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Abstract

We present a new interpretation of quantum mechanics, called the double-scale theory, which
expends on the de Broglie-Bohm (dBB) theory.

It is based, for any quantum system, on the simultaneous existence of two wave functions in
the laboratory reference frame : an external wave function and an internal one. The external wave
function is the wave function of the center-of-mass, as for the dBB theory : the wave is a field
that pilots the center-of-mass of the quantum system. The external wave spreads out in space
over time. Mathematically, the Schrödinger equation converges to the Hamilton-Jacobi statistical
equations when the Planck constant tends towards zero and the Newton trajectories are therefore
approximations of the dBB trajectories.

The simultaneous existence of an internal wave function, in addition to the external one, is the
original element of our theory. This internal wave corresponds to the interpretation proposed by
Edwin Schrödinger for whom the particle is extended. Then, the internal wave remains confined
in space. Its converges, when ~ → 0, to a Dirac distribution. Moreover, the configuration space of
dimension 3N of the internal wave function can be written as the product of N individual internal
wave functions of dimension 3.

1 Introduction

The theory of the double solution is an interpretation of quantum mechanics, which Louis de Broglie
outlined as early as 1926 [1], and which he continued to work on for the last 30 years of his life [2, 3].
These studies remained for a long time a research program [4]. The pilot wave that he presented at the
Solvay Congress in 1927 [5] and that was again found by Bohm in 1952 [6] and subsequently developed by
the latter and his students [7, 8], was viewed by de Broglie as merely a temporary solution. He believed
that there were two solutions to the Schrödinger equation. One is the “classical” wave function and
corresponds to the pilot wave theory. The second, which he never found, should be a “Dirac function”
which corresponds to a singularity in the wave function and which represents the “real” particle. De
Broglie considered these two wave functions to be intimately related.

Following de Broglie’s idea, we presented recently [9] a new interpretation of quantum mechanics
that defined two waves functions for any quantum system : an external one and an internal one. In
this paper, we clarify this interpretation, which we name the double-scale theory, and in particular we
demonstrate that the two wave functions exist simultaneously in the same reference frame, that of the
laboratory.

These two functions have very different physical behaviors : the external wave function spreads out
over time contrary to the internal wave function which remains confined. To justify the distinction
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between these two wave functions, we demonstrate that the mathematical convergences are fundamen-
tally different when ~ → 0. For the external wave function, its phase and the square of its modulus
converge towards an action and a classical density satisfying the Hamilton-Jacobi statistical equations.
For the internal wave function, the square of its modulus converges to a Dirac distribution, thus losing
the internal structure of the atom or molecule.

We deduce very different interpretations for these two wave functions. By mathematical continuity,
we show that the phase of the external wave “drives” the center-of-mass of the quantum system and
corresponds to the de Broglie-Bohm interpretation restricted to the external wave function. The most
likely interpretation of the internal wave is the one proposed by Schrödinger for which the particles are
extended.

The plan of the paper is as follows. In section 2, we recall the well-known existence of the two wave
functions: the center-of-mass wave function in the laboratory reference frame and the relative wave
function in the center-of-mass reference frame.

In section 3, we show that the center-of-mass wave function in the laboratory reference frame is
an external wave function that corresponds to a non-local field that “pilots” the center-of-mass of the
corpuscle and that converges to classical mechanics when we make Planck’s constant tends to zero. This
is the de Broglie-Bohm interpretation restricted to the external wave function.

In section 4, from the value of the center-of-mass and of the relative wave function, we define an
internal wave function in the laboratory reference frame, that is local and corresponds to the corpuscle
in the field-corpuscle duality. This is the Schrödinger interpretation restricted to the internal wave
function. Moreover, the 3N dimensional configuration space of the internal wave function can be
written as the product of N individual internal wave functions in the 3 dimensional space.

In section 5, the simultaneous existence of these two functions allows us to understand and explain
simply many phenomena of quantum mechanics, such as wave-particle duality, quantum measurements
and the nonlocality of the EPR-B experiment.

2 Center-of-mass wave and relative wave

Since the beginning of quantum mechanics, two types of variables have been distinguished in order to
study the dynamics of atoms and molecules: internal variables and external variables. Roughly, the
external variables correspond to the external dynamics of the atom, i.e. the motion of its center-of-
mass and the orientation of the reference frame that is linked to it. The internal variables describe the
structure of the atom or molecule in the reference frame of its center-of-mass.

These external and internal variables are linked by the well known decomposition of the total wave
function into the center-of-mass wave function in the laboratory reference frame and the relative wave
function in the center-of-mass reference frame. By rewriting the relative wave function in the laboratory
reference frame, we obtain the so-called internal wave function. The double-scale theory is built on the
existence of these two wave functions (external and internal) defined in the laboratory reference frame
and by their interpretation. In this section we recall this decomposition for a quantum system with N
bodies (atoms or molecules) where the decomposition is exact.

Let us consider a system of N spinless particles of masses mj and charges qj (with j = 1..N), of
coordinates xj , subjected to an external gravitational field Vg(xj) and a zero external electric field,
and to mutual interactions described by the potentials Ujk(|xj − xk|), ∀j, k = 1...N, j 6= k. This
quantum system is then described by the wave function Ψ(x1,x2, ...,xN , t) which verifies the Schrödinger
equation:

iℏ
∂Ψ(x1,x2, ..,xN , t)

∂t
= HΨ(x1,x2, ..,xN , t) (1)

with the Hamiltonian:

H =

N
∑

j=1

(

p2
j

2mj

+mjVg(xj)

)

+

N
∑

j=1

N
∑

k=1
k 6=j

Ujk(|xj − xk|) (2)
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and the initial condition :
Ψ(x1,x2, ..,xN , 0) = Ψ0(x1,x2, ..,xN ). (3)

We separate the motion of these N particles from the motion of their center-of-mass: let xG =
(
∑N

j=1mjxj)/(
∑N

j=1mj) be the position of the center-of-mass, x′
j = xj − xG be the relative position

of the j particle and M =
∑N

j=1mj be the total mass.

Then the Hamiltonian H is written as a function of the total impulse (pG =
∑N

i=1 pi) and relative
impulses (p′

i = pi −mi/MpG) taking into account small variations of the gravitational field Vg(xj) ≃
Vg(xG) + x

′
j∇Vg(xG):

H =

(

p2
G

2M
+MVg(xG)

)

+

N
∑

i=1







p′2
i

2mi

+

N
∑

j=1
j 6=i

Uij(|x
′

i − x
′

j |)






= Hext +

N
∑

i=1

Hint
i . (4)

We note that the interaction of the gravitational field related to its local variation does not intervene
because

∑N

i=1mi(xi − xG) = 0.

Proposition 1 - If the initial wave function Ψ0(x1,x2, ..,xN ) factors to the form:

Ψ0(x1,x2, ..,xN ) = ψ0(xG)ϕ0(x
′

1,x
′

2, ..,x
′

N ). (5)

then Ψ(x1,x2, ..,xN , t), a solution to (1),(2) and (3), is written as the product of the center-of-mass
wave function ψ(xG, t) and the relative function ϕ(x′

1,x
′
2, ..,x

′

N , t) :

Ψ(x1,x2, ..,xN , t) = ψ(xG, t)ϕ(x
′

1,x
′

2, ..,x
′

N , t) (6)

where ψ(xG, t) is the solution to the Schrödinger equations of the center-of-mass:

iℏ
∂ψ(xG, t)

∂t
= −

~
2

2M
∆xG

ψ(xG, t) +MVg(xG)ψ(xG, t) (7)

with the initial condition:
ψ(xG, 0) = ψ0(xG) (8)

and where ϕ(x′
1,x

′
2, ..,x

′

N , t) is the Schrödinger relative equations:

iℏ
∂ϕ(x′

1,x
′
2, ..,x

′

N , t)

∂t
= −

N
∑

i=1







~
2

2mi

∆x′
i
+

N
∑

j=1
j 6=i

Uij(|x
′

i − x
′

j |)






ϕ(x′

1,x
′

2, ..,x
′

N , t) (9)

with the initial condition:
ϕ(x′

1,x
′

2, ..,x
′

N , 0) = ϕ0(x
′

1,x
′

2, ..,x
′

N ). (10)

We have considered the case of a decomposition of the total wave function as the product of the
center-of-mass wave function in the laboratory reference frame and the relative wave function in the
center-of-mass reference frame. This example highlights the simultaneous existence of these two func-
tions. We postulate that the decomposition of the total wave function of an N -body quantum system
Ψ(x1,x2, ..,xN , t) into two waves functions ψ(xG, t) and ϕ(x′

1,x
′
2, ..,x

′

N , t) is not only a mathematical
tool to simplify the calculations, but that these two waves physically exist at all times and simultane-
ously.

When the quantum system is not composed of several particles but corresponds to a single parti-
cle, like a free electron, we postulate that these two wave functions exist simultaneously, even if the
mathematical decomposition is no longer necessary.

3



Hypothesis 1 - Hypothesis for a single particle: A single particle, like a free electron is also
simultaneously described by two wave functions: an external wave function ψ(xG, t) related to its center-
of-mass and a relative wave function ϕ(x′, t). This hypothesis assumes that the particle is not point-like
and has an extension represented by the relative wave function; this is the Schrödinger conjecture of a
single particle, witch we develop in section 4.

The center-of-mass wave function and the relative wave function are defined in different reference
frames. We will call the center-of-mass wave function the external wave function and the relative wave
function the internal wave function when it is rewritten (see section 4) to be considered in the laboratory
reference frame as the external wave function. These two wave functions, external and internal, have
very different behaviors: the external wave function spreads over time and is non-local, while the internal
wave function remains confined and is local. They will give rise to very different interpretations as we
will see in the next two sections.

3 The external wave function: the field of the field-corpuscle

duality

To interpret the external wave function, let us study its convergence to classical mechanics when we
make Planck’s constant tends towards zero.

3.1 Convergence of the external wave function

Let us consider an external wave function verifying the external Schrödinger equations (7) and (8) and

make the semi-classical change of variable ψ(xG, t) =
√

ρ~(xG, t) exp
(

iS
~(xG,t)

~

)

. The density ρ~(xG, t)

and the action S~(xG, t) then verify the Madelung equations [10] (1926):

∂S~(xG, t)

∂t
+

(∇S~(xG, t))
2

2M
+ V (xG)−

~
2

2M

∆
√

ρ~(xG, t)
√

ρ~(xG, t)
= 0 ∀(xG, t) ∈ R

3 × R
+ (11)

∂ρ~(xG, t)

∂t
+ div

(

ρ~(xG, t)
∇S~(xG, t)

m

)

= 0 ∀(xG, t) ∈ R
3 × R

+ (12)

with the initial conditions

ρ~(xG, 0) = ρ~0(xG) and S~(xG, 0) = S~

0 (xG) ∀xG ∈ R
3 (13)

Here, V (xG) = MVg(xG) is the potential of (7). Let us now study the convergence of the density
ρ~(xG, t) and the action S~(xG, t) of the Madelung equations, when the Planck constant ~ is made to
tend to 0. We will restrict ourselves to “prepared non-discerned quantum systems” .

Definition 1 - A quantum system, subjected to a potential V (x), is said to be a prepared non-

discerned quantum systems, if we know at the initial time, only the density of the initial probability
ρ~0(xG) and the initial action S~

0 (xG) of its external wave function, and that these are functions ρ0(xG)
and S0(xG) which are independent of ~.

It is the case of a set of particles without interaction between each other and prepared in the
same way: sources of free particles or in a linear field as in the Shimizu [11] experiment with cold
atoms, sources of fullerenes, neutrons, electrons or C60 in a Young’s slit experiment. One can then
demonstrate [9] theorem below:
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THEOREM 1 [9] - When ~ tends to 0, if the external wave function is prepared non-discerned, the
density ρ~(xG, t) and the action S~(xG, t), solutions to Madelung equations (11-13), converge to ρ(xG, t)
and S(xG, t), solutions to Hamilton-Jacobi statistical equations:

∂S (xG, t)

∂t
+

(∇S(xG, t))
2

2m
+ V (xG) = 0 (14)

S(xG, 0) = S0(xG) (15)

∂ρ (xG, t)

∂t
+ div

(

ρ (xG, t)
∇S (xG, t)

m

)

= 0 (16)

ρ(xG, 0) = ρ0(xG) (17)

3.2 Action-particle duality in classical mechanics

This Hamilton-Jacobi action S(x, t) is written from the Hamilton-Jacobi action at the initial time S0(x)
and from the Euler-Lagrange actions, SEL(x0;x, t)), between all the possible paths from (x0,0) to (x,t)

S(x, t) = minx0(S0(x0) + SEL(x0;x, t)) (18)

as a min-plus path integral [12, 13] in a manner analogous to Feynman’s path integral, but in the
min-plus analysis, a non-linear analysis we have developed [14, 15] following Maslov [16, 17].

These statistical Hamilton-Jacobi equations (equations (14-17) of theorem 1) correspond to a set of
classical particles, without interaction between each other and subjected to an external potential field
V (xG), and of which we only know, at the initial time, the probability density ρ0 (xG) and the velocity
field v0(xG) through the intermediary of the initial action S0(xG) (with v0(xG) =

∇S0(xG)
m

).
These are non-discerned prepared classical particles like the non-discerned prepared quantum par-

ticles. For these non-discerned prepared classical particles, the velocity of the center-of-mass of the
classical particle is given at each point (xG, t) by:

v (xG, t) =
∇S (xG, t)

m
(19)

This equation shows that the solution S (xG, t) to the Hamilton-Jacobi equations (14) defines the
velocity field at any point (x, t) from the velocity field ∇S0(x)

m
at the initial time. Thus, if given the

initial position XG(0) of the center-of-mass of an prepared non-discerned classical particle, we deduce
from (19) the trajectory XG(t) of the center-of-mass of the particle by the evolution equation:

dXG(t)

dt
=

∇S (xG, t)

m
|xG=XG(t) (20)

The Hamilton-Jacobi action S (xG, t) is thus a field which drives the motion of the center-of-

mass of the classical particle.

3.3 The dBB interpretation of the external wave function

To interpret the external wave function, we will use the mathematical continuity between the den-
sity and action of quantum mechanics and the density and action of classical mechanics, solutions to
the Hamilton-Jacobi statistical equations. The classical particles which verify the Hamilton-Jacobi
statistical equations have two properties:

• They are prepared non-discerned because we do not know at the initial time the position of their
centers of mass, but only their initial distribution ρ0(xG). In classical mechanics, we remove the
indeterminacy by adding the initial position of the center-of-mass XG(0).

• They are piloted by the gradient of the Hamilton-Jacobi action, which corresponds to a field that
pilots the center-of-mass with the equation (20).
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The mathematical continuity incites a continuity of interpretation by extending these two prop-
erties to the centers of mass of quantum particles that verify the Schrödinger equations of the external
wave function:

• They are prepared non-discerned because we do not know at the initial time the position of their
centers of mass, but only their initial distribution ρ0(xG). As in classical mechanics, we remove
the indeterminacy by giving the initial position of the center-of-mass Xh

G(0).

• The centers of mass of quantum systems are guided by the gradient of the quantum action, which
corresponds to a field that “pilots” the center-of-mass by the equation:

v~(xG, t) =
1

m
∇S~(xG, t) (21)

Thus, the external wave function pilots the centers of mass of the quantum systems and corresponds
to the De Broglie-Bohm interpretation [1, 6] restricted to the external wave function only. It is
therefore necessary to add the initial position Xh

G(0) of the center-of-mass as well as the equation that
gives its evolution:

dXh
G(t)

dt
=

1

m
∇S~(xG, t)|xG=Xh

G
(t) (22)

When the potential V (xG) can be considered as a linear gravitational potential, the Schrödinger
equations (7-8) can be solved explicitly and one proves that the dBB trajectories converge to Newton
trajectories [8, 9]. For our approach, the external wave function has the same meaning as the total wave
function for the dBB theory : the wave function of the particle pilots its center-of-mass.

Louis de Broglie developed the wave pilot theory in 1926 for the total wave function. He presented
it to the Solvey Congress in 1927 [18] as part of the theory of the double solution he was working on.
However, he abandoned it a few years later. David Bohm rediscovered it in 1952, it is then also known
as Bohmian mechanics [19]. It represents a causal, realistic and observer-free alternative to the
Copenhagen interpretation [8, 20]. Louis de Broglie then resumed his work on this theory, which we call
dBB theory. Since 2000, many studies have been carried out to develop and deepen the dBB approach
both in theory and in applications.

Numerous simulations of dBB trajectories have been carried out by Sanz and Miret-Artès’ teams [21,
22] or for quantum chemistry applications [23]. The development of weak measurements paves the way
for an possible experimental validation of these trajectories [24]. The approaches of Bohmian mechanics
to be compatible to the quantum field theory are numerous [25, 26]. A synthesis of the dBB theory can
be found in the books of Bricmont [27, 28] or of [29, 30] and in Goldstein’s article [19] in the Stanford
Encyclopedia of Philosophy.

4 The internal wave function: the corpuscle of the field-corpuscle

duality

For a quantum system corresponding to an atom or a molecule, the external wave function ψ(xG, t) is
defined in the laboratory reference frame while the relative wave function ϕ(x′

1,x
′
2, ..,x

′

N , t) is defined
in the center-of-mass reference frame.

Definition 2 - From the relative wave function ϕ(x′
1,x

′
2, ..,x

′

N , t) with N > 1 and the position of the
center-of-mass Xh

G(t), we define at each time, t, the internal wave function Φ(x1,x2, ..,xN , t) in
the laboratory reference frame by the equation:

Φ(x1,x2, ..,xN , t) ≡ ϕ(x1 −Xh
G(t),x2 −Xh

G(t), ..,xN −Xh
G(t), t) (23)

We therefore make the following assumption :
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Hypothesis 2 - Hypothesis of the double scale theory : The state of an N -body quantum system
is simultaneously described by two wave functions in laboratory reference frame :

• the external wave function : ψ(xG, t), a wave related to its center-of-mass : Xh
G(t), t)

• the internal wave function : Φ(x1,x2, ..,xN , t).

Let us complete the definition of the internal wave function for a quantum system corresponding to
a single particle, N = 1. This particle admits an external wave function ψ(xG, t) with a center-of-mass
Xh

G(t) and a relative function ϕ(x′, t). We define at each time, t, its internal wave function Φ(x, t)
in the laboratory reference frame by the equation:

Φ(x, t) ≡ ϕ(x−Xh
G(t), t). (24)

There are therefore two wave functions in the laboratory reference frame, the external wave function
and the internal wave function. We have shown that the external wave function is a field that drives
the center-of-mass of the corpuscle. Let us now study the convergence of the internal wave function
when ~ → 0.

4.1 Convergence of the internal wave function

As the size of a single particle tends to zero with h, the density |Φ(x, t)|2 of its internal wave function
converges mathematically to the Dirac distribution δ(x−XG(t)) .

More generally, if this internal wave function corresponds to an atom or a molecule, its size depends
on h and will tend towards zero if we make h → 0. We deduce that the density |Φ(x1,x2, ..,xN , t)|

2

of the internal wave function converges mathematically to the Dirac distribution at point x = XG(t)
when we make h→ 0. This convergence is completely different from the external wave function

These convergences are postulated and not demonstrated for the general case. However for particular
cases, the demonstration is possible, as we recall below for the coherent states of the two dimensional
harmonic oscillator. For coherent states, let us consider the time dependent Schrödinger equation with
the potential V (x) = 1

2mω
2(x2 + y2) and the initial wave function:

Ψ0(x) =
(

2πσ2
~

)−
1
2 e

−
(x−x0)2

4σ2
~

+i
mv0.x

~

=
√

ρ~0(x) exp

(

i
S~
0 (x)

~

)

(25)

where ρ~0(x) = (2πσ2
~
)−1e

−
(x−x0)2

2σ2
~ and S0(x) = S~

0 (x) = mv0 · x are respectively the initial density and

action, with σ~ =
√

~

2mω
and where x0 and v0 are the initial position and velocity of the center of the

wave packet.
Therefore, the wave function Ψ(x, t) is:

Ψ(x, t) =
(

2πσ2
~

)−
1
2 e

−
(x−x(t))2

4σ2
~

+i
mv(t).x−g~(t)

~ (26)

where x(t) and v(t) correspond to the position and velocity of a classical particle subjected to the
potential V (x) = 1

2mω
2(x2 + y2) where g~(t) =

∫ t

0
(~ω + 1

2mv2(s) − 1
2mω

2
x
2(s))ds. We deduce the

value of the density ρ~(x, t) and of the action S~(x, t):

ρ~(x, t) =
(

2πσ2
~

)−1
e
−

(x−x(t))2

2σ2
~ and S~(x, t) = mv(t) · x− g~(t). (27)

We deduce the following theorem by considering the limit ~ → 0 of equation (27).

THEOREM 2 - Let the coherent states of the two-dimensional harmonic oscillator defined by equa-
tions (25).When ~ tends to 0, then σ~ tends to 0, and the density ρ~(x, t) and the action S~(x, t),
converge respectively to

ρ(x, t) = δ(x− x(t)) and S(x, t) = mv(t) · x− g(t) (28)

with g(t) =
∫ t

0 (
1
2mv2(s)− 1

2mω
2
x
2(s))ds and where S(x, t) is the Hamilton-Jacobi singular action.
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The wave function therefore converges to the motion x(t) of a single classical oscillator. This
classical particle is discerned because it is completely defined by its initial condition initial condition
x0 and its initial action S0(x) = mv0.x.

Note that one should speak of the center-of-mass of the classical particle rather than of the classical
particle. In this framework, equation (28) corresponds to the center-of-mass equation and is written :

ρ(xG, t) = δ(xG −XG(t)) and S(xG, t) = mX ′

G(t) · xG − g(t) (29)

with initial position XG(0) = x0 and initial velocity X ′

G(0) = v0.

4.2 Interpretation of the internal wave function for an elementary particle

The interpretation that we propose for the internal wave function is the one proposed by Schrödinger
in 1926 [31] and at the Solvay congress of 1927 [32]. It is based on the solution of the coherent states
of the harmonic oscillator, which is consistent with the second quantization and with the introduction
of the creation and annihilation operators. These coherent states of the harmonic oscillator are very
particular, as Schrödinger pointed out [31]: “Our wave packet always remains grouped, and does not
spread over an increasingly large space over time, as do, for example, wave packets that we are used
to in optics.” This wave packet corresponds to a single particle (soliton) which keeps its shape and
whose center-of-mass follows a periodic trajectory identical to that of the center-of-mass of a classical
harmonic oscillator. Schrödinger thinks that this interpretation extends to the electron of the hydrogen
atom [31]: “It is certain that it is possible to construct by a process quite similar to the previous one,
wave packets gravitating on Kepler ellipses at a large number of quanta and forming the wave image of
the electron of a hydrogen atom; but in this case the difficulties of calculation will be much greater than
in the particularly simple example that we have treated here and which from this point of view is almost
a classroom exercise”.

Hypothesis 3 - Schrödinger conjecture for an elementary particle: An elementary particle,
such as a free electron or a bound electron in a hydrogen atom, can be considered as an extended particle
whose density is given by the square | Φ(x, t) |2 of the internal wave function in the laboratory reference
frame.

The position XG(t) of the center-of-mass of the particle is then obtained from the internal wave function
by:

XG(t) =

∫

x|Φ(x, t)|2dx (30)

The simultaneous existence of the two wave functions makes quantum mechanics com-

plete. Indeed, it is not necessary to add the initial position of the center-of-mass XG(0) as in the de
Broglie-Bohm interpretation of the external wave function because it is defined by the initial internal
wave function: XG(0) =

∫

x|Φ0(x)|
2dx.

The dBB theory can be seen as a specific case of the double-scale theory if the internal function
is reduced to a point, the center-of-mass of the particle; i.e., Φ(x) is a Dirac function : Φ(x, t) =
δ(x−XG(t), t).

Remark 1 The change of variable Φ(x, t) ≡ ϕ(x −Xh
G(t), t) is very important. Indeed, if the average

is compute with ϕ(x, t), then, by definition, we obtain :
∫

x|ϕ(x, t)|2dx = 0 (31)

Remark 2 - The hypothesis of an extended particle obliges to introduce forces to maintain the cohesion
of the particle. A model of the extended and deformable electron is proposed by Poincaré in his famous
Palermo memoir [33]. Dirac makes the same argument in his article of 1962 “An extensible model of
the electron” [34]. It is also the basis of Delmelt’s work on the size of the electron [35].

The spatial extension of the electron is also consistent with the introduction of cut-offs in quantum
electrodynamics (QED) to eliminate the infinities due to the hypothesis of point particles.
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4.3 Interpretation of the internal wave function for a system of N particles

At the Solvay Congress in 1927, Schrödinger generalized his interpretation for the wave function of a
single particle to that of a wave function of N particles in configuration space:

“I found the following way of looking at things useful; it may be a little naïve but it is easy
to grasp. The classical system of material points does not really exist, but there is something
that continuously fills all the space [...] the real system is a composite image of the classical
system in all its possible states, obtained by using φφ∗ as a “weight function”. The systems
to which the theory is applied are classically composed of a large number of charged material
points. As we have just seen, the charge of each of these points is distributed continuously
through space and each charge point e provides the contribution of the e

∫

φφ∗dxdydz to the
charge of the quarterly volume element dxdydz. As φφ∗ generally depends on time, these
charges vary.”

Schrödinger took up this interpretation in 1952 [36] and was strongly criticized by the Copenhagen
school and in particular by Born in his 1954 Nobel lecture [37]:

“Schrödinger thought that his wave theory made it possible to return to deterministic clas-
sical physics. He proposed (and he has recently emphasized his proposal anew), to dispense
with the particle representation entirely, and instead of speaking of electrons as particles, to
consider them as a continuous density distribution |ψ|2 (or electric density e|ψ|2).”

The criticism related to the contradiction between Schrödinger’s definition of the particles as “narrow
wave packets” and the fact that the external function spreads out in time. One can understand the
criticism of such an interpretation if one does not differentiate between the internal and external wave
functions; but this argument is no longer valid for the internal wave function.

We extend Schrödinger’s approach by postulating that the internal wave function of an N -body
system is the product of N narrow wave packets each corresponding to a body of the system. We make
the following assumption.

Hypothesis 4 - Generalized Schrödinger conjecture for a system of N particles - To each
internal wave function in the laboratory reference frame Φ(x1,x2,x3, ...,xN , t) of a quantum system
composed of N particles, one can associate N individual time-dependent wave functions in the laboratory
reference frame Φj(x, t) such that | Φj(x, t) |2 represents the density of the particle j = 1..N . The second
part of the Hypothesis is to assume the following equation:

Φ(x1,x2,x3, ...,xN , t) =

N
∏

j=1

Φj(xj , t), (32)

This last assumption consider that the extended particles, i.e. the individual wave functions Φi(x, t),
do not overlap in real space and therefore have disjoint supports : Φj(x, t)Φi(x, t) = 0 for all i 6= j.
This is a property that is also verified by the individual relative Schrödinger wave functions ϕj(x, t) =
Φj(x+Xh

G(t), t).

Remark 3 - With this assumption, the internal wave function Φ(x1,x2,x3, ...,xN , t) in the configura-
tion space is replaced by N individual (internal) wave functions in the real three dimensional space.

Remark 4 - Hypothesis 4 is for example valid for the nuclei of the atoms of a molecule. This assump-
tion is not respected for the stationary wave functions of the electrons of an atom because the orbitals
can overlap. Nevertheless, we think that this assumption is valid if the electrons wave functions are
time-dependent internal wave functions.

We complete the hypothesis 4 with the following hypothesis:
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Hypothesis 5 - We assume that the N individual time-dependent wave functions ϕj(xj , t) are solutions
to the N individual non linear Schrödinger equations:

iℏ
∂ϕj(xj , t)

∂t
= −

~
2

2mj

∆xj
ϕj(xj , t) +







N
∑

i=1
i6=j

∫

dxi|ϕ
i(xi, t)|

2Uji(|xj − xi|)






ϕj(xj , t) (33)

with the initial conditions:
ϕj(xj , 0) = ϕj

0(xj) = Φj
0(xj +Xh

G(0)). (34)

-
Because the size of each particle i = 1...N (i.e. the support of ϕi) is very small compared to

the size of a atom or molecule, we can assume that we have for all t, |Φi(x, t)|2 ≃ δ(x − X i(t))
and |ϕi(x, t)|2 ≃ δ(x − x

i(t)) where x
i(t) =

∫

x |ϕi(x, t)|2dx is the position of the center-of-mass
of particle i in the center-of-mass reference frame and X i(t) =

∫

x |Φi(x, t)|2dx in the laboratory
reference frame with X i(t) = x

i(t) +Xh
G(t). The integral of equation (33) can then be approximated

by:
∫

dxi|ϕ
i(xi, t)|

2Uji(xj − xi) ≈ Uji(|xj − x
i(t)|) and we obtain the following system of equations:

iℏ
∂ϕj(xj , t)

∂t
= −

~
2

2mj

∆xj
ϕj(xj , t) +







N
∑

i=1
i6=j

Uji(|xj − x
i(t)|)






ϕj(xj , t) (35)

x
i(t) =

∫

x|ϕi(x, t)|2dx (36)

with the initial conditions :
ϕj(xj , 0) = ϕj

0(xj) (37)

The approximate calculation of equations (35-37) can be obtained from Ehrenfest’s theorem.
There are many arguments, both experimental and theoretical, in favor of this generalized Schrödinger

interpretation for the internal wave function (Hypothesis 4):

• It is fundamentally compatible with the methodology of molecular dynamics. Indeed, if we
separate the nuclei from the electrons in a molecule, the nuclei will have internal wave functions
verifying the two Schrödinger conjectures.

• It is also fundamentally compatible with the first Hohenberg-Kohn theorem[38], which is the basis
of density functional theory, which states that a given electron density corresponds to a unique
wave function.

• It is also in agreement with the recent (2019) experiment by Minev, Devoret et al. [39] on “the
jump from ground state to an excited state of a three-level superconducting artificial atom”. This
experiment seems to prove Schrödinger right in his 1952 discussion with the Copenhagen school
on quantum jumps, given that “the experimental results show that the evolution of each jump made
is continuous, coherent and deterministic”. As Devoret explains: “Our experimental results show
that quantum jumps are unpredictable and discrete (as Bohr thought) over long periods of time,
they can be continuous (as suggested by Schrödinger) and predictable over short periods of time”.

5 A new reading of quantum mechanics

This scale-dependent dual interpretation is a framework for reading quantum mechanics in a simple
way and also explains the choices of other interpretations that did not distinguish between external and
internal wave functions.

The wave-corpuscle duality corresponds to the simultaneous existence of two wave functions
linked together, at each instant t, by the position of the center-of-mass Xh

G(t): while the external wave
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function corresponds to the wave (field) and the internal wave function corresponds to the corpuscle.
Theoretically, we therefore have field AND corpuscle. Experimentally, a coherent source of particles
is a set of particles which all have the same external wave function, but whose internal wave functions
are different. Thus in the slit diffraction, double slit interference, Stern and Gerlach spin measurement,
tunneling effect and EPR-B experiments, the preparation of the quantum system is represented by the
external wave function alone. The internal wave function, which is unknown, explain the statistical
results of Born’s interpretation.

Quantum mechanics is complete if the state of a quantum system corresponds to the simulta-
neous existence of both wave functions, incomplete otherwise. The position of the center-of-mass in the
external wave function that must be added in the de Broglie-Bohm interpretation is obtained from the
internal wave function by the equations (30) and (36). We can thus interpret Everett’s multiple worlds
as the set of internal wave functions compatible with the external wave function.

The measurement corresponds to the impact of the internal wave on the detection screen.
It is thus the internal wave function that is involved in the collapse of the wave packet. The Copenhagen
interpretation, which does not differentiate between the external and internal waves, cannot therefore see
that the reduction of the wave packet concerns mainly the internal wave function. For the same reason,
the GRW interpretation [40] requires an objective non-linear perturbation. This perturbation exists
because the particle is stopped by the detection screen following a non-linear absorption phenomenon.
In the double slit experiment, the external wave function passes through both slits while the

internal wave function passes through only one slit.
Heisenberg’s inequalities correspond, for the external wave function, to uncertainty relations

on the positions and velocities of the centers of mass of an ensemble of molecules admitting this same
wave function. For the internal wave function, the Heisenberg equalities correspond to indeterminacy

relations on the different positions and velocities of this extended particle [9].
The non-local hidden variable of Bell’s theorem and the EPR-B experiment concerns the external

wave function [9] while the position of the impacts is a local measured variable corresponding to the
internal wave function.

This scale-dependent dual solution can be tested experimentally by an asymmetric double slit ex-
periment such as those we proposed a few years ago [41] and are currently pursuing [42].

6 Conclusion

We have proposed an experimentally testable interpretation of non-relativistic quantum mechanics that
gives a new understanding of the links between quantum and classical mechanics. This scale-dependent
double solution seems strongly consistent with the specifications of Louis de Broglie who wrote in 1971:

“I introduced, under the name of "theory of the double solution", the idea that it was nec-
essary to differentiate between two solutions, distinct but intimately connected to the wave
equation, one of which I called the u-wave, being a real and non-normalizable physical wave
with a local accident defining the particle and represented by a singularity, the other one,
Schrödinger’s ψ wave, normable and without singularity, which would be only a representa-
tion of probabilities.” [3]

Our external wave function corresponds to the Schrödinger’s ψ wave and our internal wave function
corresponds to the u-wave.

We believe that this new reading grid allows us to extend this realistic interpretation to all quantum
mechanics as well as to relativity. We are indeed preparing an extension of this double scale theory to the
relativistic case by considering the Gordon decomposition of the Dirac equation as a convection current
corresponding to the external wave function (large components) and a spin current corresponding to the
internal wave function (small components) [43]. We will also propose a semi-classical gravity converging
to the Newton gravity when ~ → 0 [44]. An extension to the second quantization [45] also seems possible
by considering the external wave function as a field and the internal wave function as extended particles
that can be created or annihilated by being bound to the excitations of this field [45].
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This interpretation of quantum mechanics may also be considered as an answer to one of the Ein-
stein’s final texts on the interpretation of quantum mechanics (1953), Elementary Considerations on
the Interpretation of the Foundations of Quantum Mechanics in homage to Max Born [46]:

“The first effort goes back to de Broglie and has been pursued further by Bohm with
great perspicacity [...] The second attempt, which aims at achieving a "real description"
of an individual system, based on the Schrödinger equation, has been made by Schrödinger
himself. Briefly, his ideas are as follows. The ψ-function itself represents reality, and
does not stand in need of the Born interpretation[...] From the previous considerations, it
follows that the only acceptable interpretation of Schrödinger’s equation up to now is the
statistical interpretation given by Born. However, it does not give the "real description" of
the individual system, but only statistical statements related to sets of systems.”
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