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Fast Marching Tree applied to geodesic trajectories
in presence of wind: a day of flights in Europe

study
Céline Demouge, Andréas Guitart, and Daniel Delahaye.

Abstract—This paper addresses the generation of aircraft
cruise optimal trajectories in the presence of wind using FMT*
algorithm. After presenting the problem handled, the adaptation
of the algorithm to solve it are presented. In particular, how to
deal with great circle distances without increasing too much the
computation time is detailed. The proposed method is evaluated
on benchmarks and is shown as appropriate to solve this problem.
A case study on European flights is also given. This case study
shows that this method obtains good results on most European
origin-destination pairs. This work is a preliminary work to show
that FMT* can be used for aircraft cruise trajectories planning
in the presence of wind.

Index Terms—Cruise trajectory, Sampling-based path plan-
ning algorithm, Fast marching tree, Optimal aircraft trajectory,
Wind.

I. INTRODUCTION

Air transport has seen many technical and technological
evolutions over the last few decades, enabling a high level
of safety to be achieved while allowing significant growth.
Aircraft and ground systems (tools for air traffic controllers,
airlines, airport operators, etc.) have been the subjects of these
developments, which have made air travel the safest mode of
transportation in the world, and in a rapidly expanding market.

For this growth to continue, the air transport industry must
now turn its attention to the environment. It must continue
to guarantee a high level of safety and be able to accept
traffic growth while reducing its environmental impact in a
sustainable development approach. This approach is essential
to ensure the sustainability of the sector and is encouraged by
the authorities.

The Covid-19 crisis threatens the growth of air traffic and
weakens the whole sector. Air transport actors must reinvent
their ways of acting in order to recover the past demand.
Today, the public is convinced of air transport safety, which
must now prove its ability to meet current and future chal-
lenges. One of them is to decrease the environmental impact
of the sector, without decreasing safety and capacity levels.
Thus, measures yielding to save fuel are necessary. Moreover,
in these times of crisis, such measures also allow financial
savings since fuel is a major source of cost for airlines.

In the major part of the flight, in the cruise phase, the best
operational mean to save fuel is to take benefit from wind. This
paper presents a new method to optimize this phase of flight by
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taking into account the wind. For this purpose, a new method,
initially issued from the robotics field and being the object of
some studies in aeronautics is used: the Fast Marching Tree
(FMT*) algorithm. Several issues have to be considered: it
is necessary to take into account great circle distances and
to take into account a cost different from the distance that is
traditionally the one used when sampling based methods are
implemented.

This paper is organized as follows. Section II presents
different previous related works on optimal cruise trajectory
computation in the presence of wind and sampling based
methods. Then, in Section III the problem under study is
detailed before explaining the method used to solve it in
Section IV. Finally, some results from benchmarks and from
case studies are shown in Section V and in Section VI
respectively.

II. PREVIOUS RELATED WORKS

This section presents some previous related works on the
computation of aircraft optimal cruise trajectory in the pres-
ence of wind, before focusing on a particular type of path
planning method: sampling-based methods.

A. Wind optimal cruise trajectory computation

1) Optimal control approach: The problem under study
requires finding an optimal trajectory for an aircraft. This
problem can, in the most intuitive way, be modelized as an
optimal control problem thanks to the equations of the flight
dynamics. The cost to be minimized can be the flight time
or the fuel consumption for instance. Several authors have
modeled the problem of optimal trajectories in the presence
of wind for one aircraft in this form. For instance, Sridhar et
al. [1], or Palopo et al. [2] who used a method from Jardin
and Bryson [3].

The last article cited [3] mentions the Zermelo problem
[4] which was proposed in 1931. The aim of this problem
is to optimize the navigation of a boat to take the best
advantage of the marine currents, a problem that is similar
to the problem addressed in this paper. Thus, it is often
considered as a reference benchmark for methods implemented
in the literature.

2) Graph-based approach: Several methods choose instead
to discretize the environment and work on the resulting graph,
making the problem simpler and more similar to well-known
shortest path problems or tree search. This graph is built
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from a discretization of the space. The cost of edges depends
on the great circle distances and takes also into account the
strength of the wind in the direction of the edges.

Different algorithms can then be used such as Dijkstra [5]
or A* [6]. These methods can be very efficient but several
problems arise:

• The trajectory created is sub-optimal since the search
space is restricted because it is discretized. Indeed, the
trajectory found is optimal regarding the graph but not
considering the whole space;

• The trajectory created is not directly ”flyable”. The trajec-
tory does not follow the requirements of aircraft dynam-
ics. Then, additional work for smoothing the trajectory
is required, and therefore the optimum may move further
away.

3) Propagation methods: From the analogy of light prop-
agation in an open environment and the Eikonal equation
governing this propagation or other Hamilton-Jacobi type
equations, very efficient methods have been created, called
propagation methods. The principle of these methods is there-
fore to propagate a ”wave” (or equivalent front) on a grid
and then back propagate the gradients obtained on this
grid to draw a continuous trajectory.

Fast marching [7] and ordered upwind [8] methods are
based on an older method developed by Sethian called level set
method [9]. These methods were developed to solve stationary
Hamilton-Jacobi equations, i.e. equations of the type :

||∇u(X)|| = f(X,
∇u(X)

||∇u(X)||
) (1)

where X is the state vector, u is the optimal cost representing
the minimum arrival time, and f is the ”slowness” of the
domain at any point, for example the inverse of the propagation
speed of the front.

Fast marching methods are particularly adapted for isotropic
propagation. However, in the case of wind, an anisotropic and
adapted method has been developed, for instance by Mirebeau
et al. [10]. Another method, simpler and already proven to be
efficient, the ordered upwind method, is presented in [8]. It
has been used in the PhD thesis [11] in the 2D case.

B. Sampling based methods

Another type of path planning methods is sampling based
methods. They are non-deterministic discrete methods. They
take advantage of random sampling to improve and speed up
the search for the shortest or lowest cost path.

1) General principles and main algorithms: Research on
this type of methods was first driven by robotics. The goal
was initially to find a path, as short as possible, for a robot,
avoiding obstacles. When graph methods are used, to improve
the solution obtained, graphs can be densified but this often
results in a very high computational cost. To overcome these
issues, some methods have been developed to sample the
environment, first by more or less randomly choosing a set
of points, see for instance Simeon et al. [12] or Kavraki
et al. [13]. These methods, named Probabilistic RoadMaps
(PRM), are based on two steps:

1) Creation of a graph from the sampling of the environ-
ment;

2) Finding the shortest path from one point to another.
PRM is based on random sampling and this can be prob-

lematic regarding the solution optimality in the whole space
and the variance from a run to another. To avoid relying
too much on random sampling, other sampling methods
have been developed, particularly Rapidly-exploring Ran-
dom Tree (RRT) [14].

The goal of this type of algorithm is also to reduce the
number of points in the environment, and to find the most
interesting ones by creating a graph in an efficient way, to
recover a maximum of useful information on the environment
in order to find a path close to the optimal one while saving a
lot of time. RRT expands naturally into unexplored areas.
It is this property based on a natural bias, called Voronoı̈ bias,
that makes this method effective.

RRT has then been improved into RRT* [15] which has
been proven to be asymptotically optimal, unlike RRT.

Another sampling based method is the Fast Marching
Tree (FMT*) [16]. This method executes concurentially, and
thus ”at the same time”, the two steps of RRT*. Indeed,
RRT* first builds the graph and then tries to optimize locally
the connections, while FMT* builds the graph by choosing
the locally optimal connection. This saves a lot of time.
Another idea is added to save even more time: FMT* performs
a dynamic ”lazy” computation, i.e. the algorithm initially
ignores obstacles and if a locally-optimal edge is created and
crosses an obstacle, then it ignores it. This method is detailed
in Section IV.

2) Application to aeronautics: Sampling based methods
have recently been adapted for certain problems arising from
air transport, drones or other aerial vehicles.

RRT* has been used for aeronautical applications. In 2017,
Pharpatara et al. [17] used RRT* to compute obstacle avoid-
ance trajectories in 3D. This paper therefore shows that RRT*
is easily usable in 3D. However, the authors consider the wind
to be negligible given the speed of the aircraft. So their article
is not directly relevant to our problem, although it does give a
lead to the study of obstacle avoidance and shows that the use
of these methods for aircraft trajectories can be interesting.
The 3D wind track using RRT was however studied earlier,
for glider-type drones, by Chakrabarty and Langelaan [18].
In their paper, encouraging and interesting results are shown
for maximizing the glider’s flight time or getting it to reach a
given point by using air currents. RRT has also been used for
emergency aircraft trajectory design [19].

FMT* has also been used for aeronautical applications. It
has for instance been used for aircraft emergency trajectory
design [20]. It has been chosen for its little computation time
since it is a key point for this problem. It has also been used
for aerial vehicles with complex dynamics, for instance for
soaring flight in [21].

To conclude, various methods have already been developed
for the optimization of aircraft trajectories in a wind field.
But new methods from robotics are being developed in air
transport. The study presented here proposes to use the FMT*
to solve this problem.
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III. MATHEMATICAL MODELING

This section deals with the mathematical modeling of our
problem. First, the search space and context are detailed in
Subsection III-A while the objective function is detailed in
Subsection III-B. Then, constraints are presented in Subsection
III-C.

A. Search space

The trajectories are computed in the context of Free Flight
[22]. Initiated to improve Air Traffic Management, it is based
on the notion of 4D trajectory planning (space and time).
Airspace users are allowed to select their route without any
constraints, using favorable winds and avoiding hazards.

In this context, the search space of the problem is the 4D-
space (3D and time) without any constraint of predefined
routes. In this study, no weather hazard is considered and
since the cruise phase is under study, no ground obstacles are
considered, nor thunderstorms. Moreover, the study focuses on
only one aircraft, so no other traffic is considered.

B. Objective function

The first goal of the study presented here is to minimize
fuel consumption for the cruise phase of an aircraft in the
context explained before. This background allows to make
several hypotheses:

• The optimization is done in a 2D plane (the altitude is
constant).

• The True AirSpeed (TAS) is constant.

These assumptions lead to a simplification of the problem.
Indeed, they lead to accepting the fact that the fuel flow
is constant. In this case, minimizing fuel consumption is
equivalent to minimizing flight time between the departure
point and the arrival point.

The objective function to be minimized is then written in
Equation 2.

f(γ) =

∫ tf

t0

dt = tf − t0 (2)

where γ is the computed trajectory, t0 the departure time and
tf the arrival time.

Usually in aeronautics, 2D or 3D navigation points called
waypoints are used to define a trajectory. In this study, γ is
considered to be a sequence of N 2D-waypoints {wi}0≤i≤N .
The objective function can be rewritten in a discretized sum
of flight times as shown by Equation 3.

f(γ) = g(w1, ..., wN ) =

N−1∑
i=1

∆ti,i+1 (3)

where ∆ti,i+1 is the flight time between the two points wi

and wi+1. It is defined by Equation 4.

∆ti,i+1 =
di,i+1

GSi,i+1
(4)

where di,i+1 is the distance between wi and wi+1 and GSi,i+1

is the ground speed between these two points. The ground
speed is defined as follows:

GS = ∥GS∥ = ∥TAS+W∥ (5)

where TAS is the True AirSpeed of the aircraft and W the
wind encountered. Figure 1 shows a graphical representation
of this equation.

TAS

W

GS

Fig. 1: Graphical representation of the speed triangle related
to Equation 5.

On a sphere, the shortest path between two points in terms
of distance is the great circle. Figure 2 shows the difference
between the straight line and the great circle.

New York
Paris

Great circle
Straight line

Fig. 2: Comparison between the straight line and the great
circle trajectory between Paris and New York.

Great circle distance can be computed thanks to Equation
6.

di,i+1 = 60 arccos (sin(ϕi) sin(ϕi+1)

+ cos(ϕi) cos(ϕi+1) cos(λi+1 − λi))
(6)

where λi (resp. λi+1) is the longitude of point wi (resp. wi+1)
and ϕi (resp. ϕi+1) is the latitude of point wi (resp. wi+1).
di,i+1 is expressed in Nautical Miles (NM).

C. Constraints

The main constraints linked to the problem under study is
to compute a ”flyable” trajectory. In the case of this study,
the trajectory is computed in the 2D plane, that is to say only
lateral constraints are taken into account for the definition of
a ”flyable” trajectory.

The constraints for the flyability are in general ensuring the
flight dynamics equations. Nevertheless, in the case of this
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study, they will be limited to the fact that the turns should
not be too sharp. Figure 3 shows, for example, the type of
trajectory that we want to avoid and the one that will be
preferred instead.

A

B

(a) Trajectory with sharp
turns

A

B

(b) Trajectory without
sharp turns

Fig. 3: Trajectory from a point A to a point B with or without
sharp turns.

IV. PATH OPTIMIZATION METHOD

A. FMT* algorithm

Fast Marching Tree (FMT*) has been introduced by Lucas
Janson, Edward Schmerling, Ashley Clark and Marco Pavone
in [16] in 2015. FMT* is proven to be asymptotically optimal
and converge faster than RRT*. The sequel of this subsection
describes the algorithm.

First, the environment is (randomly) sampled with N points
or nodes. Then, FMT* will explore each node to compute the
optimal path from the origin to the goal. For this, at each
iteration, nodes are split into 3 sets:

1) Vunvisited: nodes that have never been visited by the
FMT* (in green in the following figures);

2) Vopen: nodes that have already been visited but for which
the cost value is not definitively computed (in orange in
the following figures);

3) Vclosed: nodes that have already been visited but for
which the cost value is definitively computed (in red in
the following figures).

Figure 4 details one iteration.
All the nodes at a distance rN of a node are considered as

its neighbors. rN is the neighborhood radius and is a function
of the number N of samplings. The radius used in [16] is:

rN = (1 + η) r∗N (7)

where η > 0 and r∗N is the minimum neighboring radius usable
defined by:

r∗N = 2

(
1

d

)1/d (
µ(χfree)

ζd

)1/d (
log(N)

N

)1/d

(8)

(a) The lowest-cost open node
z is selected and all its unvis-
ited neighbors are considered.
xinit is the starting point of the
trajectory, and the root node of
the tree.

(b) For each unvisited neighbor
x of z, all x open neighbors
are considered and an edge
between x and one of these
neighbors is added to make
this connection locally-optimal
(without considering any con-
straint).

(c) If this connection does
not violate constraints or is
collision-free, it is added to the
tree and x is removed from
the set Vunvisited and added to
Vopen.

(d) Once all z unvisited neigh-
bors have been visited, z is put
in Vclosed and the iteration is
done.

Fig. 4: Details of one iteration of FMT*.

where d is the space dimension, χfree the free space, µ(χfree)
its Lebesgue measure1, ζd the volume of the d-dimensional
unitary ball2.

Algorithm 1 is the complete FMT* algorithm in pseudo-
code. The set of neighbor of a node x is noted Neighbors(x).

To ensure the lowest possible complexity, the set Vopen is
implemented as a priority queue which allows an element to
be extracted (line 6) in a constant time and an element to be
added in O(log n) (with n the size of the queue).

B. Aeronautical constraints

As explained in Subsection III-C, some aeronautical con-
straints should be taken into account and especially for turns.
To ensure the flyability of the trajectory, first, the radius of
neighborhood, rN , can be increased in order to somehow
smooth the computed trajectory even if the computation time

1µ([a1, b1] × [a2, b2]) = (b1 − a1) ∗ (b2 − a2) where b1 > a1 and
b2 > a2.
µ([a1, b1]× [a2, b2]× [a3, b3]) = (b1− a1) ∗ (b2− a2) ∗ (b3− a3) where
b1 > a1, b2 > a2 and b3 > a3.

2In 2D space, ζ2 is the surface of a disk of radius 1 (ζ2 = π).
In 3D space, ζ3 is the volume of a ball of radius 1 (ζ3 = 4

3
π).
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Algorithm 1: FMT* algorithm.
Input: xinit, sample set V (with xinit ∈ V ), χgoal

(∃x ∈ χgoal, x ∈ V )
Output: succeed

1 succeed ← false
2 Vopen ← {xinit}
3 Vunvisited ← V \{xinit}
4 Tree initialized with its root xinit

5 while Vopen ̸= ∅ ∧ ¬ succeed do
6 z ← lowest-cost node in Vopen

7 Vsuccessfully connected ← ∅
8 for x ∈ Vunvisited ∩Neighbors(z) do
9 e ← locally-optimal edge to x from a node in

Vopen ∩Neighbors(x)
10 if e is collision-free then
11 Tree ← Tree ∪ e
12 Vsuccessfully connected ←

Vsuccessfully connected ∪ {x}

13 Vunvisited ← Vunvisited\Vsuccessfully connected

14 Vopen ← Vopen ∪ Vsuccessfully connected

15 Vopen ← Vopen\{z}
16 Vclosed ← Vclosed ∪ {z}
17 if z ∈ χgoal then
18 succeed ← true

is also increased. Since the computation time is not critical in
this application, the radius, rN , is typically multiplied by 10
in respect to the optimal radius.

Second, the result of FMT* is actually a sequence of
waypoints. It can be directly given to the aircraft FMS for
computing the trajectory. This process is detailed in Figure 5.

Departure

Arrival

Wind data

Departure Departure

Arrival Arrival

Problem resolution: 
FMT*

Solution becomes 
an aircraft 

trajectory: FMS

Fig. 5: Aeronautical constraints: FMT* waypoints list inserted
in the FMS.

C. Taking into account great circle distances

As explained before, it is necessary to take into account
great circle distances for the computation of costs. In that case,
it is necessary to define which distance is used at each step.

When looking for neighbors, the distance considered is the
Euclidean distance between two points. Thus, the coordinates

of the points will be taken into account to establish this
distance. This is the same as calculating a Euclidean distance
on a Mercartor type map, like the one shown in Figure 6.

Fig. 6: Example of a map with Mercator projection.

When computing the cost, and thus finding the locally
optimal neighbor of a point, the “distance” used is the great
circle distance as detailed in Subsection III-B. This distinction
is essential in the case of application here. Indeed, when this
algorithm is applied to robotics, only one distance is involved.
Often, the cost is even equal to the distance when trying to
find the shortest path avoiding obstacles. Here two different
distances are involved, and it is therefore necessary to strictly
differentiate the cost from the Euclidean distance used for the
neighborhoods.

As shown by Equation 6, great circle distance can be time-
consuming to compute. From this observation, another method
that avoid this pitfall should be developed. This other method
is based on the assumption that between two nearby points,
typically one in the neighborhood of the other in the sense
of the algorithm, the great circle can be approximated by the
straight line. Figure 7 shows an example of the validity of this
approximation.

30°N 30°E

31°N 31°E

Great circle
Map straight line

Fig. 7: Straight line and great circle trajectory between two
near points.

Once this approximation done between two neighbors, a co-
efficient must be applied to approximate the earth’s curvature
as shown by the Equation 9 between two points A(ϕA, λA)
and B(ϕB , λB).

dA,B ≈

√(
ϕB − ϕA

mϕ

)2

+

(
λB − λA

mλ

)2

(9)
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where the coefficients mλ and mϕ are computed according to
the following principle:

m =
distance on the Cartesian plane ≈ distance at the equator

distance on the Earth
(10)

Then mϕ and mλ can be computed at each sampled node
thanks to Equations 11 and 12 with accuracy h. For longitude,
there is no need to differentiate east and west since the result
will be the same. For latitude, the plus sign is used if ϕA < ϕB

(if B is in the north of A) else the minus sign is used.

mλ =
d(0,0)(0,h)

d(ϕA,λA)(ϕA,λA+h)

=
h

arccos
(
sin2(ϕA) + cos2(ϕA) cos(h)

) (11)

mϕ =
d(0,0)(±h,0)

d(ϕA,λA)(ϕA±h,λA)

=
h

arccos (sin(ϕA) sin(ϕA ± h) + cos(ϕA) cos(ϕA ± h))
(12)

D. Taking into account wind

The wind is taken into account in the cost computation
with the great circle distance. Typically, it comes in when the
locally optimal connection is searched in the algorithm. The
ground speed between two nodes u and v is computed thanks
to the mean wind between two nodes Wu,v = Wu+Wv

2 and is
directed on the edge as shown in Figure 8. The true airspeed
of the aircraft is considered constant all along the trajectory.

u

v

Wu

Wv

Wu,v

(a) The wind taken into ac-
count between two nodes is the
mean wind.

u

v

TAS

Wu,v

GSu,v

(b) Ground speed computation
between two nodes u and v.

Fig. 8: Computing the ground speed taking into account wind
between two nodes u and v.

Then the cost cu,v computed between a node u and a node
v is:

cu,v =
du,v
GSu,v

(13)

where du,v is computed thanks to Equation 9 and GSu,v is
computed as shown by Figure 8.

V. RESULTS ON ACADEMIC BENCHMARKS

This section shows the performances of the developed
method on two benchmarks. First, the method is evaluated
in Subsection V-A on Zermelo’s benchmark to evaluate the
consideration of wind. Then, the method is evaluated in Sub-
section V-B on a great circle trajectory computation without
wind. In the sequel, the various results shown are obtained
with a computer with an Intel Core i5-10210U, 1.60 Hz, with
8 Go RAM and a Debian Linux OS. The implementation is
done in Java.

A. Zermelo’s benchmark

As mentioned in the state of the art, a benchmark problem
that can be used to evaluate algorithms computing optimal
trajectories in the presence of wind is the Zermelo’s problem.
It was first proposed in 1931 by Ernst Zermelo in [4]. The goal
of this problem is to minimize the travel time from point A to
point B of a boat subject to water currents, which can easily
be assimilated to the wind in the case of our application and
the boat to an aircraft. In some particular cases, this problem
has closed form solution. In the following, a particular case
of wind will be studied: the case of a linear wind.

The problem is treated using Cartesian coordinates. Let
W (x, y) be the wind vector.

∀(x, y), W (x, y) =

(
Va

4 y
0

)
(14)

where Va is the airspeed of the aircraft.
The value Va

4 was chosen because it is a classical value of
relatively strong wind at altitude.

Figure 9 shows the wind encountered in this setup.

Fig. 9: Linear wind case for Zermelo problem.

Figure 10 and Table I show results obtained from FMT*
to compute the solution of Zermelo problem in this setup.
To obtain such smooth trajectories, the chosen neighborhood
radius is larger than the minimum one, r∗N defined by Equation
8, it has been multiplied by 5 to obtain the following results.
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Fig. 10: Results obtained from FMT* - Zermelo problem in
the case of linear wind with different maximum of iterations.

TABLE I: Relative errors and execution times for computing
a solution to Zermelo problem with FMT*.

Iterations
number

Distance
relative error

(%)

Time relative
error (%)

Computation
time (s)

10000 0.01995 0.02560 0.36
20000 0.01954 0.01542 1.64
30000 0.01764 0.01537 4.11
40000 0.01313 0.01534 8.66
50000 0.01462 0.01533 16.63
60000 0.01063 0.01532 25.35

B. Computing great circle

Moreover, the method has been tested in a windless case
to evaluate the capacity of the algorithm to compute great
circle trajectory between two points. Figure 11 and Table II
show results obtained from FMT* to compute the great circle
trajectory between two points with different maximum number
of iterations.

Fig. 11: Results obtained from FMT* - Computation of
the great circle trajectory between two points with different
maximum of iterations.

TABLE II: Relative errors and execution times for great circle
trajectory computation with FMT*.

Iterations number Relative error (%) Computation time
(s)

10000 0.43602 0.59
20000 0.42486 1.51
30000 0.43225 5.03
40000 0.43242 9.57
50000 0.42232 17.37
60000 0.42113 26.19

In that case, the error does not always decrease since there
is an approximation on the great circle distance.

VI. CASE STUDY

This section presents a case study on most flown European
flights. First, Subsection VI-A details the weather data used,
then Subsection VI-B details how flights are selected, then, in
Subsection VI-C, results are presented.

A. Weather data

Weather data are extracted from the API of the Windy
website [23]. The day chosen is October 14, 2022 in the
morning, at Flight Level 390 (FL 390), that is to say at altitude-
pressure 200 hPa. Wind data have been extracted on a 2D-grid
with a resolution of 0.3 degrees on latitude and longitude, from
latitude 33 to latitude 58.5 and from longitude -12 to longitude
22. In terms of distance, the resolution is near to 18 NM (33
km) in latitude and 15 NM (28 km) in longitude (see Figure
12).

10°W 0°W 10°E 20°E
30°N

37.5°N

45°N

52.5°N

60°N

(a) Data extraction area.

0.3°

0.3°

9.5°E 10°E 10.5°E 11°E

49.25°N

49.5°N

49.75°N

50°N

50.25°N

(b) Data extraction resolution.

Fig. 12: Wind data extraction features.

Data are then extrapolated on each point of the sampling
using quadratic interpolations:

W (P ) =

∑4
i=1 W (Pi) d

−2
i∑4

i=1 d
−2
i

(15)

where P1, P2, P3 and P4 are the grid points all around the
sampling point P and d1, d2, d3 and d4 are the distances from
P to these points as shown by Figure 13.

From this extraction, the following wind map is obtained:
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P1

d1

P2
d2

P3
d3

P4

d4

9.9°E 10°E 10.1°E 10.2°E

49.5°N

49.6°N

49.7°N

49.8°N

Fig. 13: Notations for quadratic interpolation of wind.
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Fig. 14: Wind extracted for the study case.

B. Flight data

To evaluate our method on real cases, it has been chosen
to test it on the most flown origin-destination pair in Europe.
For this, Eurocontrol R&D data [24] are used.

Data from March 2019 have been processed and the inter-
national flights longer than 400 NM (around 1 hour of flight
without wind) have been selected. The 100 most flown pairs
have been kept. The origins and destination are represented in
Figure 15.

It is considered that flights are done by standard commercial
aircraft and so the airspeed is considered constant and equal
to 400kts. It is based on the cruise speed of an A320 [25].

C. Results

This subsection presents the results obtained from the
detailed case study. First, some examples of computed tra-
jectories are given then a summary of the gains obtained is
presented. All results are obtained with 50,000 iterations of the
FMT* algorithm. The first example presented is the trajectory
from Amsterdam Schiphol airport (EHAM) to Lisbon airport
(LPPT). It is the 91th origin-destination pair from the 100
flights database. The gain in flight time is 2.17 %, that is
to say 3 minutes and 20 seconds. For this, the flight distance
is increased by 1.22 %, that is to say 22.39 NM. It has been
computed in 22.5 s.

(a) 20 first pairs from the
database.

(b) 21th to 40th first pairs from
the database.

(c) 41th to 60th first pairs from
the database.

(d) 61th to 80th first pairs from
the database.

(e) 81th to 100th first pairs
from the database.

Fig. 15: Origin-destination pairs inputs for case study. Only
the half of them are represented since if a pair is considered,
it symmetric is also considered.

Flow direction

EHAM

LPPT

Direct route (great circle)
Computed trajectory with 50000 iterations

Fig. 16: Trajectory from Amsterdam Schiphol airport to Lis-
bon airport. The gain is 2.17 % in flight time with 1.22 %
more flight distance.

The second example presented shows that sometimes it
has no sense to deviate from the great circle trajectory. This
example is the trajectory from Copenhagen airport (EKCH) to
Munich airport (EDDM). It is the 100th origin-destination pair
from the 100 flights database. Since the wind is weak between
the origin and the destination, the gain is only 0.03 %, that is
to say 1 second, which is not significant. It has been computed
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in 35 s.

Flow direction

EKCH

EDDM

Direct route (great circle)
Computed trajectory with 50000 iterations

Fig. 17: Trajectory from Copenhagen airport to Munich air-
port. The gain is 0.03 %.

Let us summarize the different results obtained. Table III
details the mean gain and the different quartiles of gain
distribution. Table IV details the distance increase distribution.
Figure 18 does the same in a graphical view thanks to box
plots.

TABLE III: Flight time gain distribution on the case study.

Mean Q1 Median Q3

43 s 28 s 5 s 63 s
0.66 % 0.53 % 0.11 % 1.01 %

TABLE IV: Distance increase distribution on the case study.

Mean Q1 Median Q3

7.35 NM 5.82 NM 4.29 NM 9.56 NM
0.63 % 0.55 % 0.47 % 0.76 %

This case study shows an interesting feature: as expected,
the greater the distance between the origin and the destination
is, the greater the benefit can be (see Figure 19).

This study gives comparable results to the ones found in
literature. For instance, in [26], similar studies are done and
for flight with a distance higher than 800 km for which flight
times can be reduced between 25.99 s and 76.88 s on average.
It shows that the method presented is efficient since it gives
good results regarding the literature with little computation
time.

VII. CONCLUSION

This paper addresses a new application of the Fast Marching
Tree (FMT*) algorithm. The literature shows some example
of aeronautical applications of this algorithm originally made
for robotics. This paper deals with the particular case of
computing aircraft optimal trajectory in the presence of wind
for cruise phase. After having presented different methods
used for optimal trajectory computation in the presence of
wind and sampling based methods in general, it presents the
modelization of the problem. Then it details how it is solved.
This part of the paper details how FMT* algorithm can be
declined in the special case of cruise phase, by taking into
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(a) Flight time gain distribution in % (left) and in
seconds (right).
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Fig. 18: Graphical view of flight time and flight distance
distributions obtained on the study case.
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Fig. 19: Gain in flight time in function of distance between
the origin and destination. The greater the distance between
the origin and the destination is, the greater the benefit can
be.

account great circle distances and a cost function between two
points which is not equal to the Cartesian distance between
them. After having tested on benchmark problems, some study
cases are presented. These study cases show that this algorithm
is efficient that is to say that it provides solutions to save flight
time as expected in a satisfactory computation time.

Some future works can be considered. First, this paper
focuses on flight time minimization but the method described
can be used with another cost function, for instance, fuel
consumption or other climate impact functions. For instance,
it can be adapted to the case of non-CO2 effects (for instance
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NOx or contrails). Moreover, since obstacles are taken into
account in the original algorithm, aeronautical obstacles can
also be taken into account. For instance, dangerous weather
phenomena such as thunderstorms can be avoided thanks to
this method.

Another possible improvement of the presented method
is the consideration of altitude. Even if during the cruise
phase, the altitude is nearly constant, the cruise phase can
be optimized and if they are really beneficial altitude changes
could be considered. Finally, a multi-agent extension can be
considered later to take into account several aircraft. This
will allow optimizing all the trajectories by not creating
conflicts between the planes and avoiding congestion in some
airspaces.
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[17] P. Pharpatara, B. Hérissé, and Y. Bestaoui, “3-D trajectory planning
of aerial vehicles using RRT*,” IEEE Transactions on Control Systems
Technology, vol. 25, no. 3, pp. 1116–1123, May 2017.

[18] A. Chakrabarty and J. Langelaan, “UAV flight path planning in time
varying complex wind-fields,” in 2013 American Control Conference,
Jun. 2013, pp. 2568–2574, iSSN: 2378-5861.
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