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Global Navigation Satellite System (GNSS) multipath has always been extensively
researched as it is one of the hardest error sources to predict and model.
External sensors are often used to remove or detect it, which transforms the
process into a cumbersome data set-up. Thus, we decided to only use GNSS
correlator outputs to detect a large-amplitude multipath, on Galileo E1-B and
GPS L1 C/A, using a convolutional neural network (CNN). This network was
trained using 101 correlator outputs being used as a theoretical classifier. To take
advantage of the strengths of convolutional neural networks for image detection,
images representing the correlator output values as a function of delay and time
were generated. The presented model has an F score of 94.7% on Galileo E1-
B and 91.6% on GPS L1 C/A. To reduce the computational load, the number of
correlator outputs and correlator sampling frequency was then decreased by a
factor of 4, and the convolutional neural network still has an F score of 91.8% on
Galileo E1-B and 90.5% on GPS L1 C/A.
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1 Introduction

Global Navigation Satellite Systems (GNSSs) are at the heart of the positioning
applications. These applications are progressively catered toward highly accurate solutions.
However, in urban and suburban environments, the challenge for an accurate positioning
solution persists. Indeed, cycle slips on carrier phase measurements (Takasu Tomoji, 2008)
and large multipath errors on pseudoranges frequently occur. This paper aims at mitigating
the effect of large biases introduced to the pseudoranges by multipath.

Multipath can be divided into two categories (Lau, 2021):

• Only Non-Line-of-Sight (NLOS) signals arriving to the antenna.
• A Line-of-Sight (LOS) signal with one or multiple reflections of the LOS signal.

In the existing literature, most algorithms focus on the detection of one category at
a time with a heavy focus on NLOS detection with a wide array of techniques. Hsu
(2017) tried to detect NLOS satellites with a support vector machine (SVM). Jiang et al.
(2021) aimed at modeling the code discriminator with Gaussian fitting to detect NLOS.
Sanromà Sánchez et al. (2016) used fisheye images and the carrier-to-noise density ratio
(C/N0). This is due to the fact that NLOS signals and multipath interference often affect
the positioning solution very differently (Groves et al., 2013). Some account for LOS and
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NLOS reflections in the same algorithm such as the study by
Matera et al. (2019), where the multipath is isolated from reference
base stations data fused with fisheye images, or the study by
Suzuki et al. (2020), where a rotating antenna is used to mitigate
both categories of multipath errors.

Lately, machine learning (ML) has been applied to GNSS
data processing especially for multipath detection/mitigation. For
example Munin et al. (2020) and Blais et al. (2022) fed synthetic
correlator outputs to a convolutional neural network (CNN) to
detect multipath. Since they generated controlled multipath and
knew when multipath affected the correlators, their method lacked
a classification process that made the method applicable to real
signals. Furthermore, images containing the correlator outputs
fed to the CNN were generated from every integration epoch of
the tracking process. However, in real-life scenarios, due to the
tracking filters and multipath, correlator outputs are correlated
in time. Suzuki and Amano (2021) also used correlator outputs
to detect NLOS via neural networks and SVMs by classifying
NLOSmeasurements using a fisheye camera-based algorithm.They,
too, used correlator outputs at every integration epoch, leading to
correlation between the machine learning inputs. Quan et al. (2018)
also used CNNs for multipath detection/exclusion but used the
signal-to-noise ratio and pseudoranges as inputs to the network.
Xu et al. (2020) and Hsu (2017) used SVMs to detect NLOS using
shadow matching and GNSS measurements (pseudoranges and
Doppler shifts), respectively.

In this article, the goal is to detect LOS reflections and then
exclude them in real signals (Galileo E1-B and GPS L1 C/A)
using GNSS data only. LOS reflections happen very often in
challenging environments and excluding all affected measurements
would lead to a low positioning availability, and not all LOS
reflections severely degrade the positioning solution (Prochniewicz
and Grzymala, 2021). The definition of multipath depends on the
targeted positioning accuracy. The definition used in this paper
will be defined in section 2.2 and will also take into account the
type of materials encountered in deep urban conditions. Multipath
rays depend on the environment; they cannot be predicted unless
3D maps are built and/or ray-tracing is used (Bétaille et al., 2013;
Peyret et al., 2014). The detection of NLOS multipath is not
targeted because the classification criterion proposed herein does
not allow for precise NLOS detection. This detection process
can be obtained by other methods such as the ones presented
in Sanromà Sánchez et al. (2016), Suzuki and Amano (2021), or
Matera et al. (2019). As no external information regarding the
environment is used in this paper, using CNNs can be very
efficient in finding features that are hard to model (Liu, 2018). The
convolutional neural network model was used as a binary classifier:

• 0: No multipath present
• 1: Presence of multipath

The CNN inputs are obtained due to correlator output values as a
function of their delay (with respect to the prompt correlator) and
as a function of time yielding a 2D image. As CNNs are particularly
efficient in image analysis (Jogin et al., 2018), these images are fed to
the CNN proposed herein.

For any supervised neural network to be trained, it needs
pre-labeled data. Without this preliminary classification, the CNN

cannot operate successfully. The labeling approach taken in this
paper is to use multiple correlator outputs from the tracking
stage to compute the discriminator function. The tracking error is
then used to determine whether the measurement is affected by
multipath or not. This method is further detailed in section 2.1. The
computational gain that CNNs bring with respect to computing the
tracking bias is also investigated.

2 Materials and methods

2.1 Multipath error on the tracking process

For a single GNSS satellite, the arriving signal has to be
acquired and then tracked so that its data bits can be demodulated.
After tracking without multipath, the expression of the in- and
quadrature-phase (I and Q) correlator for the prompt, early, and late
correlator outputs are as follows:
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where

• IX is the in-phase correlator (prompt P, early E, and late L)
• QX is the quadrature phase correlator (prompt P, early E, and
late L)
• A is the amplitude of the incoming signal
• Rc is the autocorrelation function of the pseudorandom noise
(PRN) code
• EL is the early–late spacing in chips
• k is the discrete integration time interval
• ɛθ(k) is the difference between the estimated phase and the phase
of the incoming signal
• ɛf (k) is the difference between the estimated frequency and the
frequency of the incoming signal
• ɛτ(k) is the difference between the estimated delay and the delay
of the incoming signal
• Tcoh is the coherent integration time
• εNoise,IX(k) is the noise for the correlator IX
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• εNoise,QX
(k) is the noise for the correlator QX

When tracking a GNSS signal, the delay-locked loop (DLL) and
phase-locked loop (PLL) use discriminators to retrieve the delay and
phase error, respectively. The DLL tries to estimate the travel time
of the incoming signal by matching a locally generated code with
a known time delay, if the delay is within one PRN code length.
When the signal is emitted from the satellite, the satellite clock
delay and other hardware delays are added onto the signal travel
time. The atmospheric delays induced by different media are also
accounted for in the travel time. When estimating the travel time of
the incoming signal with the discriminator, the atmospheric errors
and the satellite clock bias shift the value of the travel time but do
not distort the autocorrelation function (ACF) of the PRN code.

To retrieve the delay error, the DLL uses at least three correlators
(early, prompt, and late). The delay error is used to refine the
frequency of the locally generated replica with the incoming signal.
If the locally generated code replica is aligned with the incoming
PRN sequence, then the early and late correlator values are equal in
an error-free scenario.The difference in chips between the early and
late correlator positions is called the early–late (EL) spacing. This
parameter has a quintessential role for the DLL as a large EL spacing
will lead to a better tracking of the dynamics, while a smaller one
will reduce the effect of multipath (Van Dierendonck et al., 1992).

In this study, only non-coherent discriminators are used as they
do not make any assumption on the state of the PLL—on the phase
error. The discriminator function is given for the EL power, a non-
coherent discriminator. In the absence of noise and multipath, its
function is given as follows:

DEMLP (τ) =
I2E +Q

2
E − I

2
L −Q

2
L

2
, (3)
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A(k)2

4
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2
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2
)|

2
− |Rc(τ−

EL
2
)|

2
), (4)

where

• EL is the early–late spacing in chips

The value of τ for DEMLP(τ) = 0 yields the extra delay caused by
the errors affecting the DLL. To find this delay, the zero crossing
of the discriminator must be found. The slope of the EMLP
discriminator must be negative for it to be a stable lock point. As
the autocorrelation function of the PRN code is an even function
(∀x ∈ ℝ s.t f(x) = y& f(−x) = y) and considering that the signal is
unaffected by multipath and ignoring noise, the only possible value
of τ is zero. Therefore, the discriminator will have a zero crossing
where the tracking delay is equal to 0 as shown in Figure 1 (left).

In a realistic scenario, tracking errors will always be present
in GNSS receivers. Noise is not the sole cause for errors being
propagated from the tracking stage to the pseudorange but also
multipath. As conveyed by Bellad and Petovello (2013), multipath
can distort the ACF. This distortion depends on the number of
multipaths, their phase, their amplitude, and their delay. When the
ACF is distorted, this shifts the zero crossing of the discriminator
function as well. This is illustrated in Figure 1.

Indeed, when adding multipath, (1) and (2) become:
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where

• i is the index of the signal received (direct or reflected)
• N is the number of multipath reflections
• τi is the delay error introduced by multipath i in seconds

Due to the several multipath delays, the zero crossing for the
discriminator function is not at τ = 0 anymore. This is illustrated in
Figure 1 (right).

By reconstructing the ACF of each tracking epoch with multiple
correlators, the discriminator function can be obtained with great
accuracy. However, if the discriminator function is subsampled, the
tracking error has to be linearly interpolated at the zero crossing.The
further the correlators are spaced from one another, the less accurate
the interpolation is.This phenomenon is depicted in red in Figure 1
(right).

When the number of correlators is insufficient or does not cover
enough of the ACF, the delay may not be computed due to the
lack of zero crossing. In this study, when this occurs (only with low
correlator resolutions), the delay is assumed to be zero to not reset
the low pass filter.

The discriminator function can have several zero crossings. The
zero crossing that is the closest to the prompt index and with a
negative slope is chosen as the stable lock point from which to
compute the tracking bias—since the EMLP discriminator is used.
On the presented dataset, when this occurs, the second zero crossing
is much further in terms of delay than the one chosen as the stable
point with respect to the prompt correlator.

When the computed tracking delay in seconds is multiplied by
the speed of light, the tracking bias is obtained in (7). Once this
bias is passed through the low-pass filter of the tracking process,
this filtered bias is propagated onto the pseudorange measurement
as follows:

∃t0 ∈ [−Tobs,Tobs] such thatD(t0) = 0,
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FIGURE 1
Early–late power discriminator function in error-free conditions (left) and affected by some multipath (right).

Trb = ct0, (7)

ρb = LPF(Trb) ,

where

• Tobs is the maximum delay for which the discriminator is
observed
• c is the speed of light in m/s
• Trb is the tracking bias in meters
• LPF is the low-pass filter of the DLLmodelled by a Butterworth
filter of order 2 with a bandwidth of BDLL
• ρb is the pseudorange bias induced from the tracking bias in
meters

2.2 Theoretical classification

In this paper, up to 101 correlators were used to reconstruct the
ACF of the PRN code. Only the non-coherent discriminator will be
studied because this is the most robust type of discriminator since it
does not assume any PLL lock.

In a DLL where only additive white Gaussian noise affects the
signal, the propagated noise can be estimated as zeromeanGaussian
noise (Legrand et al., 2000). For the early–late power discriminator,
which is non-coherent, the variance of the noise can be expressed as
follows:

σ2Noise = T
2
c
BDLLEL
2C/N0
[1+ 2
(2−EL)TcohC/N0

], (8)

where

• Tc is the chip length in meters
• BDLL is the equivalent loop filter bandwidth of the DLL in Hz
• EL is the EL spacing in chips
• C/N0 is the carrier-to-noise-density ratio in Hz
• Tcoh is the coherent integration time in seconds
• σ2Noise is the variance of the DLL noise in meters 2

Since the DLL noise is assumed to follow a Gaussian law with a
known distribution (ϵNoise ∼ N(0,σ2Noise)), it implies that:

ϵnoise ≤ 3× σNoise for 99.7% of the time. (9)

The transient errors are ignored, so the tracking bias is assumed to
be only caused by multipath and noise, which can then be expressed
as follows (Braasch, 2017):

ρb ≈ ϵMP + ϵNoise. (10)

Hence, any bias exceeding 3× σNoise can be considered to be caused
bymultipath. However, labeling every error exceeding this threshold
would lead to a lot of measurements being classified as affected
by multipath, especially in urban and suburban environments. If
excluded, this would not only leave themost accuratemeasurements
for positioning but would surely leave very few measurements for
the positioning solution. In GNSS, a minimum of four satellites,
when one constellation is used, is needed to compute a positioning
solution (plus one extra satellite per additional constellation). If
too many satellites are excluded due to being labeled as affected by
multipath, the following may occur:

• Not enough satellites to compute a position
• An increase in the dilution of precision values

On the other hand, if faultymeasurements are not excluded from the
positioning, then the positioning solution cannot be trusted.

To establish a new threshold, the idea was to find a value that
would be small enough to not cause a large bias in the pseudorange
but also large enough to not cause availability issues due to frequent
multipath labeling. As the largest availability vs.multipath challenge
occurs in degraded environments, the multipath sources can be
identified. Indeed, multipath will often come from buildings, roads,
or other vehicles. When looking at attenuation factors of common
surfaces at a normal incidence, a threshold can be established based
on materials that yield a tolerable multipath error. The values of
these materials, for the L1 frequency, are given as Table 1 follows
and available in the study by Braasch (2017). By retrieving the
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TABLE 1 Reflection and attenuation factors for common urban surfaces at
normal incidence on L1 frequency.

Surface Attenuation factor (dB)

Asphalt −18.3

Brick −9.24

Concrete −7.87

Glass −7.51

Tinted glass −0.446

attenuation factor from the table, the maximum amplitude of the
multipath coming from this material can be known. Therefore,
the multipath error envelope (MEE) can be computed for a given
material. The MEE indicates how large the tracking bias can be for
a given relative multipath amplitude factor and early–late spacing
as a function of the multipath delay. When plotting the MEE, two
curves are represented. The upper curve represents the error when
the multipath is in phase, and the lower curve depicts the error
when the multipath is out of phase. All multipath errors for the
given parameters (relative amplitude factor and early–late spacing)
are contained within the two bounds. Hence, themaximum induced
multipath bias by a given material is given as follows:

bMaterial =max(|MEE (tMP;EL,αMaterial) |) , (11)

where

• MEE is the multipath error envelope value for a given early–late
spacing and relative multipath amplitude factor
• tMP is the multipath delay in chips
• bMaterial is the maximum multipath error caused by reflection
from a given material
• αMaterial is the relative multipath amplitude factor of a given
material

For example, the MEE of brick is given in Figure 2 for an EL
spacing of 0.04 chips for Galileo E1-B (left) and the MEE of brick
given in Figure 2 (right) is for an EL spacing of 0.125 chips for GPS
L1 C/A.

As assumed in the study by Zhao et al. (2013), the most
commonly encountered materials in challenging environments
will be asphalt, glass, tinted glass, brick, and concrete. Brick is
assumed to not be the most common building material. Since
it has a high attenuation coefficient, it was decided that any
multipath that has lower amplitude than the ones generated from
brick would be tolerated. However, this method still functions if
the chosen material is different as its selection depends on the
desired multipath detection sensitivity. Relating to Figure 2 (left),
this means that any multipath, for a DLL with an EL spacing
of 0.04 chips, that causes a bias smaller than 0.708 m would be
tolerated.

The early–late spacing used on GPS L1 C/Awas higher than that
for Galileo E1-B as a low EL spacing on L1 C/A led to a prolonged
convergence of the tracking loops of the receiver. This change also
induces an increase in the bias of (12), meaning that the threshold
for multipath classification is higher on GPS L1 C/A than Galileo

E1-B (bMaterial = 2.23 m). As shown by Prochniewicz and Grzymala
(2021), GPS L1 C/A ismore affected bymultipath thanGalileo E1-B,
so this rise in threshold for GPS L1 C/A makes sense to keep a high
availability.

Thus, the threshold for multipath can be written as follows:

T = 3× σNoise + bBrick, (12)

where

• bBrick is the maximum multipath error caused by a reflection
from brick

This gives the following classification:

Decision =
{
{
{

|ρb| ≥ T→Multipath

|ρb| < T→NotMultipath.
(13)

As shown in the study by Vergara et al. (2009), the DLL noise
increases due to the presence of multipath. However, the increase
in noise is assumed to be accounted for by the addition of bbrick.

The decision given in (13) will be the method used to classify
multipath and train the convolutional neural network presented in
section 2.4.

2.3 Signal deformation

When first plotting the tracking biases and its filtered version,
it was noticed that they were not centered around zero. These
biases were slightly offset by a different value depending on
the satellite number and constellation. Because of this, setting a
threshold would not be possible according to the decision given
in (14). This tracking bias is caused by the digital and/or analog
hardware distortions (Song et al., 2020). Pagot et al. (2015) used the
S-crossing of the discriminator among other techniques to quantify
the bias. Pagot et al. (2017) used in-phase correlators to detect the
deformation of the signal. In the study by Fan and Mats Brenner
(2006), their solution estimated the satellites and receiver hardware
biases by estimating the bias caused on each correlator. However, it
required several identical receivers to do so, which was not possible
in this study. Thus, the proposed solution here is a modified version
of that in the study by Fan and Mats Brenner (2006) and estimates
the satellite and receiver biases as one bias altogether. This method
assumes that the hardware and receiver biases are constant over
the duration of the dataset. They are also assumed to be the same
over other data collected, even though they will vary according
to temperature and the incidence angle. These supposedly small
variations are assumed to be accounted for in the standard deviation
of the noise, so in the threshold of (13). The method is presented in
Figure 3.

2.4 Convolutional neural network training

2.4.1 CNN theory
The accuracy of the tracking bias in GNSS receivers is limited

by the sampling frequency in the correlation domain of the signal.
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FIGURE 2
Multipath error envelope for a brick-induced multipath for an EL spacing of 0.04 chips on Galileo E1-B (left) and for an EL spacing of 0.125 chips on
GPS L1 C/A (right).

FIGURE 3
PRN deformation correction algorithm.

The receiver used in this study, presented in section 2.5, can have
a correlation domain sampling frequency of 200 MHz at most.
A total of 101 correlators at 200 MHz were used to compute
the most accurate tracking bias possible with the equipment
used. Furthermore, computing an accurate tracking bias in GNSS
receivers is time consuming due to the large number of correlators
needed. Therefore, this method is best reserved for theoretical
classification, but a more lightweight solution is needed to be
more applicable to GNSS receivers. Training a CNN can be
cumbersome, so it only has to be done once. When trained, the
model can then be used in receivers as the prediction is fast.
CNN images can be constructed with fewer correlators than used
for the theoretical classification presented in section 2.2. Evidently,
reducing the number of correlators affects the accuracy of the
model as discussed in section 3.Despite having a large freedom of
implementation for CNNs, all models share some properties and
layers which are listed as follows:

1) Convolutional layer
2) Activation function
3) Pooling layer
4) Output layer

5) Loss function

As the name indicates, convolutional neural networks rely on
the convolution operation.The input, for example, an image, is a 2D
matrix (or 3D if in color).This input is then convolved withmultiple
filters of the same size but of different values. Filters can be thought
of as feature-detection matrices. In computer vision, kernels can be
used to detect edges or sharpen the images (Lampert, 2009). CNNs
are based on the same principle but keep updating the values of their
filters to detect the most prominent features of the input images.
The number of filters used in a convolutional layer will determine
the number of 2D outputs.These 2D outputs are called feature maps
since each one was passed through a different filter, thus detecting
different features. The mathematical expression of a convolutional
layer is given as follows (Carneiro et al., 2017):

Am
o =

N

∑
k=1

Wm
o,k*A

m−1
k + b

m
o , (14)

where:

• k is the number of channels in the image (1 for black and white
and 3 for RGB)
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• o indicates the number of channels in the output image
• * is the convolution product
• Am−1

k is the image input
• Wm

o,k is the filter with which the convolution is performed
• bmo is an additional bias

Once the feature maps are generated from the convolutional
layer, an activation function is used to transform the values of the
maps. A lot of activation functions exist, such as ReLU (Agarap,
2018). These functions are generally non-linear to adapt to a wider
variety of data since a combination of linear functions is a linear
function itself.

Pooling layers are used to downsample feature maps in order to
reduce the computational load created by the convolutional layers.
Pooling is most often performed as max pooling or average pooling.
The pooling layer uses a filter of specified size (N x N) that slides
over the whole feature map with a given step. Max pooling selects
the highest value of the filter. Average pooling takes the average value
of the filter. Their differences are given in the study by Zafar et al.
(2022).Loss functions are primordial in all neural networks as
they yield the error between the prediction and the truth. During
training, this function is minimized. Many loss functions exist, and
some are better suited for regression such as themean squared error,
while some are used for classification such as the categorical cross-
entropy (Zhang and Sabuncu, 2018). To minimize these functions
and obtain the best predictions, the stochastic gradient descent is
used.

A very common problem in ML is overfitting. Overfitting is
when a model works very well for the training data but performs
poorly when fed new data.Themost frequent reasons are as follows:

• The trained data is not fully representative of the potential input
data
• The network is too complex for the problem at hand
• The network has been trained for too many iterations
• Data leakage

Hence, special attention was paid to overfitting in the proposed
model. To make sure that the model was less likely to occur,
dropout was implemented. Dropout deactivates a neuron with a
given probability (chosen by the user) to reduce reliance on certain
connections. As shown by Srivastava et al. (2014), this is an effective
way to reduce the likelihood of overfitting. Another method to limit
overfitting is by using L1 and/or L2 regularization to the weights
(Ying, 2019). L1 and L2 both have their strengths and weaknesses, as
explained in the study by Ng (2004). Hence, a combination of both
called the elastic net, presented in Zou and Hastie (2005), further
reduces overfitting. The new loss function becomes:

ENET (θ) = J (θ) + λL1
pL1
∑
j1=1
|βL1,j1| + λL2

pL2
∑
j2=1

β2L2,j2 , (15)

where

• J(θ) is the existing cost function
• θ is the parameter to minimize
• j is the sum index (L1 or L2)
• λ is the regularization factor (L1 or L2)
• βj is the weighting penalty (L1 or L2)

• p is the chosen degree of regularization (L1 or L2)
• ENET(θ) is the new cost function with L1 and L2 regularization

At last, comparing the loss function values of the training and
validation dataset is a good metric to check overfitting.

2.4.2 Proposed architecture
To construct the CNN for multipath mitigation, TensorFlow

(Abadi et al., 2016) and Keras (Chollet, 2015) were used as the
backbone. TensorFlow is an open-source deep learning library
owned by Google that enables one to develop a machine learning
algorithm from end-to-end. Keras is also an open-source machine
learning library that runs on top of TensorFlow and allows one to
easily build networks and train models. The images are grey-level to
reduce the number of parameters to be trained, with a 256 × 256
pixel size. As there are, at most, 101 correlators used, the images
were upscaled on the correlator delay axis. On the temporal axis,
the images were slightly upscaled for E1-B (250 values per correlator
position per second), while they were downscaled for GPS L1 C/A
(1,000 values per correlator position per second). The images were
then passed to the CNN model described as follows. This model is
a simple one; it was observed that a complex CNN was not needed
to successfully detect multipath from the correlator images. Indeed,
with respect toMunin et al. (2020), who also use CNN formultipath
detection, the presented network uses one less convolutional layer,
making it more lightweight. Furthermore, special attention was
given to overfitting by implementing dropout and L1 and L2
regularization, while Munin et al. (2020) and Quan et al. (2018) do
not mention this threat. As multipath and the filter can introduce
correlation between data inputs, overfitting can be even more
prominent when using post-tracking outputs.

The first layer is a convolutional layer made of 20 filters of size 3
× 3 with a stride of 1, computed using (12). This layer uses the ReLU
activation function. Then, this layer is followed by a max pooling
layer of size 2 × 2 with a stride of 2 × 2. The outputs of the 20 filter
maps are flattened (passed into 1D) to a layer of 1 neuron with a
sigmoid activation function which yields the result for the image:

• 0→ Not multipath
• 1→Multipath

This layer is implemented with a dropout rate of 0.5, meaning
that each neuron connection has a 50% chance of being ignored at
each epoch.This layer is also regularized with the elastic net method
given in (16) (L1 and L2 regularization with λ = 0.001 for both).The
loss function chosen in this architecture is the binary cross-entropy.
The batch size was of 64. The full architecture is given in Figure 4.

2.5 Dataset

Thedataset was obtained from a dynamic scenario.The dynamic
data were collected in all challenging conditions (suburban and deep
urban). This was to obtain multipath errors to detect and exclude
them. The dataset is on the L1 frequency band (1575.42 MHz)
on GPS and Galileo with a 200 MHz sampling frequency. This
large sampling frequency was used because it enabled a better
reconstruction of the ACF over the span of the collect. An IFEN
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FIGURE 4
CNN architecture for multipath detection.

TABLE 2 IFEN SX3 settings for GPS L1 C/A and Galileo E1-B.

GPS L1 C/A Galileo E1-B

Early–late spacing (chips) 0.125 0.04

DLL bandwidth (Hz) 1 1

Integration time (ms) 1 4

Number of correlators 101 101

Correlator sampling frequency (MHz) 200 200

SX3 was used as the GNSS receiver (IFEN, 2023). The IFEN SX3
is a GNSS receiver that is capable of tracking all constellations and
frequencies. It is verymodular and can record rawdata to then replay
with different configurations. Indeed, the number and placement of
correlators are selectable along with the loop filter bandwidths, EL
spacing, etc.

This dataset was obtained with a car. Data collection took place
in the city center of Toulouse, France, in amix of urban and suburban
environments for a total duration of approximately 40 min. The
neural network had more than 4,000 images to be trained with,
for each signal. There were more than 4 million correlators used
per signal, and the satellite geometry was diverse. Having more
multipath scenarios would likely be beneficial for the networks but
the number of images and correlators was deemed sufficient to
validate the proof of the concept. The assumptions were made on
the material types because most buildings are made out of either
concrete or bricks with glass windows, and the road, of asphalt.
The IFEN SX3 was connected to a Novatel GPS 704-X pinwheel
antenna. The data were replayed in post-processing to retrieve the
full correlators for each epoch as it cannot be done in real-time with
this number of correlators. The main parameters for each signal are
given in Table 2.

3 Results

This section is divided into subsections: presenting the metrics
used to analyze the results and the different configurations, the
results for Galileo E1-B, and the ones for GPS L1 C/A. In order
to investigate the benefits of using correlator images to detect
multipath, the number of correlators used in images varies. To obtain
accurate data labeling, the pseudorange bias has been computedwith

the most amount of correlators—101 at 200 MHz. In total, there are
seven correlator variations presented in Table 3.

Figure 5 illustrates the 101@200 correlators’ configuration along
with the three configurations using 25 correlators by comparing the
range of values obtained with the different variations vs. the full
theoretical autocorrelation function for GPS L1 C/A.

The results for these correlators will be presented for both
signals. The images that are input to the CNN are the correlator
values as a function of the chip delay (on the y-axis) with respect
to the prompt correlator and time (on the x-axis) to yield 2D
images.The CNN architecture and the labeled data remain identical
no matter the correlator configuration. However, each correlator
configuration induces a training period with the corresponding
images of the chosen correlator configuration. Figure 6 represents
the tracking bias and its filtered version for a given satellite onGalileo
E1-B (left), while an example, from the training dataset, of both not
multipath andmultipath is given in Figure 6 (right) for the 101@200
correlator variation (colorized).

3.1 Result analysis

To train a binary classifier, the two classes—here, multipath and
no multipath—need to be equally represented. Otherwise, this can
lead to the network overpredicting the dominant class.This leads to a
class imbalance in the datasets. There exist several countermeasures
for this condition as given in the study by Buda et al. (2017). The
chosen method is to downsample the dominant class. Indeed, the
no multipath class will be reduced in size to roughly match the
multipath one. To still train all images, the not-multipath images will
be divided into several datasets and the final results presented in the
following sections will be the average of all the trained models.

CNNs can also be overfit when the input data are too correlated.
Hence, special care was taken to ensure that the input images were
not correlated with one another.This correlation can come from the
delay lock loop filter bandwidth. Indeed, the filtered pseudorange
biases depend on the previous ones. To make sure that they were
generally not correlated with one another, the cross-correlation
factor [given in (16)] was computed between the filtered tracking
bias outputs.

ρx,y =
Cov (x,y)

√σ2xσ2y
. (16)
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TABLE 3 Correlator configurations for GPS L1 C/A and Galileo E1-B.

Configuration name Number of correlators Correlator sampling frequency (MHz)

101@200 101 200

51@100 51 100

51@200 51 200

51@200&100 17 and 34 200 and 100

25@50 25 50

25@200 25 200

25@200&50 9 and 16 200 and 50

FIGURE 5
Illustration of some correlator variations for GPS L1 C/A.

For both signals, the cross-correlation factor was below 0.2,
where most applications can be assumed as uncorrelated, after 1 s.
The correlation of multipath was assumed to be less than the 1 s
correlation caused by theDLL filter.Thus, the images were generated
every 1 s.

A good metric to check overfitting is the difference of the
training loss with the validation loss of the binary cross-entropy

function.The accuracy and loss values of the 101@200 configuration
on Galileo E1-B are presented in Figure 7. As the difference in loss
value is very small at the end of the training epochs (∼0.05), this
shows the fact that the model is not affected by overfitting.

To analyze the results of a machine learning model, several
metrics are often given: accuracy, precision, recall, and F score.
Accuracy represents the proportion of correct classification the

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1106439
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Guillard et al. 10.3389/frobt.2023.1106439

FIGURE 6
Filtered (black) and non-filtered (blue) tracking bias with its multipath bounds (red) for Galileo E1-B on PRN 3 (left) and their corresponding CNN inputs
(right).

FIGURE 7
Accuracy and loss values over training iterations for training and validation datasets.
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TABLE 4 Confusionmatrix.

Truth ⧵ Actual Positive Negative

Positive True Positive False Negative

Negative False Positive True Negative

model made. Precision represents the proportion of correct
multipath classification. Recall represents how well the model can
detect multipath.The F score is the harmonic mean of precision and
recall, and it better highlights the impact of false negatives and false
positives than accuracy (Powers, 2020). The binary classification
results can be represented as shown in the following table Table 4.

The accuracy, precision, recall, and F score are equal to (Dalianis,
2018):

Acc =
TP+TN

TP+TN+ FP+ FN
Prec =

TP
TP+ FP

Rec =
TP

TP+ FN

Fscore =
2Prec ×Rec

Prec +Rec
.

(17)

To better highlight the benefit of using CNNs for multipath
prediction, these metrics will also be computed with the tracking
bias method when the number of correlators is reduced.This means
that the pseudorange bias will be estimated for each correlator
configuration. Their accuracy, precision, recall, and F score for that
configuration with respect to multipath classification performed
with 101 correlators at 200 MHz will also be computed.

The difference between the time taken to predict the presence
of multipath with the use of CNN with respect to the tracking bias
method will also be presented. To have a fair comparison, both
methods are compared when using the same number of correlators
and are evaluated in the same coding language and on the same
hardware.

3.2 Galileo E1-B

In Figure 8, the accuracy, precision, recall, and F score are given
for all correlator combinations for both CNN and tracking bias-
based multipath classification. The tracking bias results are in blue,
while theCNN results are in orange.TheCNN results presented here
are from the test dataset. The data split was 80% for the training
data and 20% for the test data. As there is just one model and the
hyperparameters of themodel are not varied, no validation datawere
used to generate the results presented.

3.2.1 CNN vs. tracking bias
The tracking bias method, when using 101@200, is the

configuration used for determining the truth, so its metrics are all
equal to one. When using 51 correlators—no matter the correlator
sampling frequency—the tracking bias method performs better or
at least equivalently to CNNs as conveyed by the higher F score
and accuracy results. But when only 25 correlators are used, both F
scores and accuracies plummet for the tracking bias approach.When
the number of correlators is decreased, the tracking bias metrics

quickly degrade in performance. This is shown by 11, 7.5, and
36% F score differences between 25@50, 25@200, and 25@200&50
configurations, respectively.

To compute the tracking bias, the reconstructed discriminator
function linearly interpolates the delay when there is a zero crossing.
By reducing the number of correlators and the correlator sampling
frequency, the linear interpolation between two delays is greater and
leads to a higher uncertainty on the resulting tracking bias based
on the effect of multipath and noise at this time. On the other
hand, reducing the number of correlators while maintaining a high
correlator sampling frequency leads to a shortened discriminator
functionwhere the zero crossingmay not be present. In that case, the
tracking bias cannot be estimated. The metrics highlight that when
the number of correlators is reduced, the CNNmethod outperforms
the tracking bias one.

3.2.2 Computational load
Table 5 shows the time taken by eachmethod, normalized by the

most time-consuming method. This table illustrates that all CNN-
based configurations are two to six times faster than their tracking
bias counterpart.This results from the tracking bias being computed
250 times per second since the integration period used here was of
4 milliseconds. On the other hand, since images are generated every
second to limit cross-correlation, the CNN only predicts once per
second, explaining the gain in time.

3.2.3 CNN correlator configurations
The 101@200 variation is the benchmark configuration for the

CNN approach, but the overall performance of other correlator
configurations, when looking at the accuracy and the F score, is
very similar. This indicates that even with fewer correlators, the
CNN used to detect multipath is still effective while using less
computational power. This is seen when the correlator sampling
frequency is lowered from 200 to 50 MHz, and the number of
correlators is reduced by a factor of 4 for only a 2.8% reduction on the
accuracy and 3% reduction on the F score. Thus, after this model is
trained, the sampling frequency and the number of correlators could
be reduced to alleviate some of the computational loadwhile keeping
a high correct classification rate.Despite the very high precision of
the CNN from both correlator configurations of 51@200&100 and
25@200&50, their recall is lower with respect to other variations.
It illustrates that the two configurations are the worst at detecting
multipath. Even though this model is more precision oriented, the
recall should not be fully sacrificed at the expense of precision. This
is also reflected in the F scores of these variations as they have the
worst F scores.The two CNN variations of 25@200 and 51@200
perform worse than 25@50 and 51@100 by 0.8 and 2% on their
F scores, respectively, while outperforming the two configurations
using 51@200&100 and 25@200&50. Thus, the multipath effect is
more observable on a larger delay range of correlator outputs.

3.3 GPS L1 C/A

In Figure 9, the accuracy, precision, recall, and F score are given
for all correlator combinations for both CNN- and tracking bias-
based multipath classification. The tracking bias results are in blue,
while the CNN results are in orange.
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FIGURE 8
E1 metrics of the CNN.

TABLE 5 Normalizedmean execution time for all configurations.

101@200 51@100 51@200 51@200&100 25@50 25@200 25@200&50

CNN 0.17 0.18 0.17 0.18 0.16 0.16 0.16

TB 1 0.51 0.80 0.70 0.32 0.67 0.41

The data split used here was the same as that for Galileo E1-B:
80% for the training data, 20% for the test data, and no validation
data were used.

3.3.1 CNN vs. tracking bias
For Galileo E1-B, the tracking bias method using 101 correlators

is used for determining the truth explaining the perfect metrics.
Whenusing 51@100, the tracking bias configuration performs better
because the range of the delay of the ACF is kept while maintaining
a narrow enough linear interpolation. For 51@200, the F Score
is 1.8% higher than that of its CNN counterpart. Despite having
perfect precision, this variation has a much lower recall (77%),
indicating that it is much worse at detecting multipath. This is
further highlighted by the tracking bias results using 51@200&100.
Indeed, the recall for this configuration is of 49.1% but has a perfect
precision score.

When decreasing the number of correlators to 25, this becomes
even more apparent as the 25@200 or 25@200&50 have recall scores

of 0, meaning that these configurations classify every measurement
as not affected by multipath. This can be explained by the fact
that the early–late spacing is higher for GPS L1 C/A. Indeed,
when the early–late spacing is increased, the linear region of the
discriminator function is also increased. On the downside, the
number of correlators needed to cover the linear region to find
the zero crossing of the discriminator function increases. The zero
crossing can even be shifted further in the delay domain due to
multipath and noise. Hence, the two variations using 25@200 and
25@200&50 do not cover enough of theACF to get a correct estimate
of the tracking bias.

Moreover, when using 25@50, the F score of the CNN-based
approach is 1.6% higher, which is due to its much higher precision
with respect to the tracking-based approach despite its lower
recall. Similar to Galileo E1-B, this conveys the fact that when
the number of correlators is reduced, the CNN is a more viable
solution to predict the presence of multipath than the tracking bias
method.
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FIGURE 9
L1 metrics of the CNN.

TABLE 6 Mean execution time for all configurations.

101@200 51@100 51@200 51@200&100 25@50 25@200 25@200&50

CNN 0.0085 0.0090 0.0091 0.0092 0.0093 0.0093 0.0093

TB 1 0.40 0.29 0.27 0.20 0.047 0.073

3.3.2 Computational load
Similar to Galileo E1-B, CNNs are much faster than the tracking

bias method. Indeed, the CNN is 21 times faster on the 25@50
configuration as shown in Table 6. It is even more pronounced
on GPS L1 C/A as the tracking bias is computed 1,000 times
per second. The time taken by the tracking bias method also
depends on the number of correlators used, whereas the CNN
method’s execution time is almost identical. This can be explained
by the fact that the CNN architecture is the same regardless of
the correlator configuration. Therefore, the only change between
correlator variations is the values of the filters and weights of the
neurons. Since the time taken to generate an image is very low, this
does not make a computational difference between the correlator
inputs to the CNN.

3.3.3 CNN correlator configurations
From all the correlator variations, the CNN configurations

using less correlators at a reduced correlator sampling frequency

(51@100 and 25@50) have only slightly lower metrics than the CNN
benchmark variation of 101@200 with respect to other correlator
configurations. This can be explained by the higher early–late
spacing chosen for this signal with respect to E1-B. Hence, the
distortion caused by the multipath on the tracking bias is larger for
higher EL spacing (Van Dierendonck et al., 1992). So, maintaining
the same delay range on the ACF is more important with larger
early–late spacing than having narrow correlators. Indeed, the
decrease in the F score from 101@200 to 51@100 is of 0.33% and
1.14% from 101@200 to 25@50.

Furthermore, the two CNN configurations using 51@200 and
25@200 perform the worst. This is due to the fact that both of
these variations do not show enough of the ACF—especially the
25 correlators’ configurations that show just enough correlators
between the early and late correlators. Hence, these variations
combine too little information on the ACF while still overcrowding
the image with narrow correlators that do not add enough benefit to
the classification.
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For the CNN-based approach, the 51@200&100 to 25@200&50
variations show a performance that is in between the two previous
configurations. As this configuration still requires a high sampling
frequency of the signal and yet does not improve the classification,
a lower correlator sampling frequency for correlators is favored for
both computational and metric performances.

4 Discussion

In this paper, a theoretical classification of multipath has
been proposed that uses GNSS tracking correlator outputs. This
classification has been used to label data to train a convolutional
neural network. Then, this CNN has been used to predict whether
multipath was present or not on the correlator outputs from GPS L1
C/A and Galileo E1-B. This CNN has been developed to be low in
complexity so that it can be trained with a low amount of data while
avoiding under-- or overfitting.

The model uses tracking correlator values as a function of delay
(with respect to the prompt correlator) and time in the form of
images of 256 × 256 pixels. The inputs are lightweight, helping the
predictions yielded by the CNN to be swiftly computed. This is
illustrated by the fact that it is around 21 times faster to compute
than the tracking bias for GPS L1 C/A and two to six times faster
for Galileo E1-B, when using 25@50.The metrics between the CNN
approach and the tracking-based approach were also compared, and
theCNNperformed better as the number of correlatorswas lowered.
For example, when using 25@50, the F score was 91.8% for the
CNN and 80.8% for the tracking bias on Galileo E1-B. The same
conclusion applies to GPS L1 C/A as the F score was 88.9% for the
tracking bias and 90.5% for the CNN with 25@50.

Several variations have been tested in the CNN to test how the
CNNperformswhen reducing the number of correlators to generate
the input images. The favored configuration is to decrease the
number of correlators along with the correlator sampling frequency.
Indeed, it was shown that by reducing the number of correlators
from 101 to 25 and by reducing the resolution by a factor of 4, the
F score only decreased from 94.7 to 91.8% on Galileo E1-B and
from 91.6 to 90.5% on GPS L1 C/A. This highlights the robustness
of this method to detect multipath and then exclude the corrupted
measurement from the positioning solution.

Indeed, as mentioned previously, recall is how well the model
detects multipath, thus excluding it. So, if a model correctly detects
multipath, the confidence in the positioning solution would be
higher. On the other hand, solutions that satisfy a certain precision
requirement would improve the solution availability, i.e., having
enough GNSS observations to have a full-rank system that can
yield a GNSS position, velocity, and time (PVT) solution. As
precision is how well the model classifies multipath, if there are
very few false positives, then the model rarely falsely excludes
useful measurements. In an accurate model, precision and recall
are inversely correlated (Davis and Goadrich, 2006), meaning that
increasing one would decrease the other. To increase the recall of
the model, the threshold of the sigmoid function of the last neuron
could be changed. The proposed decision in this study is as follows:

y = sigmoid (x) ,

{
{
{

y ≥ 0.5→Multipath

y < 0.5→NoMultipath.
(18)

By lowering the threshold to below 0.5, it would increase the
recall at the expense of precision: it would only classify notmultipath
for very low values of y. In this paper, availability was deemed
more important than integrity as shown by the models having
higher precision than recall. This is because additional integrity
algorithms can be added on top of this solution such as fault
detection and exclusion (Rakipi et al., 2015). Orienting the model
toward excluding all multipath could lead to fewer satellites than
needed for a position computation. Furthermore, a limitation of the
proposed method is that multipath-affected satellites on the brink
of being labeled as multipath or not can degrade the positioning
solution by being removed. Hence, the solution to mitigate this
limitation is to improve the availability, and so the precision.

In the future, the number of correlators could be further reduced
and their positions varied to investigate what could be theminimum
number of correlators to classifymultipath at a given rate.This could
lead themethod to bemore implementable on real-time receivers so
that the number of computed correlators is more achievable. Even
3D images can be built by taking into account the Doppler offset
of the received signal, as done by Munin et al. (2020). Furthermore,
other factors could be added for threshold determination such as the
elevation of the satellite.

Excluding measurements because they are affected by multipath
does not always lead to better positioning solution as it can lead to
too fewmeasurements to compute a position solution, or sometimes,
this satellite was more important to the overall geometry than
excluding the error was. Hence, the next step is to find a criterion to
know if removing the multipath- affected measurement is worth it.
Then, based on the results of the positioning accuracy, themultipath
threshold can be redefined and optimized accordingly.
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