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Abstract—The air traffic control paradigm is shifting from sector-
based operations to cross-border flow-centric approaches to over-
come sectors’ geographical limits. Under this paradigm, effective air
traffic flow coordination at flow intersections is crucial for efficiently
utilizing available airspace resources and avoiding inefficiencies
caused by high demand. This paper proposes a dynamic air
traffic flow coordination framework to identify, predict, assess, and
coordinate the evolving air traffic flows to enable more efficient flow
configuration. Firstly, nominal flow intersections (NFI) are identified
through hierarchical clustering of flight trajectory intersections and
graph analytics of daily traffic flow patterns. Secondly, spatial-
temporal flow features are represented as sequences of flights
transiting through the NFIs over time. These features are used
to predict the traffic demand at the NFIs during a given future
period through a transformer-based neural network. Thirdly, for
each NFI, the acceptable flow limit is determined by identifying
the phase transition of the normalized flight transition duration
from its neighboring NFIs versus the traffic demand. Finally, when
the predicted demand exceeds the flow limit, by evaluating the
available capacity at different NFIs in the airspace, the flow excess
is alternated onto other NFIs to optimize and re-configure the air
traffic demand to avoid traffic overload. An experimental study was
carried out in French airspace using the proposed framework base
on the ADS-B data in December 2019. Results showed that the
proposed prediction model approximated the actual flow values
with the coefficient of determination (R?) above 0.9 and mean
absolute percentage error (MAPE) below 20%. Acceptable flow
limit determination showed that for above 68% NFIs, the flight
transition duration increases sharply when the demand exceeds
a certain level. The flow excess at an NFI whose demand was
predicted to exceed its limit was coordinated, and the potential
increase in the flight transition duration caused by the flow excess
was avoided.

Index Terms—air traffic flow coordination, flow-centric opera-
tion, air traffic flow prediction, transformer neural networks.

I. INTRODUCTION

The scalability limit of traditional sector-based Air Traffic
Control (ATC) services, i.e., difficulty in subdividing heavily
loaded sectors, is becoming a barrier to the sustainable growth
of air traffic [1]. Researchers have started examining and testing
the concept of sectorless ATC, which views the airspace as a
whole instead of the current practice of dividing the airspace
into small sectors. One primary practice of sectorless airspace
is flow-centric operation [2], which relies on controlling and
monitoring flow-based formation and evolution of air traffic,

i.e., the management of dynamic flow corridors [3]. It opens
the opportunity to distribute air traffic more efficiently in the
airspace without being constrained by sector boundaries [4].

Despite the benefits of the flow-centric concept, its implemen-
tation has been limited. One primary challenge is the efficient
coordination of air traffic flow at the intersections to avoid
inefficiencies that may jeopardize flight safety [5]. Research
focusing on the traditional sector-based air traffic coordination,
such as sector traffic prediction and flow optimization for
workload balancing between sectors [6], no longer adapts the
flow-centric operations where coordination is primarily used to
avoid potential inefficiencies or conflicts between the intersecting
air traffic flows [4]. Therefore, for safe and efficient airspace
management under flow-centric operations, it is crucial to de-
velop a flow-centric-based air traffic coordination framework that
can dynamically coordinate air traffic flow in advance based
on the collaborative identification, prediction, and inefficiency
assessment of the evolving air traffic flows. For instance, traffic
flow can be re-routed in advance when the predicted flow demand
exceeds the acceptable flow limit at the intersections [4].

Effective air traffic flow identification is the cornerstone for
flow-centric-based practices regarding traffic flow analysis, pre-
diction, and coordination [5]. In the literature, air traffic flow
has been identified and described in accordance with the airspace
configuration, such as the behaviors of groups of flights transiting
through area control centers [7], waypoints [8], sectors [9], and
airways [10]. Such a characterization of air traffic flow serves
the traditional air traffic operations where air traffic control units
are geographical sectors and flights have to fly along airways
consisting of a set of fixed waypoints. However, flow-centric
air traffic management focuses on the flow of air traffic in the
airspace from a holistic view disregarding the fixed airways
and sectors. It requires air traffic flow identification methods to
explore the underlying flow patterns, such as the spatial-temporal
evolution of flow locations and structures [11].

In addition to air traffic flow identification, effective air
traffic flow coordination requires the constant viewing of air
traffic demand according to the available capacity at the flow
intersections. Air traffic flow prediction models in the literature
primarily take the time series information of the number of flights
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Fig. 1: Conceptual diagram of the proposed dynamic air traffic flow coordination

td
-

framework, including: 1) NFI identification through graph analysis of air traffic

flow patterns; 2) flow representation and prediction based on the spatial-temporal flow distribution; 3) NFI flow acceptance limit identification through flow transition
efficiency analysis; 4) Flow coordination, i.e., flow-excess re-routing, based on the capacity availability and predicted flow demand at the NFIs.

at single or multiple geographical locations in the airspace as the
input and predict the future number of flights through Linear
Dynamic System Models (LDSM) or neural networks such
as Long Short-Term Memory (LSTM) [12] and Convolutional
Neural Networks (CNNs) [13]. Such time-series-based methods
mainly predict future traffic demand by analyzing the past time
series [14]. Important spatial-temporal flow dynamics were not
incorporated, limiting the modeling and prediction accuracy,
which is critical for flow-centric operations where real-time
decision-making based on accurate data is necessary. More-
over, the traditional sector-based capacity estimation method
lacks consideration of the air traffic flow features, such as the
Monitor Alert Parameter(MAP) model regarding the hand-off
service workload [15] and the sector merge/split-based model
[1]. Therefore, developing flow prediction and acceptance limit
identification methods at the flow intersections concerning the
evolving flow features is the building block for flow-centric
operations.

Information on future air traffic demand and the correspond-
ing acceptable flow limit at the flow intersections enables re-
configuring the air traffic demand transiting through the flow
intersections in advance so that air traffic flow can be restricted
within a level that does not overload the system excessively [16].
In traditional sectors, air traffic overload is managed by sector
operations such as merging and splitting [17]. Under the flow-
centric paradigm, traffic flow density and complexity change
over time, rendering static flow control operations underloaded or

overloaded during the day. Analogically, dynamic flow coordina-
tion according to the evolving airspace conditions, such as traffic
flow merge/split/re-routing, gives flow-centric airspace an option
to address the anticipated flow excess without compromising the
flow demand and overloading the acceptable limit at the flow
intersections. Therefore, developing dynamic flow coordination
algorithms depending on the time-varying traffic flows is an
important enabler of efficient flow management decisions and
optimal utilization of airspace resources.

In view of the above analysis, this paper proposes a dynamic
air traffic flow coordination framework to identify, predict, as-
sess, and coordinate the evolving air traffic flows to enable more
efficient flow-centric airspace management. Firstly, nominal flow
intersections (NFI) are identified through hierarchical clustering
of flight trajectory intersections and graph analytics of daily
traffic flow patterns. Secondly, based on the identified NFIs,
spatial-temporal flow features are represented as sequences of
flights transiting through the NFIs over time. These features are
used to predict the future traffic demand at the NFIs through
a transformer-based neural network. Thirdly, for each NFI, the
acceptable flow limit is determined by identifying the phase
transition of the normalized flight transition duration from its
neighboring NFIs versus the traffic demand during different
periods. Finally, when the predicted future flow exceeds the flow
limit, by evaluating the available capacity at different NFIs, the
flow excess is alternated onto other NFIs to re-configure the air
traffic demand to avoid traffic overload at the NFIs.



II. PROBLEM DESCRIPTION

This paper focuses on the problem of dynamic air traffic
flow coordination at the Nominal Flow Intersections (NFIs) for
efficient Flow-centric Airspace Management. This problem can
be further decomposed into four sub-problems as shown in Fig.
1: 1) identification of NFIs through graph analysis of air traffic
flow patterns; 2) flow representation and prediction based on
the spatial and temporal dynamics feature of air traffic flows
at the NFIs; 3) flow acceptance limit identification at the NFIs
through flow transition efficiency analysis; 4) Flow coordination,
i.e., flow-excess re-routing, based on the capacity availability and
predicted flow demand at the NFIs.

1) NFI Identification: Given the freedom of airspace users
taking direct or user-preferred flight routes, one may argue that
flow-centric implies insignificant spatial structure and temporal
patterns of the air traffic flow. However, taking into account that
all flights have to depart and land at airports, the positions of
the airports and the scheduled flights between airports restrict
the air traffic to an appropriate pattern of main flows. A traffic
flow analysis of French airspace, where the free route airspace
(a potential coupled working method to flow-centric operations)
has been implemented in nearly 50% of the airspace above
flight level 195, shows that the majority of flight trajectories
are aggregated as major flows connecting major traffic hubs
[18]. Thus, the first sub-problem is identifying the locations and
the flow inter-connections of the NFIs through constructing and
analysing spatial and temporal patterns of air traffic flows.

2) Flow Representation and Prediction: Most existing meth-
ods in the literature represent the spatial-temporal air traffic flow
features as a time series of the number of flights at different
locations without considering the spatial and temporal dynamics
feature within the air traffic flow, such as the spatial and temporal
distributions of flights in the airspace. The spatial distribution
of flights is vital for determining the air traffic complexity and
density, while the temporal distribution is essential for describing
the dynamic evolution of air traffic [19]. They are the primary
influencing factors of the future air traffic at the NFIs, without
which the prediction model may fail to learn the causal relations
between the input air traffic feature and the prediction target,
limiting the model’s accuracy in predicting future air traffic
flows. Therefore, the second sub-problem is the representation
of the spatial-temporal flight distribution and accurate prediction
of the future number of flights transiting through the NFIs.

3) NFI Flow Acceptance Limit Identification: Due to the
increasing demand for air travel, an NFI may be overloaded
by excessive air traffic flows to be coordinated. In a tradi-
tional sector-based ATC system, the sector capacity is usually
quantified as the maximum number of flights that may enter
a sector per hour averaged over a sustainable period and is
used to manage a safe, orderly, and efficient traffic flow [20].
Similarly, in flow-centric ATC systems, if the demand at an NFI
exceeds an acceptable limit, the efficiencies of air traffic flow
transiting through the NFI can be degraded. When an NFI is
overloaded, air traffic congestion can be induced, and it will

take a longer time for air traffic transiting to the overloaded NFI
on the flight paths due to regulatory measures such as vectoring
and speed control [21]. Therefore, the third sub-problem is to
identify a flow acceptance limit at each NFI above which extra
traffic demand will degrade the flow transition efficiency, i.e.,
the flight transition duration from neighboring NFIs, to the NFI
significantly.

4) NFI Flow Coordination: Through solving the above three
sub-problems, the locations, the inter-connectivity, the future
traffic demand, and the flow acceptance limit of the NFIs can
be determined. With this information in hand, the fourth sub-
problem is to come up with a flow-centric air traffic excess
re-routing algorithm in advance to re-configure the air traffic
demand transiting through the NFlIs, i.e., re-routing the excessive
air traffic flow onto NFIs with spare flow acceptance capability,
to avoid exceeding the flow acceptance limit at the NFIs which
can cause inefficiencies.

III. METHODOLOGY
A. NFI Identification

This paper identifies the NFIs based on the flight trajectories
analysis using ADS-B data, including intersection points clus-
tering, daily flow pattern representation, and graph analysis.

1) Intersection Points clustering & Flow Pattern Representa-
tion: The NFlIs in this paper are defined as the positions in the
airspace where air traffic flows intersect. This paper proposes
to determine the NFIs by clustering the intersection points of
flight trajectories to extract the natural groupings of the inter-
section points. Hierarchical clustering relies on the hierarchical
decomposition of the data based on group similarities to find
a multilevel hierarchy of clusters, where clusters at one level
are joined as clusters at the next level [22]. Air transportation
networks are commonly a nodal hierarchy that follows the
spoke—hub structure in which air traffic flows range from regional
feeders to international hubs [23]. Therefore, this paper adopts
the hierarchical clustering algorithm to discover the NFIs for
flow representation.

To determine the optimal number of clusters that should be
identified by the clustering algorithm, this paper proposes to
model the daily air traffic flow patterns as graphs based on
the clustering outcome. The constructed graphs across different
days are further investigated and compared to determine the
best-fitted number of NFIs for flow pattern representation. The
daily air traffic flow pattern is represented as a weighted graph
G = (V,E), where V is the set of nodes denoting the air
traffic flow components, i.e., the NFIs. The flow connectivity
between the nodes can be described by the weighted edges FE.
The weight of each edge is quantified as the air traffic volume
transiting through it, i.e., the number of flights whose trajectories
consecutively cross the two nodes connected by the edge.

2) Graph Analysis: The consistent and dependable perfor-
mance of airspace users is an essential requirement for improving
ATM system predictability [24]. Therefore, the representation of
traffic flow patterns should describe the behavioral consistency



of air traffic flows in the airspace even though there are daily
alternations in the geographical positions of the NFIs and the
traffic flow connectivity between NFIs. Under this consideration,
this section proposes to determine the optimal number of clusters
by modeling and analyzing the consistency of daily flow patterns
versus the changes in the number of clusters. The flow pattern
consistency is evaluated from two perspectives: a) geographical
consistency in node (NFI) locations; b) structural consistency in
flow connectivity.

a) Geographical Consistency in NFI locations: To mea-
sure the geographical consistency in the daily node loca-
tions, a nearest neighbor-based analysis is conducted to match
the nodes on the temporal horizon. Given a number of n
nodes in the graph G} constructed for day Dy, let Vi, =
{vi, v}, ..., v}, ..., )} represent the set of nodes. Similarly, let
Vigr = {0by1,08 41, > Vhyys - Uy 1} Tepresent the set of
nodes in the graph Gy constructed for day Djy1. For each
node v} in Vj, the proposed algorithm searches for its nearest
node vZfH‘ in Vi41. a; is the index of the identiﬁed nearest
node of vj, in Vj4;. By representing node v;,’s latitude and
longitude as (¢}, A}) and node v, ,’s as (@} 1, Ajqq), the
nearest neighbour of node vj, in V34 is identified according
the great circle distance.

Based on the distances, the nearest neighbouring node ij_l
of node v; for ¢ =1,...,n can be determined. Similarly, the
nearest neighbouring node vzj of node vi 4 for g =1,...n
can be determined with the same process. b; is the index
of the identified nearest node of vi 11 in Vj. Therefore, two
sets of matched node pairs between the two graphs can be
obtained: Sy : (vg,vply), (U3, V%), s (U, V) and So
(vp',vi 1), (U2, w24 1), e, (Upr vl ;). Then, the geographical
consistency of node locations is quantified as the number of
mutually matched nodes divided by the total number of nodes,
which is formulated as gc; = |S; U Sa|/n, where |S7 U Sy
represents the number of node pairs in the union of S; and Ss.
It will be denoted as ! in the rest of the paper.

b) Structural Consistency in Flow Connectivity: Upon de-
termining the geographical consistency in NFI locations, the next
step is to quantify the structural consistency in the daily air traffic
flow connectivity between the NFIs.

Let S = S; U .Sy represent the set of paired nodes from
graph Gj and graph Gjyi; based on NFI location consis-
tency. While C, = {cl,c2,...,c,} denotes the nodes in S
from graph Gy and Cri1 = {¢fy,Chyys - Chyy ) denotes
the corresponding paired nodes from Gy.1. Let ef:fk represent
the edge connecting nodes ¢, and ¢}, and w'~ represent the
weight on it. Let W, _, represent the entire set of edge weights

1.2 ,,1_3 1 1.1 2.3 ,.,2.4 2 2.1
{wc_k’(l.ljrcl.)k’ "tj(lpﬁ’zl)“ e WeTps ...,wc_k,wc_k,(l...{)wlc_k, ey Wi
i (7 i_(1 1_J 11 — L)
e W Wy ey Wy ey Wiy ey We g b

The structural consistency in the air traffic flow patterns is
measured by the mutual flow connectivity in the two graphs.
More specifically, with the set of paired nodes Cj and Cj4q
from G} and Gj41 respectively, the flow structure consistency
is evaluated by the ratio of the mutual flow connections between

the graphs characterized by nodes C and Cy41 compared to the
union of flow connections in G, and Gj41. It is formulated as:

it

Z?:_f Z?:H»l(w;c—y + wlkﬁ1)

Fig. 2 shows a diagram of the graph analysis to determine
the node (NFI) location and flow structure consistency. The first
column of the figure shows the graphs G; and G constructed
for the air traffic flow on day 1 and day 2, respectively. The
second column of the figure shows the enlarged portions of G
and G5. The nodes, i.e., Vi and V5, are marked by solid gray
circles. The third column of the figure depicts the mutually paired
nodes C; and Cs in the node location consistency analysis of
graphs GG; and G5. C7 and C5 are marked by the red solids,
and the paired nodes are labeled by the same number. The
fourth column of Fig. 2 displays the two sub-graphs of G; and
G formed by C7 and C5. The numbers on the edges are the
edge weight W, ; and W, . The fifth column of Fig. 2 shows
the determination of mutual connections in the two sub-graphs,
ie., min{W._ 1, W, o}. min{W, 1, W, o} represents taking the
smaller value of the weights on the corresponding edges in the
two sub-graphs. For instance, on day 1, the weight on the edge
connecting nodes 44 and 166 is 380, meaning there are 380
flights transiting through this edge. While on day 2, the edge
weight is 416. Thus, the mutual flow connection on this edge
during the two days is considered 380. Eventually, the flow
structure consistency is calculated by summing up the mutual
connections in the two sub-graphs and dividing this value by the
total flow connections in G and Gs.

Calculating the geographical consistency gc; and the structural
consistency gce versus the varying number of clusters, the
“saddle point” on the curves can be adopted as the optimal
number of clusters for traffic flow representation. Consequently,
the NFIs can be determined by hierarchical clustering based on
the determined number of clusters.

l . i_J i_J
j=i+1 mm(wc_kv wc_k+1)

ey

gca =

B. Flow Representation and Prediction

The above section illustrates the methodology for identifying
the NFIs which characterize the nominal air traffic flow intersec-
tions across different days of traffic. This section will describe
the representation of air traffic flow features and the air traffic
flow prediction model. This paper proposes to describe air traffic
flow dynamics using the spatial-temporal flights distribution
in the airspace. More specifically, the traffic flow feature in
the airspace is represented as a text paragraph describing the
sequences of flights transiting through the NFIs over time. The
proposed method for flow feature representation and prediction
consists of three steps: trajectory registration, flow dynamics
description using spatial-temporal (S-T) flow distribution, and
flow prediction at NFIs.

1) Trajectory Registration: With the identified NFIs, a flight
trajectory can be represented as a sequence of the NFIs. The
objective of trajectory registration is to search for a sequence
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Fig. 2: The diagram for graph analysis of node (NFI) location consistency and flow structure consistency. G1 and G2 are the graphs constructed for the air traffic
flow on the day 1 and day 2, respectively. The nodes are marked by solid gray circles. The red solids, i.e., C1 and C2, in the graphs denote the nodes showing
location consistency across the two days. W._1 and W,_o are the edge weights in the two sub-graphs of G1 and G2 formed by C7 and Ca. The structural
consistency is characterized by the mutual connections in the two sub-graphs, i.e., min{W_1, Wc_2}, compared to the total flow connections in G and Ga.

of NFIs that can optimally approximate the original trajectory.
This objective is formulated as finding the minimum dissimilarity
between the original trajectory and a representative trajectory
constituted by a subset of the NFIs. More details regarding the
trajectory registration can be found in [18].

2) Flow Dynamics Description Using S—T Flight Distribution:
After trajectory registration, we can understand at what time a
flight has transited through which NFI. The traffic flow dynamics
in the airspace is represented as the spatial-temporal flight
distribution, described by “paragraph” whose “sentences” are the
sequences of flights transiting through the NFIs. In this paper, a
flight is referred to by its callsign. Even though the flight callsign
may be changed when airlines introduce updated schedules, in
most cases, a flight callsign remains fixed for a particular flight
operating on the same route regularly during a relatively long
period (such as a season or a few months).

Use t( and ¢; to denote the start and end times of a period. Let
F P, denote the traffic flow at NFI vy, during ¢ and ¢;. F'P}, can
be described as a sequence of flights (callsigns) according the
time flights passing pg, i.e., FPy : fL, [,y fh, o St with
fi denoting the it" flight in the sequence and m;, denoting the
total number of flights passing vy. If there is no flights transited
through a NFI, the callsign sequence for this NFI will be replaced
by the phrase: “No flights”. Analogizing F'Py as a “sentence”
depicting the flow context at v, the combinations of “sentences”
during to and ¢;constitute a “paragraph” description of the flow
context in the entire airspace. The paragraphs for various periods
will be used as inputs to the transformer-encoder-based model,
introduced in the next section, to learn the contextual relations
between air traffic flow and make predictions about the future
air traffic flow.

3) Flow Prediction at NFIs: The prediction model is based on
the neural network structure developed in by the authors in [18],
whose components are tokenization, embedding, transformer

encoder blocks, and a fully-connected layer to produce the
prediction outcome.

Given an input sequence, i.e., including the time and the
flight callsign sequences at the NFIs, word-tokenization [25],
which splits the data based on natural breaks and meaning, such
as time (number), callsigns (words), and sequence separations
(delimiters), is applied to convert the input into a list of integers
that can be embedded into a vector space. After tokenization,
the token embedding layer converts the list of integers into a list
of vectors. For the model to use the order of the elements in the
sequence, positional embeddings, which contain information on
the relative or absolute position of the elements, are added to the
token embeddings as the input to the transformer encoders. The
embeddings are trained jointly with the rest of neural network.
Back-propagation is carried through all the network layers up
to the embeddings that are updated as other parameters. After
embedding the elements in the input sequence, each of them
flows through the transformer encoder blocks to encode the
feature into a meaningful context tensor representation. The
transformer encoder is composed of a stack of N, encoder
blocks. The output from the stack of N. encoders is then
forwarded to a fully connected layer to obtain the flow prediction
results for different NFIs.

C. NFI Flow Acceptance Limit Identification

To identify the flow acceptance limit at an NFI, this paper
proposes to use the flight transition duration from neighboring
NFIs as the overload indicator. When the demand at an NFI is
above the acceptable limit during a period, air traffic congestion
can happen, and it will take a significantly larger time cost for
air traffic transiting to the overloaded NFI on their flight paths
due to regulatory measures such as vectoring and speed control.

Assume there is a number of N, NFIs identified, denoted
as: v1,v2,...,V;, ..., VN,. With the time information of flights



reaching the NFIs during the s** period, the number of flights
transiting to NFI v; from NFI v; can be determined, denoted
as n;;. The set of transition duration for the nj; flights can
be denoted as H;; = {hj; Flk = 1,2,.. ni;t, Where hiz
represents the transmon duratlon of the kth ﬂlght among the
n;; flights. Considering air traffic flows can evolve daily in
terms of locations of the NFIs, the traffic flow structure, or
unexpected events such as mechanical issues and air traffic
control disruptions, the duration [}; is normalized by the daily
minimum duration to reduce the effects of daily fluctuations in
air traffic flow:
NH iy = H g (2)

where Hilj? * represents the minimum flight transition duration
from v; to v; on the day of the period s. By doing so for all
NFIs that are connected to v;, the normalized transition duration
to v; for the period s can be obtained: NH; = {NH}|j €
N;}, where N; is the neighbor set of v;. The total number of
flight transiting to v; can consequently be determined as nj =
Yong,i=12,.., N

For all periods s € {1,2,..., Ny} in the traffic data, the set
of flight transition duration NH; = {NH}|s € {1,2,..., Np}}
as well as the set of corresponding traffic demand n; = {nf|s €
{1,2,..., Np}} can be determined through the above procedures.
By fitting the demand values to the transition duration values, a
set of demand values X = {1,2,..., N} and the corresponding
transition duration value Y = {y1,y2,...,yn} can be obtained.
The flow acceptance limit is determined by identifying the abrupt
changes on the curve of demand versus transition duration, which
is formulated as [26]:

(k)var([ys, . yx])

+(N = F)var([yk1, -, yn])

By minimizing Eq. 4, the flow acceptance limit /; at v; can be
determined as k, flow demand above which will lead to abrupt
increase in the transition duration of flights to the NFI v,.

D. NFI Flow Coordination

To re-route the flows at an NFI, a pre-requisite is the knowl-
edge of the main flow paths crossing the NFI, i.e., the main flows
transiting through the NFI and their corresponding paths. This
paper identifies the main flow paths from the flight data based
on the typical sequences of NFIs flown by the flights. Upon
identifying the main flows transiting through an NFI, the next
step is to predict the number of flights in each main flow during
a future period. The prediction model in this step utilizes the
same input features and neural network architecture as described
in Section III-B, except that the model output is the main flow
values at the target NFI instead of the flow demand values of
different NFIs.

With the knowledge of the path and predicted demand of each
main flow transiting through the NFI, the third step of flow

obj = argmin
k

3)

coordination is to re-configure the flow excess by re-routing the
main flows so that overload at the NFIs can be avoided. Let
fi represent the predicted flow demand at the NFI v;. Assume
that the predicted flow demand f, at the NFI v, exceeds the
acceptance limit /.. Let A be the adjacency matrix of G, with
its entry a;; = 1 if NFIs v; and v; are connected by traffic
flows, otherwise, 0. Given that v, is predicted to be overload and
excessive flow need to be re-routed to the other NFIs, a;, and a.;
are set as 0. Assume there is a number of 7' main flows identified
for v,. Let D = {dy, ..., d, ..., dr } be the vector for the number
of re-routed flights in the 7" flows, i.e., d; is the number of
re-routed flights in the t** flow. Assume that for the #*" flow,
there are maximum R, accessible paths respectively denoted
by P}, P?,..., P/, ..., P The flow on path P; is represented
by fi. Define a function (s, 5y, with 6,55y = 1 if the link
between v; and v; is on the path P/, otherwise, 5(”71-]-) = 0. Let
d;; and x;; represent the great circle distance and the amount of
flow between v; and v; respectively. With all the above notations
and definitions, the flow coordination model is formulated as:

N, N,
obj = min E E Qi Tijdij
X= {$u}
ij=1,... 1=1j=1
St ft'r' Z 0

S for = dy S

ZZ 1 dt - l* - f*
Z& 1 au}fz’j <lbLi—fi
Dot 2 6ty iG) for = 4

Optimizing the above function allows the traffic flow excess
at v, to be re-routed so that minimum flight distance is occurred
without exceeding the acceptance limit of all the NFIs.

IV. EXPERIMENTAL STUDY

To verify the efficacy of the proposed framework, an ex-
perimental study has been carried out on the French airspace
using one-month ADS-B data from December 1 to December 31,
2019, including a number of 158856 flights. This study focuses
on the en-route air traffic above 10,000 ft. The target in this
experimental study is set as follows: identify the flow acceptance
limits on the NFIs during a 30-minute interval, predict the
number of flights that will transit through the NFIs in the future
30 minutes, and re-route the flow excess to avoid overloading
the NFIs.

A. NFI Identification

By finding intersections of flight trajectories in the French
airspace and clustering the intersection on a daily basis, a graph
representation of the daily air traffic flow pattern can be obtained.

By calculating the geographical consistency gc; and the struc-
tural consistency gco against a set of different cluster numbers
ranging from 100 to 1500. A “saddle point” is observed for
gcy and gcp around cluster number 605. Therefore, this paper
takes the value 605 as the number of clusters to be identified by



the hierarchical clustering algorithm. The centers of identified
clusters are determined as the NFIs.
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Fig. 3: Graph representation for the one-month air traffic flow using 605 NFIs.

Fig. 3 shows the graph representation for the one-month air
traffic structure with 605 NFIs. We can see that this graph is
able to depict the nodal hierarchy of air traffic flows ranging
from regional feeders to international hubs, such as Paris and
Geneva. The en-route air traffic flows are organized as a series
of “spokes” connecting the traffic hubs or connecting outlying
areas to a hub area.
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Fig. 4: Comparison of the identified NFIs for two different days.

Fig. 3 presents the NFIs from a spatial structural perspective,
and Fig. 4 depicts the temporal dynamics in the NFIs in
describing air traffic flows during different days. Fig. 4 shows
the identified NFIs for two days, yellow dots for day one and red
dots for day two. The dots’ sizes are proportional to the traffic
volume transiting through the corresponding NFIs. It can be
observed that the NFIs show consistent patterns in geographical
distribution and traffic volume across different days, although

there are some alternations due to the differences in daily air
traffic flow organizations.

B. NFI Flow Acceptance Limit Identification

Upon identifying the NFIs and calculating the flight transition
duration to the NFIs during different periods and under different
traffic flow demand, the flow acceptance limit can be identified
by observing the point of demand above which the flight transi-
tion durations increases sharply.

Fig. 5 shows the curves of flight transition duration versus
the flow demand on eight example NFIs. The blue circles show
the original observations obtained from the traffic data, the
solid red lines show the fitted curves of the observations, and
the pink dashes bound the 95% confidence intervals of the
fitting. The curves of duration-demand are fitted using third-
degree polynomials. The solid black line indicates the identified
acceptance limit of the NFIs. Such phase transitions are observed
on 68% of the NFIs, while the transition durations to the
rest of the NFIs show no explicit trend concerning the flow
demand based on the observations from the one-month data.
The reason may be that traffic flow demand on these NFIs is
below capacity during this month, so there are no observations
for their overloaded circumstances. The flow acceptance limits
on such NFIs are set as the maximum flow demand observed.

C. Air Traffic Flow Prediction

After determining the NFIs, the next step will be flow predic-
tion on the NFIs. The prediction model input is the flight callsign
sequences on the identified NFIs during the past 30 minutes. The
model output is the number of flights transiting through the NFIs
in the future 30 minutes.

The prediction model in this study adopts a stack of 12
transformer encoder blocks. The Mean Square Error (MSE)
between the predicted and the true values are used to compute
the model’s loss function. The number of trainable parameters is
at the level of 10%. The training batch size is 16, and the learning
rate is 0.00002. The training, test, and validation data consist of
60%, 20%, and 20% of the whole dataset. Concretely, eighteen
days of data are used for model training, the following six days
of data for model testing, and the last six days for validation.

Fig. 6 presents the traffic flow prediction result on eight
example NFIs in the airspace from 00:00 to 23:59 on Dec
24, 2019. The solid blue lines show the true number of flights
passing the NFIs, while the red lines show the predicted value
using the proposed prediction method. We can observe from
Fig. 6 that the proposed method sustainably gives forecasts
in close proximity to the actual flow value for different NFIs
in the future 30-minute horizon. Furthermore, the prediction
method can capture sharp changes in the air traffic demand, as
can be observed from the figure that when the actual demand
increases or decreases abruptly, the prediction model is still able
to give a close prediction of the true value. Overall, the proposed
prediction model approximates the actual flow values on the
identified NFIs with the coefficient of determination (R?) above
0.9 and mean absolute percentage error (MAPE) below 20%.
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Fig. 5: Flight transition duration versus the flow demand on eight example NFIs. The blue circles show the observations from the traffic data, the solid red lines
show the third-degree polynomial fitting of the observations, and the pink dashes bound the 95% confidence intervals of the fitting. The solid black line indicates

the identified acceptance limit of the NFIs.

D. NFI Flow Excess Re-routing

TABLE I. Flow excess re-routing result.

flow before fo | oo | e after
fio | excess fio | excess

Based on the identified flow acceptance limit and the predicted t=1] 5 0 0 0 5
flow during the 30-minute interval, we can observe when an NFI i = g g 5 2 8 (5) ‘3‘ 0
is overloaded and what the flow excess is. It can be observed
from Fig. 6 that, for the NFI whose prediction and acceptable
flow limit are shown on the bottom-left, the flow is predicted to
exceed the acceptable limit from 12:10 to 12:40 on the day. The
value of the flow excess is five, meaning five flights should be re- . . 805 895
routed to avoid overloading the NFI. This NFI is shown in Fig. obj = e ZZGU Zijdij
7 and marked by the red node. Three main flows are transiting tg=1,...605  P=17=1
through the NFI. The green, black, and blue lines visualize the st f “"22 0 )
flight trajectories in the three main flows. The predicted flights Z§:1 for = dy
in the three main flows t =1, ¢ = 2, and t = 3, are 5, 4, and 8, Zt:} di =5
respectively. 260201 QT4 <lLi—fi

With the knowledge of the number of predicted demand, f. =
23, the acceptable flow limit, [, = 18, and the number of flights
in each main flow, this step will re-route the traffic in the main
flows onto alternative routes consisting of other NFIs with spare
capacity. Although exceptions exist due to traffic congestion or
weather conditions, flights in the en-route phase usually prefer
the routes with shorter flight distance due to fuel consumption
and en-route charges [27]. Therefore, the alternative paths of
each main flow, i.e.,, P/, for t = 1,2,3 in this experiment are
set as the two shortest paths, i.e., Ry = 2, for t = 1,2,3
between its origin NFI and destination NFI without transiting
through the overloaded NFI. The paths are identified based on
the connectivity among the NFIs of the main flow.

Therefore, in this case the Eq. 4 can be specified as follows:

D1 Zi:1 5(tr,ig) for = w45

Fig. 8 and Table I show the flow excess re-routing result. Five
flights in the third main flow marked by solid blue lines are
re-routed to its shortest alternative path, i.e., f31 = 5, shown
by the blue dashes. Note that the predicted demand is 23, and
the flow limit is 18. The normalized flight transition duration,
scaled between 0 and 1, to the NFI under a demand of 18 flights
is 0.27, while under a demand of 23 is 1. Thus, the five flight
excess in the traffic flow can potentially lead to a 270% increase
in the flight transition duration. Through re-configuring the flow
demand at the NFIs, the excess is reduced to O from 5, and
the anticipated flow overload at the NFI is avoided in advance
without causing abrupt increases in the flight durations with the
utilization of the spare capacity of other underloaded NFIs.
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through the overloaded NFI (red node).

V. CONCLUSION AND DISCUSSION

Aimed at contributing to the future flow-centric ATC
paradigm, which faces challenges in efficiently coordinating
air traffic flow at flow intersections, this paper proposed a
dynamic air traffic flow coordination framework to identify,
predict, assess, and coordinate the evolving air traffic flows.
Firstly, nominal flow intersections (NFI) were identified through
hierarchical clustering of the flight trajectory intersections. The
daily traffic flow patterns were modeled as graphs to determine

18:00
Dec 24, 2019

12:00 18:00

Dec 24, 2019

00:00 06:00 00:00 06:00 12:00

blue lines show the true number of flights passing the NFIs, while the red lines
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Fig. 8: Flow excess re-routing results. Five flights in the original flow marked
by solid blue lines are re-routed to the path shown by the blue dashes.

the optimal number of clusters. A graph analysis was proposed
to identify the clustering outcome, which optimally sustained the
consistency in the flow patterns. Secondly, based on the identified
NFlIs, the air traffic flow dynamics features were represented
by the spatial-temporal flight distribution, characterized by a
textual paragraph recording the time and the sequences of flights
passing each NFI. Then, a transformer-based model was adopted
to learn the text-enriched flow features and predict future air
traffic at the NFIs. Thirdly, for each NFI, the acceptable flow
limit was determined by identifying the transition point of



the normalized flight transition duration from its neighboring
NFIs versus the traffic demand. Finally, based on the identified
acceptable flow limit and the predicted demand, the flow excess
at an NFI was alternated onto other NFIs to optimize and re-
configure the air traffic demand to avoid sharp increases in
flight durations. An experimental study was carried out in French
airspace using the proposed framework base on one-month ADS-
B data in December 2019. Results showed that the proposed
prediction model approximated the actual flow values with the
coefficient of determination (R?) above 0.9 and mean absolute
percentage error (MAPE) below 20%. Moreover, acceptable flow
limit determination showed that for above 68% NFlIs, the flight
transition duration increased sharply when the demand exceeded
a certain level. Flow overload was avoided by rerouting the
detected flow excess to other NFIs with spare capacity.
Research in this paper provides a basic framework for flow-
centric air traffic flow coordination. In the future, constraints
from both perspectives of air traffic control services and airspace
users, such as Special Use Airspace (SUA), weather conditions,
airline schedules, and users’ preferred routes, can be incorpo-
rated to refine this framework for more effective and efficient
coordination of air traffic flow. For instance, SUA and weather
conditions can be adapted to produce a more accurate and
dynamic estimation of the flow acceptance limit. At the same
time, airline schedules and users’ preferred routes can assist the
proposed flow coordination algorithm to re-configure the flow
demand to the preferences of airspace users and airlines.
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