applications commonly deal with a much higher number of vertices,
as is the case for automotive radars.

There are other approaches to the VCP when dealing with instances too large to be
solved with exact methods. Greedy algorithms such as SEQ or RLF [21] give a correct
coloring in a very short amount of time, but they are usually far from the best solution as
they do not try to find the optimum but only a good quality solution. On the other hand,
heuristics and metaheuristics aim at finding a close to optimal solution by using local search
methods to explore the solution space. Some well-known ones are DSATUR [26], a heuristic
that sequentially colors the vertices based on the degree of saturation, and TABUCOL [27],
a metaheuristic that uses tabu-search for its coloring. Some metaheuristics use simulated
annealing [28] or genetic algorithm [29] to iteratively find better solutions.

Coloring a dynamic graph whose edges and vertices can be inserted or removed from
one timestep to another is a different problem. One way to approach the problem is to use
the previously mentioned algorithm at each timestep, recomputing a new coloring from
the ground up every time a change is made to the graph. This method is time-consuming
as heuristics and metaheuristics usually need some computation time, but it will yield
good coloring at each timestep. This also will not take into account the similarities between
two consecutive timestep.

Moreover, other than the number of colors used, dynamic graph coloring introduces
a new metric: the number of color changes between two timesteps. By minimizing the
number of color changes, the solution found at a given timestep will not be very different
from the solution at the next one. In the case of automotive radars, this means that radars
(vertices) do not have to change their waveforms (colors) very often. This increases the sta-
bility of the radar band sharing, as well as increasing its predictability and its robustness to
the loss of the communication signal. Current algorithms are designed around this trade-off
between the number of colors and the number of re-colorations [30]. For example, ref. [31]
introduces two algorithms. The first one, “small-buckets algorithm”, maintains, for any

Sensors 2023, 23, 5765 4 of 24

integer d > 0, a proper O(CdN1/d)-coloring while recoloring, at most, O(d) vertices, with C
and N representing the maximum chromatic number and the maximum number of vertices
respectively. The second algorithm, “big-buckets algorithm”, reverses the trade-off by
maintaining an O(Cd)-coloring with O(dN1/d) re-colorings.

In our case of automotive radars, the available radar band being fixed means that the
number of available colors is also fixed. There is no need for a trade-off; instead, the goal
is to keep a K-coloring while minimizing the number of re-colorings. In order to find this
optimal coloration, a new algorithm must be designed.

3. Simulation Environment

Our previous works [15,32] focused on V2X-based interference mitigation strategies
with a Python simulator, which was built to generate realistic traffic scenarios including
radars. This framework uses the recognized and widely used SUMO software (SUMO is an
open-source continuous multi-modal and highly portable simulation package made with
Eclipse. It is designed to handle large road networks and is already used by some V2X
studies to provide realistic road traffic scenarios. The software is available at https://www.
eclipse.org/sumo/ (accessed on 1 June 2023)) to generate the road traffic (the configuration
used in SUMO is available online at https://github.com/Ramboun/dynamic_k_coloring_
data (accessed on 1 June 2023)). SUMO allows for the generation of custom scenarios,
but a real traffic scenario could be used via existing real-world databases, such as the US
Highway 101 dataset [33], or new data acquired with connected vehicles [34]. The scenario
used in this paper is the same as in our previous work and consists of a 2 km highway with
6 lanes. Two clusters of cars are generated at each end totaling 151 vehicles going from one
end to the other of the highway.

Once the position and orientation of the cars are known at any given timestep,
a frequency-modulated continuous wave (FMCW) long-range radar (LRR) is added to
the front of each car. Other types of radar such as MRR or SRR would follow similar
procedures, although their field-of-view and range would be different, but they would be
handled by the metaheuristic. LRRs are being used as they are the most common nowadays.
Typical LRR parameterization has been assumed, with 20° field-of-view and a maximum
range of 300 m. The available radar band is organized into multiple time-frequency zones,
sometimes also referred to as resources, which can be chosen by radars to emit in. Each
time-frequency zone is defined with to respect the desired range and speed resolution that
an LRR requires. With each zone being separated, interference can only occur between
radars using the same zone. It must be clear that the present paper does not promote a
specific way to organize the radar band, and the metaheuristic approach only looks at it in
terms of orthogonal resources. However, Figures 1 and 2 are provided to exemplify possible
organizations of the radar band. Figure 1 is an example of a very constrained band split
used in our previous work [16], but a simple approach to radar band organization could be
a grid-like split as illustrated in Figure 2. The number of available resources depends on
the shape of these time-frequency zones.

Finally, two radars can interfere only if they “see” each other. They either need to
be in direct line-of-sight (LOS) or in non-line-of-sight indirect connection (sometimes also
referred to as indirect line-of-sight (ILOS)) resulting from the signal bouncing around. LOS
is modeled by simply checking if two radars are oriented towards each other, taking into
account their field-of-view. ILOS situations are more complicated to model as they depend
on the reflecting surface characteristics. When a target is within the field-of-view of a radar,
a ray is cast from the radar to the target, and the point where the ray meets the target will
be the source of an echo at 180° toward the normal of the surface hit. These computations
of line-of-sight are illustrated in Figure 3. Figure 4 shows a snapshot of the simulation, with
the blue rectangle representing cars and the green (LOS) and red (ILOS) lines representing
the line-of-sights between their radars.

https://www.eclipse.org/sumo/
https://www.eclipse.org/sumo/
https://github.com/Ramboun/dynamic_k_coloring_data
https://github.com/Ramboun/dynamic_k_coloring_data

Sensors 2023, 23, 5765 5 of 24

Figure 1. Example of band splitting: the bandwidth is split into 36 different time-frequency zones
corresponding to the different colors. They are designed to accommodate an FMCW chirp with a
bandwidth of 300 MHz, and a chirp time of 20 µs with a 4 µs reset time and with a receiver bandwidth
of 30 MHz (up to 40 MHz). Time/frequency zones are spaced apart by 4 µs in time and 333 MHz in
frequency, to fill the 1 GHz available bandwidth. With a duty cycle of 50%, the bandwidth is split
into 6 × 3 × 2 = 36 zones.

Figure 2. Example of band splitting: the bandwidth is split into 9 different time-frequency zones
corresponding to the different colors. They are designed to accommodate a FMCW frame with a
bandwidth of around 300 MHz, an emitting time of 22 msm and a duty-cycle of 33% to accommodate
2 other radars in the same frequency band without overlapping emissions. This splits the radar band
into 3 × 3 = 9 zones.

Figure 3. Illustration of line-of-sight (left) where two radars R1 and R2 see each other directly.
Illustration of indirect line-of-sight (right) where the signal from radar R1 bounces on the back of
vehicle V3, generating an echo at 180° that is in line-of-sight of radar R2.

Sensors 2023, 23, 5765 6 of 24

Figure 4. Snapshot from the simulation. Each line-of-sight, direct, (solid green) or indirect (dashed
red) between two radars of two cars (blue) are represented with a line.

4. Mathematical Modeling
4.1. Dynamic Graph K-Coloring

Interference mitigation between radars can be achieved by avoiding the detrimental
situations where two radars that are in LOS (or ILOS) are using this same time-frequency
resource. This can be translated into a dynamic graph K-coloring problem. Let K be a
set of colors representing the different available time-frequency zones. Let R be a set of
vertices corresponding to the different radars of our simulation, and let T be the set of
timesteps. We can define the temporal adjacency matrix A(R, R, T) where ai,j,t = 1 only if
the radars i and j are in line-of-sight at the timestep t of the simulation. The objective is
then to find a valid K-coloring of the graph at every timestep while minimizing the number
of re-colorations needed. By defining xr,k,t to be equal to 1 if and only if the radar r uses the
color k at timestep t, and 0 otherwise, we end up with the following problem formulation:

min ∑
t∈T ′

∑
r∈R

∑
k∈K
|xr,k,t+1 − xr,k,t| (1)

s.t. ∑
k∈K

xr,k,t = 1 ∀r ∈ R, ∀t ∈ T (2)

∑
ri∈R

∑
rj∈R

∑
k∈K

∑
t∈T

Ari ,rj ,t ∗ xri ,k,t ∗ xrj ,k,t = 0 (3)

xr,k,t ∈ {0, 1} ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4)

Ari ,rj ,t ∈ {0, 1} ∀ri ∈ R, ∀rj ∈ R, ∀t ∈ T (5)

where T ′ = {0, . . . , tT−1}.
The objective function (1) ensures a minimum amount of re-coloration between any

two timesteps t and t + 1. Constraint (2) forces the radars to use only one color at a time.
Constraint (3) avoids any interference by forcing two radars to have a different colors if
they are in line-of-sight. To satisfy constraint (3), the number of available colors needs to be
equal to or larger than the graph chromatic number.

4.2. Optimization Mathematical Model

Metaheuristics are algorithms designed to find good solutions to optimization prob-
lems where finding the optimum is near impossible due to the size of their solution space.
By exploring the solution space in a controlled manner, metaheuristics aim at gradually
obtaining the optimal solution.

The metaheuristic presented in this paper views radars as agents that, one by one, pick
the best possible color choices (with their limited knowledge of other radars’ choices) at
every timestep. The colors chosen by a given radar will impact the colors picked by radars
going after it as they will try to avoid conflicting with it. This process can be translated into
the following framework:

Consider a set of colors K, a set of radar identifiers R, a set of timestamps T =
{t1, . . . , tend}, and the temporal adjacency matrix A describing the line-of-sight between
radars through time. Additionally, consider the oriented graph G = (V, Echanges, Econ f licts),
where each node represents a possible state for a radar during the simulation. V = S∪ E∪C
with:

Sensors 2023, 23, 5765 7 of 24

• S = {Sr|r ∈ R} the individual starting state of each radar r. This state is not associated
with any color. It corresponds to the start of the simulation where the first colors used
by each radar are not determined yet.

• E = {Er|r ∈ R} the individual ending state of each radar r. Like the starting state, it is
not associated with any color and represents the end of the simulation.

• I = {Ir,t,k|r ∈ R, t ∈ T , k ∈ K} the set of intermediary possible states for each radar r
other than starting and ending states. At timestep t, a radar r using color k will be in
the state represented by the node Ir,t,k.

The set of edges Echanges represents the possible changes of state for a radar during the
simulation:

Echanges = {(Ir,t,k1 , Ir,t+1,k2) | r ∈ R, t ∈ T − {tend}, k ∈ K, ∀(k1, k2) ∈ K2}
∪ {(Sr, Ir,t1,k) | r ∈ R, k ∈ K}
∪ {(Ir,tend ,k, Er) | r ∈ R, k ∈ K}

(6)

Our goal is to minimize the number of changes necessary to keep our K-coloring.
The weight of an edge is determined as follows:

Cost((v1, v2) ∈ Echanges) =


1 if v1 = Ir,t,k1 ,

v2 = Ir,t+1,k2 , k1 6= k2
0 else.

(7)

Let Pr = (Sr, Ir,t1,k1 , Ir,t2,k2 , . . . , Ir,tend ,kend
, Er) be the path taken by radar r across the

graph, describing, at each time, which color it took, and let Lr be its cost. The cost of the
path will be impacted by the edges taken but also by the nodes that are in conflict.

We can define the set of conflicting nodes of a radar r1 at time t with color k by:

Vcon f (r1, t, k) = {Ir2,t,k | Ar1,r2,t = 1} (8)

Let β be the cost of a conflict; we have the following cost for each node:

Cost(Ir1,t,k) = ∑
Ir2,t,k∈Vcon f (r1,t,k)

β ∗ p(Ir2,t,k) (9)

where:

p(Ir,t,k) =

{
1 if Ir,t,k ∈ Pr
0 else.

(10)

Minimizing the number of color changes by the radars while avoiding conflicts at all
cost corresponds to the following objective:

min ∑
r∈R

Lr (11)

with Lr being the cumulative cost of all of the edges and nodes in the taken path Pr with
β > |R||T|. Indeed, with β > |R||T|, a conflict cost more than a color change by every
radar at every timestep. A solution with a lower number of conflicts will always have a
lower total cost compared to a solution with a higher number of conflicts, and this will be
true whatever the number of re-colorations needed. Having β <= |R||T| is a way to allow
conflicts in the case where avoiding them would require too many re-colorations.

Figure 5 is an example of what the resulting coloring graph looks like.

Sensors 2023, 23, 5765 8 of 24

Figure 5. Example of coloring graph with 3 radars, 2 colors, and 3 timesteps, with the follow-
ing adjacency matrices (denoted with the dotted lines): A0 = [[0, 1, 0], [1, 0, 0], [0, 0, 0]] A1 =

[[0, 1, 1], [1, 0, 0], [1, 0, 0]] A2 = [[0, 0, 0], [0, 0, 1], [0, 1, 0]]. By using the order [R1,R2,R3] at the start,
the shortest path for R1 is choosing color 1 and keeping it as there are no conflicts. The shortest path
for R2 is then to pick color 2 to avoid conflicting with R1 at timesteps 1 and 2. Finally, the shortest
path for R3 is to chose color 2 until timestep 2 to avoid conflicts with R1, then change to color 1 to
avoid conflicting with R2. These paths are denoted by the thick red arrows. In total, this solution
yields 0 conflict and 1 color change.

5. Metaheuristic
5.1. Principle

Using the previously defined metaheuristic graph, finding a solution to our dynamic
K-coloring problem for one of the radar ri is as simple as “dropping a marble” on its sub-
graph and letting it fall from Si to Ei, following the shortest path through the sub-graph. It
will trigger an increase in cost for nodes that are in conflict with the ones that are part of its
path. Repeat this operation for every sub-graph to obtain a first solution to our problem.

The marble dropping mechanic is implemented by solving a shortest path problem
within each sub-graph, one by one. Because of the sub-graphs structure, the Bellman–Ford
algorithm is particularly efficient to compute the shortest path. Indeed, because of the
absence of cycle or loop (edges only go from a timestep t to t + 1), this is the best case
scenario for the Bellman–Ford algorithm, with a time complexity in O(|E|), with |E|
representing the number of edges ran through.

The solution found at the end depends on the order in which the different sub-graphs’
shortest path are computed. Once the shortest path is found, the path is checked again to
update the cost of conflicting neighbors nodes within the other sub-graphs. The presence
of conflicting neighbors depends on the temporal adjacency matrix A. Increasing the cost
of certain nodes in other sub-graphs will impact their shortest path computation, hence
the importance of the computation order. The increase in cost is known a posteriori. It
is possible for a sub-graph to generate cost on nodes that are already being used within
another sub-graph’s path. This is why the length of each path (not the path itself) needs to
be computed again at the end to take into account these changes.

Changing the order of “marble drop” will lend many different solutions, but some
solutions cannot be reached. Indeed, the solution will always have a radar that never

Sensors 2023, 23, 5765 9 of 24

changes its color. The first sub-graph to compute its path will not have any cost increase
on its nodes. It will then choose one color and keep it until the end as the cost will remain
0. To increase the number of possible solutions found by the metaheuristic and include a
solution with at least one color change for every radar, it is necessary to introduce Gates.

Gates can be placed at any timestep and act as a stopping point for the marbles. Each
gate has its own order permutation. Instead of computing the shortest path for the entire
sub-graph in one shoot, the shortest path between a gate and the next one is computed
before starting again from the new gate but with a new order permutation. An example of
a gate effect on the solution is shown in Figure 6.

Figure 6. Small example graph to illustrate the necessity of gates. Without adding the second gate,
the first sub-graph to compute its shortest path picks the red color and keeps it, and the second
sub-graph picks the green color to avoid conflict with the 1st one. The third will have a conflict when
it’s adjacent to the two other. By adding a gate in position 2, it is possible to reshuffle the order of
shortest path computation, forcing another sub-graph to change its color. In this example, the first
gate has the order [1,2,3] and the second one has the order [3,1,2]. The temporal adjacency matrix is
illustrated by the small graphs, left of the coloring graph.

In a scenario with R radars, T timesteps, and K colors, the total number of edges in our
coloring graph is R ∗ ((T − 1) ∗ K2 + 2K). The time complexity for computing a solution is
then in O(RK2T).

To optimize the computation time, it is recommended to smash the input graph in
some places. For example, if during multiple timesteps there are no new edges, then the
K-coloring found for the first of these timestep will be valid for every one of them. Thus, it
is interesting to smash these timesteps into one to shorten the computation time. However,
it is necessary to add a multiplying factor to the cost of this smashed timestep as a conflict
on it represents a conflict for multiple timesteps.

5.2. Sliding Window Adaptation

When computing the shortest path across an entire sub-graph, the algorithm simulates
the fact that a radar knows exactly what the future line-of-sights with other radars will be,
as well as the colors they will be using (depending on the permutation order). It is useful
to find the optimal color sharing amongst radars, but limiting this knowledge of the future
can yield results that would be easier to replicate in real life scenarios.

Sensors 2023, 23, 5765 10 of 24

To achieve this, the time window adaptation of the coloring graph limits the number
of timesteps to be considered when solving the shortest paths. To determine colors used
at timestep t, a new graph is extracted from the main one, containing all of the timesteps
from t to t + W, with W the time window size. The previous timestep t− 1 is also included
but will not be modified; it is used to keep track of the color of each radar before reaching
timestep t.

The metaheuristic can then be performed on this new smaller graph to find the best
color sharing. Once it has been performed, the color chosen at timestep t is locked, and the
process repeats for the timesteps t + 1 to t + 1 + W and so on until every timestep has
been locked.

This variant does not require the use of gates because the permutation order can
already be different from one timestep to another. Indeed, performing the metaheuristic of
the time window [t, t + W] with a certain permutation order only locks the color chosen at
timestep t. When performing the metaheuristic on the next time window [t + 1, t + 1 + W],
the permutation can be different for timestep t + 1.

The addition of the window increases the complexity compared to the non-windowed
one. Solving the small graph has a complexity of O(RK2W), but it must be carried out for
every timestep for a final time complexity of O(RK2WT).

The two variants are functionally different as they do not explore the same solution
space. The first one explores the solution to the entire scenario, whereas the windowed
variant explores solutions for smaller problems but ends up combining them to generate a
single final solution to the entire problem.

5.3. Simulated Annealing

The first implementation of the metaheuristic uses simulated annealing [35] to explore
the solution space. Simulated annealing is inspired from annealing in metallurgy, where a
material is heated up and cooled down in a controlled manner to alter its physical properties.

Simulated annealing aims at finding a quasi optimum solution by going from one
solution to another, depending on their respective performances but also on a parameter
called temperature. A higher temperature yields a higher chance of accepting a worse
solution. By starting with a high temperature and slowly decreasing it throughout the
whole process, simulated annealing avoids local optima and converges toward a solution
close to the global optimum.

The different aspects of this papers’ implementation of simulated annealing are as follows:

• Solution: a solution for our simulated annealing implementation is a list of size T
containing or not a gate for each timestep as illustrated in Figure 7. Only the first
timestep always has a gate that cannot be removed. As the Bellman–Ford algorithm is
deterministic, the same list of gates will yield the same result (if the edge and conflict
costs are the same).

• Evaluation: for each gate, the Bellman–Ford algorithm is applied to each sub-graph
in the order of the gate to find the shortest path to the next gate (or to the end). The
costs of conflicting nodes are updated once the shortest path is found for a sub-graph.
The cost of a solution is the sum of the cost of all of the sub-graphs. As the cost of
a conflict is changing, it is important to keep track of the number of conflicts of a
solution so to not have to re-evaluate it entirely when the cost of a conflict is lowered.
It allows one to fairly compare two solutions without being biased by the lower cost
of a conflict for one of them.

• Neighborhood operator: to select a neighboring solution, multiple modifications can
be carried out as illustrated in Figure 8. First, add or remove a random gate. This
will remix completely the sub-graph running order. By extracting the cost of each
timestep, it is possible to weight the random generation of the gate to focus more on
high cost timesteps.

Sensors 2023, 23, 5765 11 of 24

Second, switch the position of two “gates”. This is achieved by selecting a gate
at random (weighted by the timestep costs following it) and moving it to another
timestep. If a gate is already present in this timestep, then both gates switch.
Finally, change the order of a gate. This is achieved by selecting a sub-graph at random
(weighted by its cost) and moving it earlier in the order. The earlier a sub-graph is in
the permutation order, the fewer constraints it will have for its shortest-path. Since the
node’s cost within a sub-graph depends on the path taken by other sub-graph before
it, going early means that fewer sub-graphs have already chosen a path and thus have
affected the nodes’ cost.

• Temperature and conflict cost: temperature is decreased by factor α every niter it-
erations until the temperature reaches Tend (usually 0.001 ∗ Tinit). At the same time
temperature is lowered, the cost of a conflict increases by a factor αc. This factor is
designed for conflict cost to reach T ∗ R ∗ costedge near the end of the simulated anneal-
ing as T ∗ R is the maximum number of color changes possible (one color change by
each radar at each timestep). When the cost of a conflict is equal to T ∗ R ∗ costedge,
a solution having fewer conflicts than another is ensured to achieve a lower cost what-
ever the number of color changes. Having a low cost for a conflict at the beginning
of the simulated annealing favors the exploration of the solution space by avoiding
local optima with a low number of conflicts and a high number of color changes.
The conflict cost is then increased as the goal is to find a solution with the minimum
number of color changes while still avoiding every conflict.

The pseudo-code of this version is available in Appendix A. The main limitation with
this implementation is that it cannot be parallelized. Indeed, since the shortest path of a sub-
graph depends on the shortest path of the previous sub-graph, it is not possible to apply the
Bellman–Ford algorithm in parallel to all sub-graphs to speed up the solution evaluation.
This can be an issue when performing the windowed simulated annealing as its complexity
can be orders of magnitude higher than the non-windowed one, depending on the window
size. This is why the windowed simulated annealing has not been implemented in this
paper. With a computation time of 1.5 weeks for the non-windowed simulated annealing,
running it with a sliding window of size 10 would have required around 3.5 months of
computation. Instead, another algorithm using a genetic approach is used for the sliding
window coloring graph as it can be parallelized.

Figure 7. Solutions are in the form of a list of gates. In this example, the list is empty except for
timesteps 0 and k, which contain gates with different permutations.

Sensors 2023, 23, 5765 12 of 24

Figure 8. A neighbor of a solution is found by randomly applying one of four different actions.
From left to right: changing the order of a gate by selecting a radar and moving it earlier in the order,
deleting a gate, adding a random gate, and swapping a gate to another timestep.

5.4. Genetic Algorithm

This second implementation of the algorithm uses a genetic approach to explore the
solution space. First introduced in [36], genetic algorithms are methods inspired by natural
selection to make a population of solutions evolves towards the global optimum.

The genetic algorithm achieves this by selecting the best candidates within the popula-
tion, mixing them together to generate “children” solutions, adding a random mutation to
some of them, and starting over with the new population made of the best candidates and
the children they generated.

The different aspects of this papers’ implementation of the genetic algorithm are
as follows:

• Solution: A solution for our genetic algorithm is a permutation order for the first gate.
Since this genetic algorithm is to be used on the sliding window coloring graph, it
does not require the use of additional gates for the reason mentioned in Section 5.2.

• Evaluation: The evaluation of a solution is the same as for the simulated annealing
version. Following the order of the starting gate, each small sub-graph computes its
shortest path using the Bellman–Ford algorithm. The cost of the solution is the sum of
the conflict cost and color change cost of each small sub-graph.

• Selection: The selection is achieved by a deterministic tournament of size 2 without
replacement. Each solution is paired randomly, and the one with the lower cost is the
winner.

• Crossover: Crossover is carried out by using the position-based crossover operator
(POS). It functions by randomly selecting a subset of the permutation order of the
parent P1 and copying it into the child order. Then, the blanks in the child permutation
order are filled in the order of the permutation of the second parent P2. This is
described in Figure 9.
This is then repeated again, but by copying from P2 first and filling the blank following
the order of P1 to generate a second child solution.

• Mutation: Each children solution has a probability pmutation to mutate to favor the
exploration of the solution space. This mutation is implemented with the reverse

Sensors 2023, 23, 5765 13 of 24

sequence mutation (RSM) as it is a well performing mutation operator on the trav-
elling salesman problem [37] (and the TSP uses the same solution formulation of a
permutation order). This mutation takes a random section of the order and reverses it
as illustrated in Figure 10.

• Conflict cost: The conflict cost is handled in the same way as for the the simulated
annealing version. It starts low to avoid local optima that have a low number of
conflicts, and then it gradually increases up to W ∗ R ∗ costedge in order to find a
solution that does not contain any conflict by the end of the metaheuristic. Compared
to the non-windowed variant, the sliding window adaptation solves smaller graphs
of a length W; thus, the maximum cost is W ∗ R ∗ costedge instead of T ∗ R ∗ costedge.

Figure 9. Example of position-based crossover operator (POS). C1 is built by copying a random set
from P1 (red) into C1 and filling the blanks following the order of P2 (green).

Figure 10. Example of reverse sequence mutation (RSM). A random section of the order is reversed.

The pseudo-code of this version is available in Appendix B. Unlike the simulated
annealing version, this genetic algorithm can be parallelized by simply evaluating the
different solutions in parallel due to the fact they are independent of one another. This
greatly speeds up the computation and is particularly useful for the windowed version of
the metaheuristic.

However, depending on the implementation, it might require for the different process
to access the same graph, which would lead to an overhead when accessing the memory.
This overhead might not be negligible as the Bellman–Ford algorithm is already fast due
to our graph structure. To avoid this, each process is given its own copy of the graph,
eliminating this overhead but multiplying the memory usage. This is why the genetic
algorithm has not been applied to the non-windowed version as not enough memory was
available to store the entire graph multiple times.

6. Results
6.1. Color Changes Lower Bound

A lower bound for the number of changes necessary to correctly K-color the entire
temporal graph can be determined with its smashed graph. The smashed graph of our
temporal graph is the graph containing all of its nodes and all of its edges as long as they
are present in at least one of the timesteps. The resulting adjacency matrix is A′(R, R)
where:

a′i,j =
{

1 if ∃ t ∈ T /ai,j,t = 1
0 else.

(12)

If there is an edge between radars i and j in this smashed graph, it means that there is
at least one timestep where they are adjacent. Finding the correct coloring of this smashed
graph results in zero color changes needed in the temporal version. Let the chromatic

Sensors 2023, 23, 5765 14 of 24

number of this smashed graph be X ; this means that with K ≥ X , we can find a starting
configuration that results in zero color changes in the temporal graph. However, when
K < X , the smashed graph cannot be colored properly. If two adjacent vertices v and v′ in
the smashed graph have the same color, they will be in conflict at least once, and to avoid
this conflict, at least one color change is necessary.

If vertex v will change its color and is able to avoid every potential conflict, it can be
removed from the smashed graph. The remaining smashed graph’s chromatic number is
now at least X ′ = X − 1. If K < X ′, the previous operation is repeated until K is equal to
the lower bound of the smashed graph chromatic number.

By supposing that only one color change is necessary at every step, and that removing
the associated vertex is enough to lower the chromatic number by one, the lower bound
for the number of color changes is X − K. As finding the chromatic number of a graph is
itself an NP-hard problem, X can be replaced by its lower bound. The size of the largest
clique can be used as a lower bound for X . As cliques are fully connected, a clique of a size
S requires S colors to be colored properly. If our smashed graph includes a clique of size S,
then X is greater than or equal to S.

In the case of the smashed graph extracted from the simulation environment described
in Section 3, the largest clique has a size of 39, resulting in a lower bound for the number of
color changes of 39− K with K available colors.

6.2. Metaheuristic Results

The metaheuristic has been applied to the graph extracted from the simulation environ-
ment described in Section 3 (the temporal adjacency matrix resulting from the simulation en-
vironment is available online at https://github.com/Ramboun/dynamic_k_coloring_data,
accessed on 1 June 2023). Simulated annealing has been applied with the parameters
presented in Table 1.

Table 1. Parameters used for the simulated annealing version of the metaheuristic.

Parameter Value

α 0.993

costedge 1

costend
con f 2 ∗ T

costinit
con f 0.001

niter 1000

Tend 0.001 ∗ Tstart

αc is computed, so costcon f reaches costend
con f by the end of the cool-down phase.

With these parameters, a total of a million solutions are tested, yielding the results
presented in Table 2 and Figure 11 with 16 ≥ K ≥ 36. Overall, 16 is the lowest value tested
as there is a timestep with a max clique of 16, making it impossible to avoid all conflicts
with less than 16 colors. The results are compared with a method that changes colors right
before a conflict happens and chooses the color that maximizes the amount of time before
the next conflict. If every color is already taken, it picks a random one.

The number of changes of the best solution found increases exponentially when
lowering the amount of available color K, which can be observed in Figure 11 as the results
tend to follow a linear line in the log-scale plot. As the lower bound for the number of
colors needed to avoid all conflicts is 16, the number of color changes associated with the
values of K close to this value increase, but the number of conflicts is non zero.

https://github.com/Ramboun/dynamic_k_coloring_data

Sensors 2023, 23, 5765 15 of 24

Table 2. Results from the simulated annealing with the parameters described in Section 6 for different
numbers of available colors. The amount of recoloration in the solutions found by the metaheuristic
increases exponentially when lowering the number of available colors K. Solutions found have no
conflict except with K = 16 and K = 17.

Metaheuristic Results Benchmark Method

K Conflicts Changes Conflicts Changes

36 0 6 179 159

35 0 12 190 166

34 0 14 203 177

33 0 18 214 184

32 0 23 226 196

31 0 28 245 208

30 0 38 263 219

29 0 42 288 241

28 0 53 307 252

27 0 69 333 266

26 0 84 368 292

25 0 106 405 317

24 0 126 449 352

23 0 141 491 373

22 0 165 554 416

21 0 213 655 477

20 0 293 767 536

19 0 524 916 610

18 0 1190 1148 707

17 10 1086 1709 898

16 22 2357 2664 1165

Figure 11. Number of color changes (log scale) in the best solution for different values of K (does not
include solutions with conflicts).

With the windowed variant and the genetic algorithm approach, the results are presented
in Table 3. These results have been achieved with the parameters presented in Table 4.

Sensors 2023, 23, 5765 16 of 24

Table 3. Results from the genetic algorithm on the sliding window version with the parameters
described in Section 6 for different numbers of available colors. The solutions found have more
re-colorations and more conflicts than the non-windowed. The amount of recoloration in the solutions
found by the metaheuristic increases exponentially when lowering the number of available colors K.
Most solutions found have no conflict until K ≤ 18 .

K Nb of Conflicts Nb of Changes

36 0 699

34 0 684

32 0 770

30 0 845

28 0 811

26 0 944

24 0 1123

22 0 1060

20 0 1287

18 123 1403

16 1773 1679

Table 4. Parameters used for the genetic algorithm version of the metaheuristic.

Parameter Value

W 10

Popsize 100

pmutation 0.1

costedge 1

costend
con f 2 ∗W

costinit
con f 0.001

niter 1000

As expected, the number of changes found with the windowed variant is much
higher than the non-windowed one. Because of the limited knowledge of the future, it is
impossible for a long term strategy or pattern to emerge. The choice of color at timestep t is
independent of what is happening after the timestep t + W. The best solution found for
K = 36 has 699 color changes, which represents an average of ≈4.6 color changes per radar,
or a color change every 39 s.

6.3. Example Data Extraction from Optimum

One piece of interesting datum that can be extracted from these solutions concerns how
the different colors are distributed among the different radars. For each radar, by looking
at the relative position of radars using the same color and displaying it as a distribution
(weighted by the distribution of radar itself) we obtain Figure 12. The simulation is on a
highway with 2 × 3 lanes, and the different lines seen in the pictures correspond to different
lanes relative to the vehicle. The image on the left represents the distribution of same color
radar in the opposite lanes, whereas the one on the right represents the distribution for
radars in the lanes going the same way.

Sensors 2023, 23, 5765 17 of 24

Figure 12. Distribution of radars using the same resource in the best solution found, depending on
their relative position and orientation. This distribution is found by dividing, at each position, the
average number of radars using the same color by the average number of radars at this position and
multiplying this value by the number of available colors. The resulting value at each position is the
ratio of radars with the same color over the expect number of radars with the same color (when colors
are random). For example, with the color scale in this figure, an area in yellow is an area where radars
are three times more likely to have the same color compared to a random color assignment. Radars
use the same resources more often when they are oriented in the same direction (right picture) than
in opposite one (left picture). Sharing resources with radars in the opposite direction still happens
when they are either far away (>500 m) or multiple lanes to the side. An area of ≈150 m (forward
and backward) around a radar will contain very few radars using the same resource.

From the difference between the two, radars with identical color are more often in
lanes going in the same direction. The dark area surrounding the center point means that
two radars close to each other (below ≈150 m) are very rarely using the same color as they
are often in indirect line-if-sight. For lanes going the opposite way, the further away the
lane is, the higher the density of same color radars. This is particularly noticeable as the
first lane to the left does not have a single same-color radar until ≈500 m away.

These results indicate that to avoid interference while not changing radar parameters
to often, it is a good idea to share the available radar band in a way that takes into account
the orientation of the radars (or the traffic). Mitigation strategies splitting the available band
into two distinct parts depending on the radar orientation have already been simulated
in [15,16] and yielded good interference mitigation, but the optimal radar band sharing
method seems to require a less strict separation to allow two radars facing in the opposite
direction to still use the same waveform, as shown by the non-zero distribution of the
picture on the left.

Sensors 2023, 23, 5765 18 of 24

7. Conclusions

In this paper, the problem of mitigating automotive radar interference has been trans-
lated into a dynamic graph K-coloring problem to find the optimal way to share the
available radar band in a given scenario. The metaheuristics proposed in this paper are
not implementable in cars in real time as they have a high computational load and require
knowledge of the environment that is much too precise. However, they allow for the
extraction of optimal radar band sharing to avoid interference. The results yielded are
promising for the stability of the system as when applied to our simulation scenario; it
avoided all interference while having only 6 changes of parameters out of the 151 radars
present during the 3-min simulation. The results were achieved using LRR-FMCW radars,
but the metaheuristic itself can be applied to any kind of radar (MRR, SRR, Lidars, SAR,
etc.) as long as the principles of line-of-sight and orthogonal resources apply the radar
in question.

Two frameworks have been introduced for optimal dynamic K-coloring, on which
has been applied two metaheuristics, one with simulated annealing and the other with a
genetic algorithm. These metaheuristics allowed one to find valid dynamic K-coloring while
minimizing the number of color changes necessary to keep the K-coloring valid. These K-
colorings, when applied to the road traffic simulation (2 km of highway, 151 radars), allowed
one to avoid all interferences while requiring only 6 waveform changes (with 36 available
orthogonal waveforms) during the whole 3 minutes simulation. Decreasing the number of
available orthogonal waveforms causes an increase in the number of waveform changes
required to avoid all interferences, but it remains low, as until 22 available waveforms,
radars need on average only one waveform change during the whole simulation.

The simulated annealing metaheuristic has been used on the non-windowed frame-
work to find a near optimal sharing of the radar band. The resulting K-coloring can offer
insight into how to share the available band. The same-color radar distribution shown in
Section 6 suggests that the best band sharing involves splitting the band depending on the
radar orientation.

The genetic algorithm metaheuristic has been used on the windowed framework to
simulate a finite knowledge of the future. The results yielded have more color changes,
but they are more achievable in real scenarios.

The metaheuristics presented in this paper open the door to new AI techniques as they
can generate optimal radar band sharing that can be used as training data. Future work may
involve using a mix of GNN and LSTM to extract the spatial and temporal patterns given
by the metaheuristic and make the process applicable in real time. These AI techniques
would also be enabled by the progress made in collective perception [38], sensor fusion, and
tracking [39] as they allow one to improve the knowledge of the environment used in the
metaheuristic to extract the best possible radar band sharing. The uncertainties regarding
the environment could be handled by the metaheuristic by replacing the adjacency matrix
by a weighted one, where values are between 0 and 1 depending on the probability of line-
of-sight.

Author Contributions: Conceptualization, S.R. and D.D.; methodology, S.R. and D.D.; software,
S.R.; validation, D.D., V.M. and P.M.; formal analysis, S.R.; writing—original draft preparation, S.R.;
writing—review and editing, D.D., V.M. and P.M.; supervision, D.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/Ramboun/dynamic_k_coloring_data (accessed on 1 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/Ramboun/dynamic_k_coloring_data

Sensors 2023, 23, 5765 19 of 24

Appendix A. Simulated Annealing Pseudo-Code

Algorithm A1 Metaheuristic (Simulated Annealing)

1: procedure SIMULATED ANNEALING(Ai,j,t,Wt)
2: *Initialization*
3: T ← Tinit
4: ccon f ← ccon finit
5: Soltested, Solaccepted ← 0
6: g← getMetaheuristicGraph(Ai,j,t,Wt)
7: S← g.getInitialSolution
8: *Heatup phase*
9: S← g.getInitialSolution()

10: costS, costbest ←
11: g.evaluate(S,ccon f ,cedge)

12: while
Solaccepted
Soltested

< 0.8 or Soltested < 10 do
13: T ← 1.1 ∗ T
14: m← g.modify(S)
15: costS ←
16: g.evaluate(S,ccon f ,cedge)
17: if isBetter(costbest,costS) then
18: Solaccepted++, Soltested++
19: costbest ← costS
20: else
21: Soltested++
22: revertModify(S,m)
23: end if
24: end while
25: *Cooldown phase*
26: S← g.getInitialSolution()
27: costS, costbest ←g.evaluate(S,ccon f ,cedge)
28: while T > Tend do
29: for i = 0 to niter do
30: m← g.modify(S)
31: costS ← g.evaluate(S,ccon f ,cedge)
32: if isBetter(costbest,costS) then
33: costbest ← costS
34: else
35: revertModify(S,m)
36: end if
37: end for
38: T ← T ∗ α
39: ccon f ← ccon f ∗ αc
40: end while
41: return S
42: end procedure
43:
44: *Functions Details*
45:
46: function modify(S)
47: r1 ←random value between 0 and 1
48: // 20% chance to permute gate if possible
49: if r < 0.2 and nbGates < 1 then
50: m← permuteGates()
51: // 10% chance to add/delete a gate
52: // 30% if permute is not possible
53: else if r1 < 0.3 then

Sensors 2023, 23, 5765 20 of 24

54: r2 ←random value between 0 and 1
55: // 50% chance of removing a gate if possible
56: if r2 < 0.5 or nbGates == 1 then
57: m← addGate()
58: else
59: m← removeGate()
60: end if
61: else
62: m← permuteOrderOfGate()
63: end if
64: return m
65: end function
66:
67: function isBetter(costold,costnew,T)
68: r ←random value between 0 and 1
69: // Accepting if better
70: if costold > costnew then
71: return True
72: else if r < e

costold−costnew
T then

73: // Still accepting with probability
74: return True
75: end if
76: // Reject
77: return False
78: end function
79:
80: function evaluate(S,ccon f ,cedge)
81: for each gate ∈ S.gates do
82: for each s ∈ S.subGraphs in order
83: of gate.order do
84: // Bellman algorithm
85: s.findShortestPathToNextGate(ccon f ,cedge)
86: // Increase cost depending on path
87: s.updateConflictingCosts()
88: end for
89: end for
90: cost← computeTotalCost(S)
91: return cost
92: end function

Sensors 2023, 23, 5765 21 of 24

Appendix B. Genetic Algorithm Pseudo-Code

Algorithm A2 Metaheuristic (Genetic Algorithm)

1: procedure SIMULATED ANNEALING(Ai,j,t,Wt,W)
2: g← getMetaheuristicGraph(Ai,j,t,Wt)
3: listS← g.getStartingPopulation(Popsize)
4: tcurrent ← 0
5: while tend not locked do
6: gtcurrent ←extractWindow(g,W,tcurrent)
7: ccon f ← cinit

con f
8: for i = 0 to niter do
9: // Evaluating the population

10: for each S ∈ listS do
11: S.cost← evaluate(S,ccon f ,cedge)
12: end for
13: // Selecting the best by tournament
14: duels← getRandomPairing(listS)
15: winners← getWinningParents(duels)
16: // Generating children and mutations
17: couples← getRandomPairing(winners)
18: children← getChildren(couples)
19: children←mutateChildren(children)
20: // Replacing losers by children
21: listS← replaceByChildren(listS,children)
22: ccon f ← ccon f ∗ αc
23: end for
24: Sbest ←getBest(listS)
25: lockChosenColors(g,Sbest,tcurrent)
26: tcurrent ← tcurrent + 1
27: end while
28: end procedure
29:
30: *Functions Details*
31:
32: function evaluate(S,ccon f ,cedge)
33: for each gate ∈ S.gates do
34: for each s ∈ S.subGraphs in order
35: of gate.order do
36: // Bellman algorithm
37: s.findShortestPathToNextGate(ccon f ,cedge)
38: // Increase cost depending on path
39: s.updateConflictingCosts()
40: end for
41: end for
42: cost← computeTotalCost(S) return cost
43: end function
44:
45: function getWinningParents(duels)
46: listwinners ← []
47: for each (S1, S2) ∈ duels do
48: if S1.cost < S2.cost then
49: // Add the winner to the list
50: listwinners.add(S1)

Sensors 2023, 23, 5765 22 of 24

51: // Update attributes for replacing later
52: S1.winner ← true
53: S2.winner ← f alse
54: else
55: listwinners.add(S2)
56: S1.winner ← f alse
57: S2.winner ← true
58: end if
59: end for
60: return listwinners
61: end function
62:
63: function getChildren(couples)
64: children← []
65: // Perform the position based crossover (POS) on each couple
66: for each (S1, S2) ∈ couples do
67: child1← positionBasedCrossover(S1,S2)
68: child2← positionBasedCrossover(S2,S1)
69: children.add(child1)
70: children.add(child2)
71: end for
72: return children
73: end function
74:
75: function mutateChildren(children)
76: childrenm ← []
77: for each child ∈ children do
78: r ← random value between 0 and 1
79: perform mutation with probability pmutation
80: if r < pmutation then
81: // apply the reverse sequence mutation (RSM)
82: childm ←reverseSequenceMutation(child)
83: childrenm.add(childm)
84: else
85: childrenm.add(child)
86: end if
87: end for
88: return childrenm
89: end function
90:
91: function replaceByChildren(listS,children)
92: nlistS ← []
93: i← 0
94: for each S ∈ listS do
95: if S.winner == f alse then
96: tournament losers are replaced by children
97: nlistS.add(children[i])
98: i++
99: else
100: winners are kept
101: nlistS.add(S)
102: end if
103: end for
104: return nlistS
105: end function

Sensors 2023, 23, 5765 23 of 24

References
1. Automotive Radar Market Size, Share & Trends Analysis Report by Range (Long Range, Medium & Short Range), by Vehicle Type (Passenger

Cars, Commercial Vehicles), by Application, by Frequency, by Region, and Segment Forecasts, 2018–2025; Technical Report; Grand View
Research: San Francisco, CA, USA, 2017.

2. Kunert, M.; Bosch, R. More Safety for All by Radar Interference Mitigation—Final Report. Technical Report, MOSARIM.
2012. Available online: https://cordis.europa.eu/docs/projects/cnect/1/248231/080/deliverables/001-D611finalreportfinal.pdf
(accessed on 25 April 2023).

3. Norouzian, F.; Pirkani, A.; Hoare, E.; Cherniakov, M.; Gashinova, M. Phenomenology of automotive radar interference. IET Radar
Sonar Navig. 2021, 15, 1045–1060.: 10.1049/rsn2.12096. [CrossRef]

4. Borngräber, F.; John, A.; Sörgel, W.; Köber, R.; Vogler, T.; Miel, E.; Torres, F.; Kritzner, M.; Gölz, H.; Moss, J.; et al. IMIKO
Radar—Minimizing Interference through Cooperation at Radar Sensors for Autonomous Electric Vehicles; Technical Report; German
Federal Ministry of Education and Research: Bonn, Germany, 2022.

5. Ramasubramanian, K.; Ramaiah, K.D. Moving from Legacy 24 GHz to State-of-the-Art 77-GHz Radar. ATZelektronik Worldw.
2018, 13, 46–49. [CrossRef]

6. EN 303 883-1; Short Range Devices (SRD) and Ultra Wide Band (UWB); Part 1: Measurement Techniques for Transmitter
Requirements. European Telecommunications Standards Institute: Sophia Antipolis, France, 2021.

7. ETSI EN 301 091-1; Short Range Devices; Transport and Traffic Telematics (TTT); Radar Equipment Operating in the 76 GHz to 77
GHz Range; Harmonised Standard Covering the Essential Requirements of article 3.2 of Directive 2014/53/EU; Part 1: Ground
Based Vehicular Radar. European Telecommunications Standards Institute: Sophia Antipolis, France, 2017.

8. ETSI EN 302 264; Short Range Devices; Transport and Traffic Telematics (TTT); Short Range Radar Equipment Operating in the
77 GHz to 81 GHz Band; Harmonised Standard Covering the Essential Requirements of Article 3.2 of Directive 2014/53/EU.
European Telecommunications Standards Institute: Sophia Antipolis, France, 2017.

9. Filippi, A.; Martinez, V.; Vlot, M. Spectrum for Automotive Radar in the 140 GHz Band in Europe. In Proceedings of the 2022 19th
European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 1–4. [CrossRef]

10. Gu, H. The Importance of Imaging Radar. 2022. Available online: https://www.nxp.com/company/blog/the-importance-of-
imaging-radar:BL-THE-IMPORTANCE-OF-IMAGING-RADAR#:~:text=In%20addition%20to%20measuring%20speed,cars%
2C%20pedestrians%20and%20other%20objects. (accessed on 13 June 2023).

11. Xu, Y.; Zhang, X.; Wei, S.; Shi, J.; Zhan, X.; Zhang, T. 3D Super-Resolution Imaging Method for Distributed Millimeter-Wave
Automotive Radar System. 2022. Available online: http://xxx.lanl.gov/abs/2209.11037 (accessed on 1 June 2023).

12. Gor, H. Orthogonal Frequency Division Multiplexing Multiple-Input Multiple-Output Automotive Radar with Novel Signal
Processing Algorithms. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2018.

13. Gisder, T.; Meinecke, M.M.; Biebl, E. Synthetic Aperture Radar Towards Automotive Applications. In Proceedings of the 2019
20th International Radar Symposium (IRS), Ulm, Germany, 26–28 June 2019; pp. 1–10. [CrossRef]

14. Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR Ship Detection Dataset (SSDD):
Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [CrossRef]

15. Roudiere, S.; Martinez, V.; Delahaye, D. A First Investigation of V2X communication for Radar Interference Mitigation. In
Proceedings of the ITS World Congress 2021, Hamburg, Germany, 11–15 October 2021; Volume 27, pp. 1056–1070.

16. Roudiere, S.; Martinez, V.; Delahaye, D. Orientation Based Bandwidth Sharing for Radar Interference Mitigation. In Proceedings
of the IEEE Vehicular Technology Conference: VTC2023-Spring, Florence, Italy, 20–23 June 2023.

17. Anwar, W.; Franchi, N.; Fettweis, G. Physical Layer Evaluation of V2X Communications Technologies: 5G NR-V2X, LTE-V2X,
IEEE 802.11bd, and IEEE 802.11p. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall),
Honolulu, HI, USA, 22–25 September 2019; pp. 1–7. [CrossRef]

18. Ma, D.; Shlezinger, N.; Huang, T.; Liu, Y.; Eldar, Y.C. Joint Radar-Communication Strategies for Autonomous Vehicles: Combining
Two Key Automotive Technologies. IEEE Signal Process. Mag. 2020, 37, 85–97. [CrossRef]

19. Aydogdu, C.; Keskin, M.F.; Garcia, N.; Wymeersch, H.; Bliss, D.W. RadChat: Spectrum Sharing for Automotive Radar Interference
Mitigation. IEEE Trans. Intell. Transp. Syst. 2021, 22, 416–429. [CrossRef]

20. Khoury, J.; Ramanathan, R.; McCloskey, D.; Smith, R.; Campbell, T. RadarMAC: Mitigating Radar Interference in Self-Driving
Cars. In Proceedings of the 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), London, UK, 27–30 June 2016; pp. 1–9. [CrossRef]

21. Leighton, F.T. A Graph Coloring Algorithm for Large Scheduling Problems. J. Res. Natl. Bur. Stand. 1979, 84, 489–506. [CrossRef]
[PubMed]

22. Chow, F.C.; Hennessy, J.L. The Priority-Based Coloring Approach to Register Allocation. ACM Trans. Program. Lang. Syst. 1990,
12, 501–536. [CrossRef]

23. Woo, T.K.; Su, S.; Newman-Wolfe, R. Resource allocation in a dynamically partitionable bus network using a graph coloring
algorithm. IEEE Trans. Commun. 1991, 39, 1794–1801. [CrossRef]

24. Gamst, A. Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Technol. 1986, 35, 8–14. [CrossRef]
25. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,

NY, USA, 1990.
26. Brélaz, D. New methods to color the vertices of a graph. Commun. ACM 1979, 22, 251–256. [CrossRef]

https://cordis.europa.eu/docs/projects/cnect/1/248231/080/deliverables/001-D611finalreportfinal.pdf
http://doi.org/10.1049/rsn2.12096
http://dx.doi.org/10.1007/s38314-018-0029-6
http://dx.doi.org/10.23919/EuRAD54643.2022.9924643
https://www.nxp.com/company/blog/the-importance-of-imaging-radar:BL-THE-IMPORTANCE-OF-IMAGING-RADAR#:~:text=In%20addition%20to%20measuring%20speed,cars%2C%20pedestrians%20and%20other%20objects.
https://www.nxp.com/company/blog/the-importance-of-imaging-radar:BL-THE-IMPORTANCE-OF-IMAGING-RADAR#:~:text=In%20addition%20to%20measuring%20speed,cars%2C%20pedestrians%20and%20other%20objects.
https://www.nxp.com/company/blog/the-importance-of-imaging-radar:BL-THE-IMPORTANCE-OF-IMAGING-RADAR#:~:text=In%20addition%20to%20measuring%20speed,cars%2C%20pedestrians%20and%20other%20objects.
http://xxx.lanl.gov/abs/2209.11037
http://dx.doi.org/10.23919/IRS.2019.8768173
http://dx.doi.org/10.3390/rs13183690
http://dx.doi.org/10.1109/VTCFall.2019.8891313
http://dx.doi.org/10.1109/MSP.2020.2983832
http://dx.doi.org/10.1109/TITS.2019.2959881
http://dx.doi.org/10.1109/SAHCN.2016.7733011
http://dx.doi.org/10.6028/jres.084.024
http://www.ncbi.nlm.nih.gov/pubmed/34880531
http://dx.doi.org/10.1145/88616.88621
http://dx.doi.org/10.1109/26.120165
http://dx.doi.org/10.1109/T-VT.1986.24063
http://dx.doi.org/10.1145/359094.359101

Sensors 2023, 23, 5765 24 of 24

27. Hertz, A.; Werra, D. Werra, D.: Using Tabu Search Techniques for Graph Coloring. Computing 1987, 39, 345–351. [CrossRef]
28. Johnson, D.; Aragon, C.; McGeoch, L.; Schevon, C. Optimization by Simulated Annealing: An Experimental Evaluation; Part II,

Graph Coloring and Number Partitioning. Oper. Res. 1991, 39, 378–406. [CrossRef]
29. Davis, L. Handbook Of Genetic Algorithms; Thomson Publishing Group: Stamford, CT, USA, 1991.
30. Solomon, S.; Wein, N. Improved Dynamic Graph Coloring. ACM Trans. Algorithms 2020, 16, 41. [CrossRef]
31. Barba, L.; Cardinal, J.; Korman, M.; Langerman, S.; van Renssen, A.; Roeloffzen, M.; Verdonschot, S. Dynamic Graph Coloring.

arXiv 2018, arXiv:1708.09080.
32. Roudiere, S.; Martinez, V.; Delahaye, D. Importance of Synchronizing Radars with V2X communication for Radar Interference

Mitigation. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN,
USA, 19–22 September 2021 .

33. US Highway 101 Dataset. U.S. Department of Transportation: Federal Highway Administration. Available online: https:
//www.fhwa.dot.gov/publications/research/operations/07030/ (accessed on 1 June 2023).

34. Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An automated driving systems data acquisition and analytics
platform. Transp. Res. Part C: Emerg. Technol. 2023, 151, e104120. [CrossRef]

35. van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated Annealing: Theory and Applications; Reidel, D., Ed.; Kluwer Academic: Berlin,
Germany, 1987.

36. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
37. Otman, A.; Abouchabaka, J.; Tajani, C. Analyzing the Performance of Mutation Operators to Solve the Travelling Salesman

Problem. arXiv 2012, arXiv:1203.3099.
38. Arnold, E.; Dianati, M.; de Temple, R.; Fallah, S. Cooperative Perception for 3D Object Detection in Driving Scenarios Using

Infrastructure Sensors. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1852–1864. [CrossRef]
39. Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle

Estimation Based on Consensus Kalman Filter. IEEE Trans. Control Syst. Technol. 2023, 31, 179–192. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF02239976
http://dx.doi.org/10.1287/opre.39.3.378
http://dx.doi.org/10.1145/3392724
https://www.fhwa.dot.gov/publications/research/operations/07030/
https://www.fhwa.dot.gov/publications/research/operations/07030/
http://dx.doi.org/10.1016/j.trc.2023.104120
http://dx.doi.org/10.1109/TITS.2020.3028424
http://dx.doi.org/10.1109/TCST.2022.3174511

	Introduction
	State of the Art
	Automotive Radar Interference Mitigation
	The Vertex Coloring Problem

	Simulation Environment
	Mathematical Modeling
	Dynamic Graph K-Coloring
	Optimization Mathematical Model

	Metaheuristic
	Principle
	Sliding Window Adaptation
	Simulated Annealing
	Genetic Algorithm

	Results
	Color Changes Lower Bound
	Metaheuristic Results
	Example Data Extraction from Optimum

	Conclusions
	Appendix A
	Appendix B
	References

