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Abstract—In this paper, the open-source software SSW-2D
for propagation simulation is introduced. The software includes
the classical split-step Fourier, as well as the more recent split-
step wavelet (SSW) and wavelet-to-wavelet propagation (WWP)
techniques. SSW and WWP benefit from the properties of wavelet
decompositions. Therefore, they are less memory-intensive and
present a lower complexity than SSF. However, the coding is more
demanding. It requires additional algorithmic steps – including
the computation of wavelet propagators, which asks for a fine
understanding of the decompositions.

This free and open-source Python software is proposed for
encouraging the community to handle and improve SSW and
WWP. The interaction with the computation core can be made
through CSV files or with a dedicated GUI. Note that the final
field is saved with respect to altitude, whereas only the wavelet
decomposition of the total field is saved. This emphasizes the
memory gain due to the sparse wavelet decompositions.

Index Terms—Atmospheric propagation, parabolic wave equa-
tion, wavelet transforms, open-source software.

I. INTRODUCTION

The modelling of the propagation of radiowaves on large

distances is a major issue for sizing many surveillance or

telecommunication systems. When dealing with open spaces

like suburban, rural, maritime, or even space environments,

deterministic tools are often preferred. In this goal, the split-

step Fourier (SSF) resolution of the parabolic equation is a

widely used technique for the modelling of radio waves [1]

in slowly-varying environments, as well as for acoustic waves

[2].

SSF is based on a resolution of the propagation equation

in two steps: a propagation step in the Fourier domain and

an environment step – to account for atmosphere and relief

– in the space domain. Here, we introduce a tool based

on SSW [3] and WWP [4]. SSW mimics SSF, except that

the propagation steps are performed in the wavelet domain.

Basically, this brings two main advantages and one drawback.

On one hand, the wavelet decomposition is faster than the

Fourier transform and the wavelet representation of the signal

allows for sparse representations. On the other hand, unlike

in the Fourier domain, the propagator is not diagonal in the

wavelet domain, which complicates this step.

In WWP, all the propagation is performed in the wavelet

domain, which implies a faster computation and additional

hypotheses.

The goal of this paper is to comprehensively introduce and

illustrate the SSW-2D propagation tool and the techniques

within. It is proposed for research and/or educational purposes

first. Note that this software is available online [5].

In Section II, the SSW and WWP methods are introduced.

The current capacities of the SSW-2D software are presented

in Section III. Then, Section IV is dedicated to a discussion

on SSW and WWP, including some research leads for the

computational physics community.

II. THE PROPAGATION ALGORITHMS

A. Overview of the split-step techniques

We work on a 2D scenario in cylindrical coordinates

(r, θ, z), assuming an invariance along θ. In these conditions,

one must solve the propagation equation in harmonic mode

∂2u

∂r2
− 2jk0

∂u

∂r
+
∂2u

∂z2
+ k20(n

2 − 1)u = 0, (1)

where u = Eejk0r is the reduced complex electric field, k0 is

the wavenumber in the vacuum and n is the refractive index

of the medium.

By neglecting the backward propagation, and using the

approximation
√
1 +A+B ≈

√
1 +A +

√
1 +B − 1 for

A,B ≪ 1, this equation can be reduced to a one-order dif-

ferential equation with r, denoted as the wide-angle parabolic

equation [6]. Its iterative solution is
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∆r
u(r, z).

(2)

The classical SSF algorithm numerically solves this equa-

tion by passing the second term in the Fourier domain, which

yields

u(r+∆r, z) = e−jk0(n−1)∆rF−1
[

e−j(kr−k0)∆rF [u(r, z)]
]

,

(3)



where F denotes for the Fourier transform and kr is the

horizontal wavenumber. The term e−j(kr−k0)∆r is the free-

space propagator in the sense that it transforms the plane

wave spectrum at ∆r into the plane wave spectrum at r+∆r
considering free space between them.

B. Split-step wavelet

Similarly to SSF, the numerical solution of (2) with SSW

is [3]

u(r +∆r, z) = e−jk0(n−1)∆rW−1 [PW [u(r, z)]] , (4)

where W denotes for the wavelet decomposition (and com-

pression), W−1 is the wavelet recomposition, and P is the

free-space propagator in the wavelet domain detailed in Sec-

tion II-D.

The wavelet decomposition leads to a multiscale represen-

tation of a discrete signal of size Nz given by

u[pz] =

Nz/2
L

∑

p=1

aL,pφL,p[pz] +

L
∑

l=1

Nz/2
l

∑

p=1

dl,pψl,p[pz], (5)

where ψl,p denotes a wavelet of level l and φL,p is the scaling

function. The translations p are necessary for the wavelets to

cover the entire vertical domain. The fast wavelet transform

(FWT) [7] is used to rapidly obtain the coefficients aL,p and

dl,p, with a linear complexity with Nz . Most of the coefficients

can be set to 0 afterwards with a minimal and controlled loss

of information via a compression step [8].

The details and validations of the SSW algorithm are given

in [3]. We have especially demonstrated that the algorithm

has a linear time complexity whereas SSF complexity follows

O(Nz logNz). Moreover, the compression steps in SSW im-

ply an error that can be managed by choosing appropriate

thresholds [9].

An example of a SSW result is plotted in Figure 1a. The

propagation factor is displayed with respect to distance and

altitude. It is calculated in the presence of a triangular relief (in

black) and a trilinear atmospheric duct. Frequency is 500 MHz

and the source is a complex source point placed 50 m before

the first vertical of computation and at 50 m of altitude.

Apodisation (absorbing layer) is performed above the dotted

horizontal line with a Hanning window.

In Figure 1b, the wavelet decomposition of the vertical field

at 35 km on L = 3 levels is displayed. The white spaces

correspond to null coefficients. One can see that most of

the field is carried by the scaling functions φL. The detail

coefficients corresponding to wavelets of lower levels are

nonzero only where the field is divergent, from 300 m to

500 m of altitude. That is consistent with the fact that the

lower wavelets carry the higher part of the signal spectrum.

C. Wavelet-to-wavelet propagation

In the WWP algorithm, the main idea is to perform all

the propagation in the wavelet domain. Therefore, a step of

propagation is given by

U(r +∆r) = NPU(r), (6)

where U is the wavelet transform of u, and N is the applica-

tion of the refraction in the wavelet domain. This refraction is

applied on the center position of each wavelet as detailed in

[4]. The apodisation step is performed in the wavelet domain

too. Therefore, to apply SSW, a first wavelet transform is

necessary to initiate the algorithm, and an inverse wavelet

transform is applied on the last vertical to obtain the final

field. In other words, the actual field is not computed during

the propagation, only its wavelet transform.

Since the propagation is performed in the wavelet domain,

the ground composition and the relief cannot be accounted.

The solution is to hybridize SSW with WWP. SSW is used to

calculate the field at the lower altitudes whereas WWP is used

for higher altitudes. This hybridization technique, denoted as

WWP-H, is also detailed in [4].

The same simulation as in the previous section is performed

with WWP-H. Only the relief is not present because it is not

available yet in the software.

One can see in Fig. 2a that both refractivity and apodisation

are efficiently accounted in the wavelet domain. However, the

quantifying of this model error is still an open question. The

wavelet coefficients at 35 km plotted in Fig. 2a show that in

the absence of relief, all the energy is carried by the scaling

functions. Therefore, the compression rate is high (83.7 % on

this vertical).

In the next section, the generation and use of the free-space

propagator in the wavelet domain are presented.

D. The wavelet-domain propagator

The tricky part of the SSW and WWP algorithms is the

generation and use of the wavelet-to-wavelet propagator.

From our knowledge, the propagation of a wavelet on a step

∆r has no closed-form expression. Therefore, the propagator

is numerically calculated beforehand using SSF on one free-

space step then stored.

What we call the free-space propagator in the wavelet

domain is actually a dictionary of local propagators for each

wavelet. Since all the wavelets on one level of decomposition

are identical, their propagated counterparts are also identical,

and the final number of required propagators (2L) is kept

small. The way to rapidly calculate these propagators, includ-

ing the associated pseudo-code, is given by Bonnafont et al.

[10]. Fig. 3 gives two examples of the local propagators used

to generate Fig. 1a. They are associated to the scaling function

and to a wavelet of level 2, respectively.

With these propagators, the propagation operator P in

the wavelet domain in (4) consists in applying the proper

propagator to each wavelet coefficient of u(r, z) to obtain

the wavelet decomposition of u(r+∆r, z) propagated in free

space on one step ∆r. The inverse wavelet transform is finally

applied to obtain the very field.

Note that if geometrical parameters are modified during the

propagation, the propagators must be updated. This operation

is fast and can be performed on the fly [10].



(a) Propagation factor (b) Wavelet coefficients

Fig. 1: Propagation factor (dB) obtained by SSW and the corresponding wavelet coefficients of the field in dB at 35 km.

(a) Propagation factor (b) Wavelet coefficients

Fig. 2: Propagation factor (dB) obtained by WWP and the corresponding wavelet coefficients of the field in dB at 35 km.

(a) φ3 (b) ψ2

Fig. 3: Two propagators in the wavelet domain: for the scaling

function and for one wavelet.

III. PRESENTATION OF THE SOFTWARE SSW-2D

SSW-2D is a free and open source under the licence GNU

GPL V3. It is organised in five Python modules. Each one

comes with an html documentation generated by Doxify. In

this section, these five modules are presented.

A. Source computation

The source module is dedicated to the initial field com-

putation. For the time being, only the complex source point

[11] is available. This module reads the source parameters,

calculates the associated field, and writes the corresponding

electric field in a CSV file.

Any other source could be considered at minimum cost, in-

cluding a field exported from an antenna simulation software.

B. Terrain generation

The terrain module is used to generate the relief. Tri-

angular and realistic random reliefs are available. As for the

initial field, this module writes this output in a dedicated file.

Similarly to the source input, other source generations can

be considered as long as the output is in the proper format.

C. Propagation simulation

The propagation module is the core of the software. Af-

ter the calculation of the dictionary of propagators, this func-

tion propagates the initial field with the selected technique. Up

to now, available techniques are split-step Fourier (SSF), split-

step wavelet (SSW), wavelet-to-wavelet propagation (WWP),

and hybridized SSW-WWP (WWP-H).

Three variables are saved at the end of the calculation: the

dictionary of propagators, the final field, and the wavelet co-

efficients all along the propagation (this requires an additional

step for SSF). Note that the storage of the wavelet coefficients

is much less demanding than the equivalent electric field.



D. Post processing

The post_processing module is mainly dedicated to

the results display. At this time, it allows for plotting the

dictionary of propagators, the total field from the saved wavelet

coefficient or the corresponding propagation factor, and the

wavelet decomposition of the field at a given distance from

the initial plane. This last function also gives the compression

rate obtained after the wavelet decomposition the field.

E. Graphic user interface

Finally, the module GUI is used to launch the graphic user

interface (GUI). In this case, the inputs are directly filled in on

the GUI, that automatically updates the CSV files read by the

other modules. Press buttons launch the aforementioned mod-

ules source, terrain, and propagation, respectively.

A display of the GUI is given is Fig. 4.

The use of the GUI is recommended to get familiar with

SSW-2D and to test parameter values. Inputs through CSV

files are more fitted for expert users willing to modify and/or

improve the software.

On this GUI, the initial field and the environment (at-

mosphere and relief) are also plotted. After the propagation

computation, the computed field and the final vertical cut are

plotted. The type of output (electric field, propagation factor

or Poynting vector) and the dynamic can be tuned as well.

The values above the black dotted lines are in the absorbing

layer.

Now that both the method and the software have been

presented, the conclusion is dedicated to a discussion about

the future of the research based on SSW and the usefulness

of SSW-2D in this scope.

IV. CONCLUSION AND FUTURE LEADS

First of all, SSW and WWP techniques are from now on

mature techniques to model radiowave propagation. They are

shown to be faster than SSF (specially WWP, having a much

better complexity) and they allow for a sparse representation of

the propagated field. The limitations are similar than for SSF,

i.e., the paraxial cone of validity and the neglected backward

propagation. The improved efficiency of SSW and SSW is at

the cost of compressions of both the signal and the propagator

that are acceptable.

In practice, SSW and WWP are particularly interesting on

large domains and/or with very high frequencies for which the

number of vertical points is large. For instance, it is obviously

relevant in a radio occultation context [12].

As for WWP, the additional errors due to apodisation and

atmosphere in the wavelet domain are not yet quantified. How-

ever, first tests show that these errors seems easily acceptable.

This could not be the case in fast varying atmosphere, in the

presence of turbulence notably.

As is, SSW-2D is a research code that does not claim

to compete with the commercial SSF codes like AREPS or

TEMPER. A significant amount of work would be necessary

to optimise the algorithms and translate them in a compiled

language. That is also the reason why computation times are

not mentioned in this work.

Also, many different features are planned during the next

months of development: new sources, ground roughness, sur-

face wave, new reliefs, other wavelet families. But the main

objectives now are to track down bugs and propose a detailed

documentation. The GIT deposit is the opportunity for the

community to test and improve this software.

In addition to these simple features, some leads for fu-

ture improvements still require research efforts. SSW-2D is

promising for applications that demand lots of resources.

The straightforward extension is 3D propagation. This has

already been proposed [13] but relief and non-homogeneous

impedance grounds are not properly accounted yet.

Apodisation may be improved using the wavelet decompo-

sition. The residual field on top on the domain (see Fig. 1a)

is due to the periodic boundary conditions for the wavelet

decomposition that ensure the orthonormality of the basis.

However, this could be improved as well.

Studies could also focus on the very propagators. Today,

they are generated with SSF. A more appropriate technique

could be derived. For example, a closed-form expression based

on the wavelet connection coefficients could improve the

overall method.

Last, these techniques can be straightforwardly adapted for

acoustic or optic propagation. SSW-2D could be useful in these

domains as acoustics deals with large 3D environments and

optics with very small meshes.
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