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When a situation of emergency is declared during a flight, pilots must perform an

emergency procedure which leads them to revise the initial trajectory of the aircraft,

in order to land as quickly and safely as possible. This paper proposes an algorithm that

efficiently generates such a trajectory, which would be part of a complete emergency tool

implemented in the Flight Management System. The aim of this algorithm is to relieve pilots

in such critical situations by providing an additional decision support tool for pilots. The main

issues for this algorithm are the computation performance, the size of the stored data, and the

flyability of the returned trajectory. For these reasons, the proposed algorithm is based on the

three-dimensional Fast Marching method. Indeed, this method computes trajectories within

seconds while requiring little memory space during computations. Numerical tests have been

run with data from the mountainous region of Grenoble in France. Results are promising,

as the algorithm computes within seconds short, flyable and safe trajectories in response to a

critical emergency.

Nomenclature

X = Level differences of an octree node [-]

W = Flight path angle [rad]

5 = Slowness [s/m]

_ = Interpolation parameter [-]

A = Radius of turn [m]

f = Heading angle [rad]

) = Cost [s]

Eℎ = Horizontal airspeed [m/s]
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I. Introduction

New technologies guarantee that a maximum level of safety is achieved inside an aircraft, including automatic

controls that significantly reduce the mental load on pilots. Thereby pilots must remain vigilant throughout

the entire flight, especially at takeoff, climb and descent since they are the most eventful phases. The framework of

this paper is the optimisation of descent trajectories when a situation of emergency does occur on board an aircraft.

The generation of the trajectory must be fast to allow pilots to react quickly and maximise the chances of a successful

landing. This problem is deeply linked with the CleanSky SafeNcy project [1], which aims to develop an advanced

Flight Management System (FMS) onboard function to help pilots take efficient and effective decisions in emergency

situations and adverse conditions.

Aeronautical constraints have to be taken into account in the development of the algorithm. Providing bounds for

the aircraft flight, stall and range limitations are the most critical constraints. These constraints, linked with the aircraft

fuel reserve and its maximum and minimum descent rate, must be satisfied. The smoothness of the computed trajectory

is also a challenge: it has to be flyable. Considering such constraints, there is a fundamental need for the algorithm

to be efficient in terms of computing time while providing a high quality solution. All computations needed to be

done on a FMS, then the balance between speed, accuracy and algorithmic cost is at the core of this study. This study

will not address computations of aircraft performance impacted by the potential failure. These data will therefore be

considered as known and will be the inputs of the proposed algorithm. This paper mainly focuses on the computation

time optimisation of the trajectory generation. The goal of this study is the development of an adaptable algorithm to

take as input any type of data.

One can find examples of critical emergency situations in aviation history. One well-known accident is the Swissair

Flight 111 (September 2, 1998), where an on-board cockpit-fire caused by arcing resulted in a loss of control of the

aircraft instruments, and subsequently the crash of the aircraft. Another example is the US Airways Flight 1549 (January

15, 2009), where pilots successfully ditched their A320 in the Hudson River shortly after take-off, in response to a bird

strike causing the loss of all engine power (see Fig. 1). This case is very interesting because, in the space of 30 seconds,

the situation went from critical to impossible. The only solution was to land on the Hudson River. This example shows

the importance of having a very fast algorithm to generate the emergency trajectory.

These two events correspond to two separate types of emergencies: As Soon As Possible (ASAP) and At Nearest

Suitable Airport (ANSA). ASAP emergencies are the most critical because the pilot has to find the fastest way to land.

For example, an on-board or an urgent medical issue are considered ASAP. On the other hand, when considering ANSA

emergencies such as a loss of engines, the pilot has to find the safest path, to land in the best possible conditions.

The structure of this paper is the following. First, a state of the art regarding trajectory generation is presented

in Section II. Then, the mathematical modeling of the problem is described in Section III. Thereafter, the resolution
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Fig. 1 US Airways Flight 1549. 2 minutes after take-off from LaGuardia airport, the aircraft struck a flock of
Canada geese at an altitude of 2,818 feet. 5 minutes after take-off, the aircraft made an unpowered ditching into
the Hudson River [2].

algorithm based on a Fast Marching method is described. In order to facilitate its understanding and to justify its use,

the resolution algorithm is first presented in its two-dimensional version in Section IV and then in its three-dimensional

version in Section V. Both versions are able to take into account wind fields and, to some extent, aeronautical constraints.

Finally, a validation of the algorithm is proposed in Section VI for a key scenario in a mountainous region, along with

some performance indicators to check the efficiency of the method.

II. State of the Art

A. Trajectory generation algorithms

1. Graph-based approaches

The Shortest Path Problem (SPP) has been studied during the second half of the twentieth century. One of the

first well-known discrete algorithms to compute a path between two points is the Bellman-Ford algorithm [3–5].

Bellman-Ford algorithm is very general, in the sense that it is able of handling graphs with negative edge weights.

Bellman-Ford runs in O(|V||E |), where V corresponds to the vertex set of the graph, E to the edge set. On

a graph where all the weights are positive, a better algorithm is Dĳkstra’s [6], which has a faster convergence of

O(|E| + |V| log |V|). Knowing the destination vertex 3, one can implement the A* search [7], an algorithm that

remains similar to Dĳkstra’s but achieves convergence in O(|E|). In order to apply A*, a lower bound of the distance to

3 must be available for all points in the search space . This bound reduce strongly the exploration of the search space.

These methods use a given graph to compute the path.

Many methods propose to generate a graph in order to find the optimal path. These algorithms are called sampling
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based path planning [8–10]. The main methods are Probabilistic RoadMaps (PRM), Rapidly Exploring Random Tree

(RRT) and Fast Marching Tree (FMT) (presented in detail in Section V) . Research on this type of methods was first

driven by robotics. The goal was initially to find the shortest possible path for robots to avoid obstacles. However,

RRT* has been also used for aeronautical applications. In 2017, Pharpatara et al. [11] used RRT* to compute obstacle

avoidance trajectories in 3D. However, the authors consider the wind to be negligible given the speed of the aircraft.

The 3D wind track using RRT was however studied earlier, for glider-type drones by Chakrabarty and Langelaan [12].

In their paper, encouraging and interesting results are shown for maximising the glider’s flight time or getting it to reach

a given point by using air currents.

Nevertheless, these algorithms compute the geodesic distance on the graph, hence they suffer from grid bias. For

real-life applications such as the optimisation of aircraft trajectories over tens or hundreds of nautical miles, a good idea

is to break free from such error sources by working with a "continuous" algorithm.

2. Front propagation approaches

Graph-based methods, though efficient in computation time, are sensitive to the precision of the discretisation. To

avoid such problems, one can work with semi-continuous methods such as Fast Marching.

These methods are simple, efficient and quite flexible. They are based on the physical propagation of a wavefront in

a given domain Ω, containing obstacles. The front mΩ fixes the minimum cost to reach any point in space. To propagate

the front, one has to solve the Eikonal equation:

|∇) | = 5 (1)

where ) is the cost function to reach any point in space, and 5 is the "slowness" of the domain at any point. 5

characterises some parts of the domain that are less accessible than others: in graph-based methods such areas are

modeled with discrete edge weights, here they are defined by a continuous function over the domain. A good analogy is

that of forest fires: the dryest the area, the fastest the propagation.

The Fast Marching algorithm is described in Algorithm 1.

One can note that line 14 of Algorithm 1 corresponds to the Update Procedure, in which the Eikonal equation is

solved at the considered point, thus the ) values of its neighbors are updated. This algorithm is illustrated in Fig. 2.

Ordered Upwind methods, developed by Sethian in [14], are very similar to Fast Marching methods. They consider

an initial optimal problem, which allows to rewrite Eq. (1) as:

| |∇D(-) | |�
(
-,
∇D(-)
| |∇D(-) | |

)
= 1 (2)
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Algorithm 1 Fast Marching [13]
1: Alive← mΩ

2: Close← N(Alive)
3: Far← Ω \ {Alive ∪ Close}
4: while Far ≠ ∅ do
5: Trial← l ∈ Close with the smallest ) value.
6: Alive← Alive + {Trial}
7: Close← Close \ {Trial}
8: for neighbor ∈ N ({Trial}) do
9: if neighbor ∉ Alive then
10: if neighbor ∈ Far then
11: Far← Far \ {neighbor}
12: Close← Close + {neighbor}
13: end if
14: Update( neighbor )
15: end if
16: end for
17: end while

with - a point in space (usually R2 or R3), D is the cost function and � the propagation speed of the front defined by:

�

(
-,
∇D(-)
| |∇D(-) | |

)
= max

0

(
−∇D(-)
| |∇D(-) | | E(-, 0)

)
(3)

where E is the speed of the mobile, typically the ground speed of the aircraft and 0 is the unit vector determining the

direction of motion.

The cost function D is computed on a discretised triangular grid in the increasing order of its value based on the

causality principle. This principle is the following: ”If D(-) is computed from points - 9 and -: (from the triangle

-- 9-: ), then D(-) ≥ max(D(- 9 ), D(-: ))". To maintain the causality principle, the cost D(-) must therefore be

computed from the triangle and thus the support line for the gradient of D must intersect the triangle (See Fig. 3).

This method has been used by Girardet [15] to solve the problem of aircraft trajectory design in the presence of wind.

B. Aircraft emergency trajectory design

Atkins et al. [16] provides an Adaptive Flight Planning (AFP) algorithm in order to select a landing site and generate

a safe emergency trajectory in real time. The trajectory planner takes into account the initial state of the aircraft as well

as flight dynamics and wind constraints to generate geometric trajectories built with Dubins curves [17]. This algorithm

has been applied to Flight 1549 in [18], and the algorithm returned a solution that could have enabled a safe return

to LaGuardia airport. In [19], the Two Points Boundary Value Problem (TPBVP) is solved in to generate unpowered

landing trajectories and improve aircraft safety. These articles propose real-time solutions for an aircraft in a situation of

emergency, to be run independently of the FMS. In this paper, the current FMS is used to implement the trajectory

generation algorithm.
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Fig. 2 Upwind construction of accepted values [13, Fig. 14]. In the narrow band of trial values (Close in Alg.
1), the Eikonal equation is solved. The front propagates from accepted values (Alive in Alg. 1) towards "far
away" values (Far in Alg. 1).

(a) Causality principle respected (b) Causality principle violated

Fig. 3 Causality principle.

Fallast and Messnarz [20] propose a Rapidly-exploring Random Tree algorithm (RRT) to automatically select a

landing site and generate an emergency trajectory. The RRT algorithm creates an entire graph from a single vertex and

no edges. Vertices are sampled iteratively in the free space and if connections are possible, edges are added to the graph.

Their algorithm is designed to converge towards an optimal solution, thus it is denoted RRT*. They are able to manage

three different constraints: terrain avoidance, airspace restrictions and aircraft capabilities. To take them into account,

they alter the connections between points by introducing Dubins curves [17], and limit these connections by considering

the maximum climb and descent rates.

Guitart et al. [21] use Fast Marching Tree (FMT) approach to generate emergency trajectories. The FMT algorithm

performs a forward dynamic programming recursion over several sampled points generated during the initialisation step
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and generates a tree of paths. Again, Dubins curves are added to the process to make the trajectories flyable, and the

maximum climb rate, the maximum descent rate but also the minimum radius of turn are taken as constraints.

Sáez et al. [22] propose, from a given descent profile and a minimum curvature radius of the aircraft, a method

based on RRT* to generate emergency trajectory. The data (profile and radius) depends on the type of emergency.

Haghighi et al. [23] present a post-failure performance analysis and develop an algorithm to generate emergency

trajectories. Their method is based on Dubins curves and Apollonius results.

These previous related works have shown that many approaches can be used to generate a trajectory. Most of these

works focus on the impact of the failure, sometimes to the detriment of the computing time. That’s why this article

proposes a very fast algorithm to generate emergency flyable trajectories which could be integrated into a complete

system. This system would be composed of a landing sites selector, an aircraft performance generator and a path

generator. This paper presents an algorithm that can be used as the path generator. In the following section, the

mathematical modeling is described. From the equations of Flight Dynamics, one can state the optimisation problem to

solve in order to obtain the optimal three-dimensional path.

III. Mathematical Modeling
Let us consider an aircraft in the aerodynamic frame, with heading angle f, flight path angle W and bank angle `

(see Fig. 4).

(a) Top view of an aircraft with a heading angle f.

(b) Side view of an aircraft with a flight path angle
W.

(c) Front view of an aircraft with a bank angle `.

Fig. 4 The aerodynamic frame (−→G0, −→H0, −→I0). The frame origin is at the aircraft center of gravity, and the velocity
vector −→E (the aircraft true airspeed) is along −→G0.
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In the free space, the aircraft is constrained by a maximum rate of climb (RoC), a maximum rate of descent (RoD)

and a minimum radius of turn Amin.

A flight path angle constraint can be stated: one can define a maximum flight path angle Wmax from the RoC, and a

minimum flight path angle Wmin from the RoD. This constraint is expressed as follows:

Wmin ≤ W ≤ Wmax (4)

The aircraft is also bound to make turns during its descent. These gliding turns are constrained by the minimum

radius of turn Amin. By definition, the radius of turn is

A = Eℎ

(
mf

mC

)−1
(5)

where Eℎ is the horizontal airspeed of the aircraft.

Thus, a second constraint can be stated, now limiting the variations of the heading angle f:

����mfmG ���� ≤ 1
Amin

(6)

In the context of path planning in three dimensions (here (x, y, z) is a basis of R3), given a starting point %BC0AC and

an ending point %4=3 , one can find the optimal path by solving the following optimisation problem:

) (G, H, I) = min
c∈Π

∫ %4=3=(G,H,I)

%BC0AC

5 (c(g))3g (7)

subject to constraints (4) and (6),

where ) (G, H, I) corresponds to the minimal cost required to travel from %BC0AC to %4=3 considering the cost function

5 , and Π is the set of paths connecting %BC0AC and %4=3 .

Considering a situation of emergency, it is possible that the aircraft loses all of its power. In such a situation,

the maximum flight path angle is constrained by the maximum lift-to-drag (L/D) ratio of the aircraft. (L/D)max

characterises the ability of an aircraft to glide.

Defining by Wglidingmax = − arctan 1
(L/D)max

, the constraint (4) can be reexpressed as follows:

Wmin ≤ W ≤ Wglidingmax (8)

The value of Wglidingmax is always negative, which means that the aircraft is forced to go down.

In the next two sections, the resolution algorithm is presented first in two dimensions, then in three dimensions.

The aim is to present the algorithm features with the simplest framework in Section IV, before tackling the extended
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procedures in Section V.

IV. Resolution algorithm in two dimensions
The aim of this section is to introduce the algorithm in its two-dimensional version, first presented in [24]. This

algorithm was proposed to generate an emergency trajectory by using a single descent plan, thus reducing the study to a

two-dimensional problem. In order to obtain a smooth and flyable trajectory while being efficient with the computation

time and the data storage, the space was discretised using triangular meshes built over quadtrees.

A. Data structure

A first approach to discretise a two-dimensional space could be to create a grid composed of free-space cells and

obstacle cells. Free-space cells represent parts of the space where the trajectory is allowed to go through, and obstacles

cells where it is not. An example of such a grid is represented in Fig. 5a, where the obstacles are shown in black, and the

free-space in white. For real-life applications, grids must contain several thousand rows and columns in order to be

accurate enough. To lighten the data, an optimised structure called quadtree is generated. Originally formalised in [25],

a quadtree is a tree data structure in which each internal node has exactly four children. They are most often used to

partition a two-dimensional space by recursively subdividing it into four quadrants or regions. A quadtree based on the

grid example is shown in Fig. 5b. To avoid obtaining a bad approximation of the optimal trajectory, it is preferable

to limit large size differences between two neighboring cells. This means balancing the quadtree by ensuring a level

(depth of subdivision) difference of at most 1 between two neighboring cells in the four cardinal directions. The level

differences can only be ’-1’, ’0’, ’1’ and ’#’, respectively representing a neighbor with lower, equal, higher level or an

obstacle. The balanced quadtree for the ongoing example is shown in Fig. 5c. Finally, a triangular mesh can be obtained

quite directly using a Delaunay triangulation over the balanced quadtree, as shown in Fig. 5d. This mesh has good

properties; especially the generated triangles are all acute [26], which makes it quite suitable for the execution of a Fast

Marching method.

(a) A 2D grid (of size 8x8). (b) A quadtree computed
from (a).

(c) A balanced quadtree
computed from (a).

(d) A triangular mesh
adapted to the terrain,
computed from (a).

Fig. 5 Refinement of the data structure modeling a two-dimensional space.
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B. Fast Marching procedures

Fast Marching methods solve the optimisation problem by taking advantage of the fact that minimal cost paths are

orthogonal to the level curves. It is expressed by the 2D Eikonal equation, which writes as follows:

|∇) | = 5 (G, H) (9)

To solve this equation in a discretised environment, the Fast Marching method is used along with the following

upwind scheme, close to finite difference approximation which is called quadratic equation:

max
(
�−G8 9 ),−�+G8 9 ), 0

)2
+max

(
�
−H
8 9
),−�+H

8 9
), 0

)2
= 5 28, 9 (10)

where the forward and backward operators are given by:

�−G
8 9
) = ()8, 9 − )8−1, 9 )/ΔG �+G

8 9
) = ()8+1, 9 − )8, 9 )/ΔG

�
−H
8 9
) = ()8, 9 − )8, 9−1)/ΔH �

+H
8 9
) = ()8, 9+1 − )8, 9 )/ΔH

(11)

with grid steps ΔG and ΔH. )8, 9 and 58, 9 are respectively the cost and the slowness at gridpoint (8, 9) (see Fig. 6).

Fig. 6 Update directions on a 2D grid.

This scheme is said "upwind" because it chooses gridpoints with the direction of the flow of information. Hence, the

algorithm builds the solution outwards from the smallest ) value (initially at %BC0AC ). Once the propagation is performed

and the destination is reached, one can extract the shortest path through back propagation of the gradient from %4=3 to

%BC0AC .

As presented before, the data structure is optimised in order to save storage space. The two-dimensional Fast

Marching method has already been developed for triangular meshes in [27].

On an acute triangle ��� with ) (�) ≠ ∞, ) (�) ≠ ∞ and ) (�) < ) (�), the quadratic equation must be solved, to

10



compute C such that (C − D)2 = 62 5 2
�
with D = ) (�) − ) (�) and C = ) (�) − ) (�).

(a) Update on a triangle: �, � and � are some of the vertices of
the triangular mesh.

−−→
�� is the gradient associated with vertex

�.

(b) Back propagation of gradients on a triangle.

Fig. 7 Propagation (a) and back propagation (b) procedures in 2D.

The propagation between %BC0AC and %4=3 consists in solving the quadratic equation on each triangle (see Fig. 7a)

and recording costs and gradients computed on each vertex of the mesh, as shown in Fig. 8a. In this figure, %BC0AC (in

the Northwest) and %4=3 (in the Southeast) are both represented in red. Gradients are represented in orange, mesh nodes

in blue, and mesh triangles in green.

The back propagation phase mainly consists in reversing gradients computed in the propagation phase and computing

the trajectory given by their direction (see Fig. 7b). If a gradient hits an edge instead of a vertex, it is interpolated by

using a barycentric formulation. This phase is shown in Fig. 8b, where blue triangles are the triangles visited during

back propagation.

Finally, the last step is to build the trajectory, which is achieved by linking the edge intersection points together. This

is shown in Fig. 8c.

(a) Propagation phase. (b) Back propagation phase using op-
posite direction of gradients.

(c) Computed trajectory.

Fig. 8 Optimal trajectory generation with the Fast Marching algorithm. Gradients are represented in orange,
mesh nodes in blue, and mesh triangles in green.
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As presented in [24], real-life applications of this algorithm are very promising, as trajectories are computed in

about one second and memory management is very efficient. This algorithm works really well on many scenarios (See

Fig. 9), but reaches its limits when the aircraft is too close from the landing site. Indeed, in this case, it is impossible to

generate a single 2D descent plan.

Fig. 9 3D trajectory generated with a 2D Fast Marching Algorithm over a single glide slope.

This paper presents the three-dimensional Fast Marching algorithm on a tetrahedral mesh, with the motivation to be

able to generate trajectories in more complex scenarios.

V. Resolution algorithm in three dimensions
The aim of this section is to build a similar structure as the one presented in the previous section, but this time in

three dimensions. An octree, which is the 3D-equivalent of a quadtree, is used to represent the obstacles and the free

space. Again, the octree is balanced to limit large size differences between two neighboring cells. Finally, a mesh that

consists of tetrahedrons, the 3D-equivalent of triangles, is built over the balanced octree structure.

A. Octree balance

In two dimensions, there are only four cardinal directions to consider in order to balance a quadtree: North, West,

South, East. Thus, there are 24 = 16 different configurations for a quadtree node, that can easily be enumerated and

studied. [24] showed that the Delaunay triangulation on these configurations always gives acute triangles that are

bounded by a 26.565° minimum angle. Such properties do not exist in 3D.

To balance quadtrees, the technique called 1-balance was used, which corresponds to ensuring level differences

between neighbors in the four cardinal directions. Another type of balance could also have been used, the 2-balance,

which ensures level differences with neighbors in the four cardinal directions and the four inter-cardinal directions. They

are illustrated in Fig. 10a and Fig. 10b.

The aim is to have a structure that can be used to build directly the triangles over. It is sufficient to make a 1-balance

in two dimensions, because inter-cardinal directions do not affect the possible quadtree node configurations (see Fig. 11).

This figure shows that no matter the level difference between the current node (at the center of each figure) and its
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(a) 2D, 1-balance. (b) 2D, 2-balance. (c) 3D, 1-balance. (d) 3D, 2-balance. (e) 3D, 3-balance.

Fig. 10 Ways to balance a quadtree (a and b) or an octree (c, d and e). Adapted from [28, Fig. 5].

(a) XNE = 0. (b) XNE = 1. (c) XNE = 2.

Fig. 11 Configuration of a quadtree node with a NorthEast neighbor with variable level difference XNE.

NorthEast neighbor, the triangulation remains the same. Thus, considering 2-balance does not add any new configuration

for the triangles. Surely, it would increase the precision of the algorithm, but it would also increase the number of

triangles itself.

In three dimensions, one would also want to make a 1-balance (see Fig. 10c). It would amount in considering the

six cardinal directions North, West, Up, South, East, Down, thus to study 26 = 64 configurations for the octree nodes.

Nevertheless, 1-balance in 3D is not enough to describe all the configurations and to build templates.

Indeed, in two dimensions, the junction between the current node and its NorthEast neighbor is a single vertex,

which is always part of one triangle in the triangulation. In three dimensions, the junction between the current node and

its NorthEast neighbor is an edge, and the tessellation (generalisation of triangulation in higher dimensions, here 3D)

varies according to the level difference between these two nodes. This is highlighted in Fig. 12.

This figure shows that the current node configuration changes when the level difference between the two nodes

increases. Then, it is insufficient to consider 1-balancing the octree.

For the same reasons as in two dimensions, it is sufficient to 2-balance the octrees (see Fig. 10d). A 3-balance, as in

Fig. 10e, would amount in balancing according to the inter-cardinal directions of order 2 (e.g. NorthEastUp). However,

since junctions between such nodes are single vertices, the 3-balance does not add any new configuration, then is useless

to consider (except for precision considerations).

Hence, one needs to perform a 2-balance of the octree, which amounts to considering 18 directions (the 6 cardinals
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(a) XNE = 0. (b) XNE = 1. (c) XNE = 2.

Fig. 12 Configuration of an octree node with a NorthEast neighbor with variable level difference XNE.

and the 12 inter-cardinals of order 1). This implies to study 218 = 262144 configurations.

B. Building of the tetrahedral mesh

In this paper, the 200000 configurations that emerge from 2-balancing the octree are not studied manually.

Since Delaunay tessellations are not as trivial as for the 2D case, the function Delaunay from the Python module

scipy.spatial, which provides methods for spatial algorithms and data structures, is used. The Delaunay tesselation

is formed of tetrahedrons, polyhedrons composed of four triangular faces, six straight edges and four vertex corners,

which are the 3D equivalent of triangles.

Thanks to this function, the 218 configurations are evaluated in order to check whether they are all composed of

acute tetrahedrons, the necessary condition that allows propagation in the Fast Marching algorithm. Computations use

scipy version 1.7.1, and execute the function Delaunay without specifying any option. They show that about half of

the configurations are not suited for propagation, i.e. at least one of the tetrahedrons of these configurations is obtuse

(they present a face with at least one obtuse angle).

In order to get a clear view of the configurations that are problematic, the number of configurations is reduced by

removing redundant schemes. It can be seen that all the possible configurations 218 have not to be checked. On a cube,

whenever there is a neighbor in a specific cardinal direction, the mesh contains a vertex at the center of a face and four

vertices at the centers of the four edges that constitute the face. Thus, thanks to a combinatorial result obtained in

Appendix A, only 6210 configurations remain to be studied. These 6210 configurations are evaluated with the Python

function Delaunay and, as expected, about half of them still contain obtuse angles.

The second proposition is to remove all symmetrical schemes. Symmetries appear with reflection or rotation of

configurations, leading from one to another. Such example is shown in Fig. 13.

In this figure, the study of the first configuration is sufficient to recover the Delaunay tessellations for all the other

configurations. After removing all these symmetrical schemes, only 227 distinct configurations are left for checking.

The Python function Delaunay gives 97 obtuse configurations and 130 acute configurations.

Finally, the last proposition is to use these 130 acute configurations as templates. The goal is to manage to rebuild the
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Fig. 13 Symmetrical schemes for the scenario of smaller neighbors in one inter-cardinal direction.

227 non-symmetrical configurations from these only 130 templates, and to be able to shape every octree node that can

be encountered. To this end, good configurations are overlayed in order to rebuild the obtuse ones, as shown in Fig. 14.

Fig. 14 A new configuration, previously invalid, built from two instances of a valid template.

This figure shows that configurations are overlayed in order to build new ones, which means that tetrahedrons are

intertwined. This is not a problem, because the mesh is built for the sole purpose to perform the update procedure of the

Fast Marching algorithm, which only affects vertices of the mesh. The more the tetrahedrons, the better the update. A

tetrahedron in the mesh should not be seen as a solid made of four points, but rather as four triangle-vertex couples

which serve the propagation.

It is possible to demonstrate that all 97 obtuse configurations can be built from the 130 templates. Since configurations

are added up in order to build the acute configurations, one only has to check that the two basic templates of Fig. 15 are

acute.

Templates of Fig. 15 represent respectively one neighbor in an inter-cardinal (of order 1) direction and one neighbor

in a cardinal direction. It is clear that these two templates are the foundations to rebuild all possible configurations.

Indeed, it is possible to add up as many versions of the first template as the number of inter-cardinal directions with

smaller neighbors. The same reasoning can apply to the second template with the number of cardinal directions with

smaller neighbors. Finally, since the two templates are composed of acute tetrahedrons, all obtuse configurations can

effectively be rebuilt.
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Fig. 15 Respectively, from left to right, templates with smaller neighbors in one inter-cardinal direction and
in one cardinal direction.

This short demonstration shows that any obtuse configuration can be rebuilt from only two basic templates. However,

rebuilding every obtuse configuration only with these two templates is not optimal for many reasons. Not only too many

tetrahedrons would be built in nodes that have many neighbors, and thus slow down the Fast Marching algorithm, but

other templates that can lead to better update procedures from smaller tetrahedrons would not be taken into account.

Then, as there are various ways to rebuild the obtuse configurations, the objective would be to minimise the number of

tetrahedrons in each node. This is achieved by considering the level differences quantity X, as represented in Figure 16.

As in 2D, after 2-balancing the octree, the only possible values for a level difference are:

• ’-1’ representing a neighbor with a lower level;

• ’0’ representing a neighbor with equal level;

• ’1’ representing a neighbor with a higher level;

• ’#’ representing a neighboring obstacle or the 3D grid limits.

For instance, Fig. 16 represents an octree node with a smaller neighbor at North, a larger neighbor at EastUp and

grid limits at South. Since a smaller neighbor is present in a cardinal direction (North), the level differences with

NorthWest, NorthUp, NorthEast and NorthDown are fixed to ’1’, whether or not there are actually smaller neighbors

in these directions. This number fully accounts for the configuration of the node, since its intersection points with

neighboring cells are marked with a ’1’.

Fig. 16 Example of X value for an octree node.

Considering this X value, one can execute the following procedure in order to find the proper template decomposition

for an obtuse configuration:
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Algorithm 2 Repair of obtuse configurations
1: for 8 = X to 0 do
2: if Configuration 8 is acute and add useful tetrahedrons then
3: Add configuration 8 to the decomposition.
4: end if
5: end for

In this procedure, a useful tetrahedron is a tetrahedron that activates a point, or in other words that links a point

to the mesh (see Appendix A for more details on activated points). Thus, by following such procedure, the smallest

possible number of configurations is added in order to recreate an acute configuration. Moreover, these configurations

are the closest possible to the considered obtuse configuration (in terms of X).

This section presented how to build an octree able to directly tetrahedrise each of its nodes, allowing updates for

any mesh points with the Fast Marching algorithm. Each leaf is characterised by its Morton code < (8 bytes, a spatial

identifier for nodes) [29], its level ; (2 bytes) and its level differences X (8 bytes). The 130 templates are stored in a

low-sized file (less than 100Ko), as well as the list of all possible configurations, each of which refers to one or more of

these templates and the operations to be performed over these templates (rotations and/or symmetries).

The fact that every tetrahedron of the structure is acute implies that continuous updates are available throughout

the whole free space, thus enabling the use of the Fast Marching algorithm. Since the structure is based on an octree,

neighbors are obtained in a very short amount of time. Also, the structure does not require much memory space and can

be embedded easily on an aircraft.

C. Procedures implementation

The property that the minimal cost paths are orthogonal to the level curves is valid in any dimension. In three

dimensions, it is expressed by the 3D Eikonal equation, which writes as follows:

|∇) | = 5 (G, H, I) (12)

Then, the quadratic equation is now expressed as:

max
(
�−G8 9:),−�

+G
8 9:), 0

)2
+max

(
�
−H
8 9:
),−�+H

8 9:
), 0

)2
+max

(
�−I
8 9:
),−�+I

8 9:
), 0

)2
= 5 28, 9 ,: (13)
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where the forward and backward operators are given by

�−G
8 9:
) = ()8, 9 ,: − )8−1, 9 ,: )/ΔG �+G

8 9:
) = ()8+1, 9 ,: − )8, 9 ,: )/ΔG

�
−H
8 9:
) = ()8, 9 ,: − )8, 9−1,: )/ΔH �

+H
8 9:
) = ()8, 9+1,: − )8, 9 ,: )/ΔH

�−I
8 9:
) = ()8, 9 ,: − )8, 9 ,:−1)/ΔI �+I

8 9:
) = ()8, 9 ,:+1 − )8, 9 ,: )/ΔI

(14)

with grid steps ΔG, ΔH and ΔI. )8, 9 ,: and 58, 9 ,: are respectively the cost and the slowness at gridpoint (8, 9 , :) (see

Fig. 17).

Fig. 17 Update directions on a 3D grid.

Propagation over a tetrahedral mesh Consider an acute tetrahedron ABCD with ) (�) ≠ ∞, i.e. � has already been

updated. Such a configuration is represented in Fig. 18. The quadratic equation must be solved, to compute C such

that (C − Dmax)2 = ℎ2 5 2� with Dmax = ) (�) − ) (�) and C = ) (�) − ) (�). Also, the quantity Dmin = ) (�) − ) (�) is

introduced.

Fig. 18 Update on a tetrahedron: �, �, � and � are some of the vertices of the tetrahedral mesh.
−−→
�� is the

gradient associated with vertex �.
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Three cases are studied:

• �, � and � are updated from �.

• � and � are updated from � and � with ) (�) ≥ ) (�).

• � is updated from �, � and � with ) (�) ≥ ) (�) ≥ ) (�)

Thefirst case is trivial because the update comes from the directions given by the edges: ) (�) = min () (�), AB 5� + ) (�)),

) (�) = min () (�), AC 5� + ) (�)) and ) (�) = min () (�), AD 5� + ) (�)). The second case corresponds to an

update from the triangles ABC and ABD. Please refer to [27] for the detailed procedure. The third case corresponds to

the update on a tetrahedron, for which all computations are made in Appendix B. In this case, the quadratic equation is

written as follows:

(
A2BCD + A

2
ACD + A

2
ABD

)
C2 − 2

(
A2ACDDmin + A2ABDDmax

)
C + A2ACDD

2
min + A

2
ABDD

2
max − 9 5 2�V2ABCD = 0 (15)

with ABCD, AACD, AABD the areas of the triangles BCD, ACD and ABD respectively. VABCD is the volume of the

tetrahedron ABCD.

If the direction of the gradient
−−→
�� is effectively contained in the tetrahedron (i.e. G is inside the tetrahedron), then

Eq. (15) can be solved. It will return a cost that can be set to the new cost for D, only if its value is lower than the current

one.

Back propagation The final trajectory is found thanks to the back propagation of gradients, from %4=3 and %BC0AC .

On a vertex, the gradient to ascend is directly given: it is the opposite of the gradient vector computed at this particular

vertex during the propagation phase. However, when the optimal direction strikes an edge or a triangle, no gradient is

available because the intersection does not match with any vertex encountered during the propagation phase. Thus, at

each encounter with an edge or a triangle, one needs to interpolate the gradient.

On an edge, it is easily done by computing the barycenter of the gradients linked with the two vertices of the

considered edge. On a triangle, it is done by computing the barycenter of the gradients linked with the three vertices of

the considered triangle (see Fig. 19).

Fig. 19 shows the interpolation of a gradient inside a tetrahedron ABCD. In Fig. 19a, -8 is the last point visited by

the back propagation. It coincides with the mesh vertex �, hence the gradient at -8 is
−−−−−→
�6A03 (the opposite gradient

of the one computed during the propagation phase). The next point visited by the back propagation is -8+1. It is at

the intersection between −−−−−→�6A03 and the triangle ABC, hence the gradient has to be interpolated. Fig. 19b presents

how such interpolation is made. It is barycentric, with parameters _� =
A-8+1��

AABC
and _� =

A�-8+1�

AABC
, i.e. the ratios

between the sub-triangle areas (formed with -8+1) and the area of the triangle ABC. Thus, the gradient at -8+1 is

_�
−−−−→
�6A03 + _�

−−−−→
�6A03 + (1 − _� − _�)

−−−−→
�6A03 .
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(a) Creation of the next trajectory point. (b) Gradient interpolation.

Fig. 19 Back propagation of gradients on a tetrahedron.

The algorithm stops on reaching %BC0AC , and the final trajectory between %BC0AC and %4=3 is found by linking the

intersection points together, in the same way as for the 2D algorithm.

D. Improvement of the algorithm

This section presents two major improvements of the algorithm. The first one is a procedure that takes into account

wind fields within the Fast Marching algorithm. The second improvement is a method to force the trajectory to respect

the aeronautical constraints. Without loss of generality, both methods are presented in 2D.

Wind constraints Ordered Upwind methods [14] have been developed to take into account wind fields. They are

adapted from Fast Marching methods, but are composed of more complex and costly procedures, thus greatly degrading

the efficiency of the method. This section proposes another approach that preserves the "one-pass" procedures of the

Fast Marching algorithm, as well as its computation time efficiency.

The gradient computed during the propagation phase (see Fig. 7a) is the direction of minimal cost. It means that it is

the direction that the aircraft follows as soon as it enters the triangle. Thereby, the gradient is oriented in the direction of

the aircraft’s true airspeed
−−−→
)�( and, as no wind is yet considered, the aircraft ground speed

−−→
�( .

To account for a wind field −→, in the aircraft movement, one can refer to the equation known as Wind Triangle (see

Fig. 20):

−−−→
)�( + −→, =

−−→
�( (16)

Hence, the new direction of minimal cost in a wind field is given by rotating this direction to match the direction of

the ground speed
−−→
�( . This operation is shown in Fig. 21a.

The direction of minimal cost is oriented in a new direction, supported by the vector
−−→
��. However, no information

on costs is available along this vector, as there is no isocost that can be defined. It is useful to interpolate the cost at �,
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Fig. 20 The Wind Triangle graphically represents the relationships among velocity vectors used for air navi-
gation. As the true airspeed

−−−→
)�( gives the heading of the aircraft, the ground speed

−−→
�( provides the trajectory

of the aircraft (relatively to the ground).

based on the costs of vertex � and vertex �. The interpolation (barycentric) is formalised as follows:

) (�) = _) (�) + (1 − _)) (�) , with _ =
| |−−→�� | |
| |−−→�� | |

(17)

The interpolation procedure is shown in Fig. 21b. Finally, the cost at C is given by the following formula:

) (�) = ) (�) + ℎ/+ (18)

with ℎ = | |−−→�� | | and + the norm of the aircraft ground speed.

(a) Wind Triangle from Aeronautics:
−−−→
)�( + −→, =

−−→
�( . (b) Gradient interpolation.

Fig. 21 Update on a triangle with wind.

To check the accuracy of this new procedure, the algorithm is tested on the Zermelo’s navigation problem. Proposed

in 1931 by Ernst Zermelo in [30], it is a classic optimal control problem that refers to a boat navigating on a flow of
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water, originating from a point � to a destination point �. The boat is capable of a certain maximum speed, and the goal

is to derive the best possible control to reach � in the least possible time. The exact solution to this problem is given by

Zermelo’s equation, which can be numerically solved.

When considering an aircraft surrounded by the air, Zermelo’s problem remains unchanged. Sketches presenting

solutions without wind (or with constant wind) and with a wind gradient are shown in Fig. 22.

Fig. 22 Solutions to Zermelo’s problem with constant wind (left) and with linearly variable wind (right).

Both solutions are very intuitive, as the straight line is the most efficient trajectory in the absence of wind, and it

seems favorable to benefit from well-oriented wind gradients in the second scenario.

The Fast Marching algorithm is tested on Zermelo’s problem with a wind gradient. Results are shown in Fig. 23

with a 64x64 grid, trying to link the up-left corner to the up-right corner in a wind strength that is 0 at the top of the

figure, and 67% of the aircraft speed at the bottom of the figure.

(a) Without wind. (b) With wind.

Fig. 23 Optimal trajectory generation in a wind field with the Fast Marching algorithm.
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This figure shows the curved trajectory that is the solution to Zermelo’s problem. The amplitude of the trajectory is

consistent with the solution of Zermelo’s equation for the 0 to 67% of the maximum speed gradient.

A close look at this figure shows that the rotation of all gradients is smooth, which indicates that the algorithm still

gives the optimal trajectory if the start point or end point were moved.

In 3D, the method is the same as the optimal direction can be rotated in the 3D space. On a tetrahedron ABCD,

where � is the point to update, the intersection between this direction and the triangle ABC becomes the point of

reference for the update, and its cost is interpolated inside the triangle ABC (barycentric interpolation).

Aeronautical constraints The Fast Marching algorithm must be improved in order to take into account the Flight

Dynamics constraints of the trajectory. Indeed, the Fast Marching algorithm returns the shortest path between two points,

and it is rather unlikely that this path respects the radius of turn or the heading constraints expressed in Section III.

The idea is to create an approximate path to follow in order to reach the destination point optimally by respecting the

constraints, then one would be able to build the true optimal trajectory near this path, which would also respect the

constraints. This is the idea of generating a guiding tube, which is illustrated in Fig. 24.

(a) The approximate path, valid regarding the con-
straints.

(b) The optimal trajectory generated inside a tube,
guiding the propagation.

Fig. 24 Building of a guiding tube.

Fig. 24a shows a path generated by some algorithm that easily takes into account the aeronautical constraints but

returns a non-smooth solution far from the optimal. Fig. 24b presents how this path is used in order to create a guide for

the Fast Marching algorithm. Inside this tube, the algorithm runs and returns a smooth trajectory and less costly.

To build this approximate path, the Fast Marching Tree algorithm is chosen for its ergonomics and its low computing

time complexity. The FMT* algorithm was briefly introduced in the State of the Art as a graph generation algorithm.

Fig. 25 illustrates the growth of the tree in a 2D environment with 2,500 samples.

Hence, the FMT* algorithm generates a tree by moving steadily outward in cost-to-arrive space. This growth

reaches the limits of the free space in a short amount of time, which makes it a very good candidate to generate a first

"approximate" trajectory. Indeed, in order to obtain a fast solution (thus of poor quality), one only has to limit the

number of samples considered.
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Fig. 25 The FMT* algorithm [31, Fig. 1].

This algorithm is able to take into account aeronautical constraints (See Fig. 26). Indeed, the algorithm has a best

neighbor selection phase, with the possibility to discard neighbors that do not satisfy the constraints. It also adapts

really well to a three-dimensional space (See Fig. 27). The two main constraints are turning and descent constraints.

The algorithm does not consider connections that create too high discontinuities of heading. Indeed, if the angle U (See

Fig. 26) is too high, the aircraft will not be able to turn from � to �. The algorithm also does not create a connection if

the new point is not in the descent cone (See Fig. 27).

(a) The angle U is small, the connection �� is possible. (b) The angle U is too big, the connection �� is ignored.

Fig. 26 Taking into account turning constraints.

To summarise, the method consists first of all in generating a first approximate path by using FMT* with a small

number of samples (<3000). This path takes into the aeronautical constraints. Then a guiding tube is generated around

it. Finally, the Fast Marching algorithm is then applied in this tube to obtain the final trajectory.

The three procedures presented above (building a first approximate solution, propagation and back propagation)

form the foundations of the algorithm developed for this study. The results obtained with this algorithm are presented in

the next section.
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Fig. 27 Taking into account descent constraints: the connection between the points � and � is possible because
the segment is in the descent cone, but the connection �� is impossible.

VI. Results and Findings
This section presents a solution given by the second algorithm for an emergency in the mountainous region of

Grenoble, France. It is still crucial to make sure that the optimal trajectory is computed and that the stakes are satisfied:

the rapid convergence, the low data sizes and the flyability of the trajectory.

A. Numerical tests

Validation of the method is made in a mountainous region of the Grenoble Alpes Isère airport. This time, only one

key scenario is studied:

• ANSA emergency: The aircraft has lost all of its thrust and cannot reach the landing site with a straight line,

because of flight path constraints.

This scenario is complementary to the two scenarios studied in 2D in [24], because it can only be tackled by the 3D

algorithm (one single descent plan cannot guide the aircraft towards the nearest airport).

Again, the whole mesh is not generated at once. The mesh is built step by step, by dividing an octree leaf node into

tetrahedrons only when the front enters inside it. Also, as simulations run in 3D and all computation costs become

higher, the step sizes have been increased by a factor of 10 compared to the 2D results. This enables the algorithm to

run in an appropriate amount of time (real-time).
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1. Unconstrained Fast Marching Algorithm

First, to provide validation for the Update procedure on a tetrahedron as well as the building of the data structure, the

simulation is run without taking into account aeronautical constraints.

Results for the unconstrained ANSA scenario are shown in Fig. 28.

Fig. 28 3D trajectory generated in an ANSA scenario (arb. unit).

As there are no mountains encountered and no constraints to satisfy, the optimal path is the straight line (blue

trajectory). It is illegible to represent the mesh in 3D, but keep in mind the whole free space is composed of tetrahedrons,

that the number of update procedures is big and that the back propagation of gradients led to computing this straight line.

In order to satisfy the constraints, the trajectory would have to move in the mountain direction, lose altitude and land

safely at the airport. This is shown in the next section.

2. Constrained Fast Marching Algorithm

Now, flight path and radius of turn constraints are taken into account. The idea is to use the FMT* algorithm to

generate a first approximate trajectory. An example of such trajectory can be found in Fig. 29.

The guiding tube, surrounding the approximate trajectory, is also represented in this figure. The propagation is made

inside this tube, considering that every node outside this tube is an obstacle. The size of the tube is an external parameter

to define, that can be a function of the domain sizes. Its size needs to provide a balance between two opposite objectives:

1) The tube must not be too narrow because the optimal trajectory is supposed to be different from the one returned

by the FMT* algorithm.

2) The tube must not be too large because the constraints need to be satisfied as much as possible by the optimal

trajectory.
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(a) Side view. (b) Top view.

Fig. 29 Approximate trajectory generated in an ANSA scenario with the FMT* algorithm (arb. unit).

The trajectory generated by the constrained Fast Marching algorithm is shown in Fig. 30. This figure shows the

optimal path within the guiding tube. It highlights the advantages and drawbacks of the considered method. This

trajectory is smooth, short, avoids obstacles and effectively stays within the guiding tube. However, it is clear that the

trajectory does not fully respect the constraints. Indeed, it has a steeper descent at the beginning of the procedure, which

can potentially be out of the constraints. Indeed, if the new trajectory is significantly shorter than the approximate

trajectory, the descent angle will be too high to respect the constraints. This can be easily corrected by reducing the size

of the guiding tube, but again the generated trajectory would look a lot like the approximate trajectory generated with

the FMT*, thus questioning the utility of the Fast Marching algorithm. Another solution is to severely restrict FMT* in

order to give more freedom to the Fast Marching algorithm. The connection constraints are therefore more limiting. For

example, the descent cone is reduced.

(a) Side view. (b) Top view.

Fig. 30 Trajectory generated in an ANSA scenario with the Fast Marching algorithm (arb. unit).
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3. Wind Fast Marching Algorithm

Finally, the algorithm has been tested with wind. The scenario is different from the previous one. The aircraft is not

constrained by a minimum descent angle. Fig. 31 shows the result obtained by the algorithm without considering the

wind. Fig. 32 presents, for the same scenario considering the wind, the trajectory computed by the proposed method. In

this scenario, the wind comes from the south. This intensity decreases from west to east and is constant verticaly (See

Fig. 32b). The wind being unfavorable, the solution computed with the wind is 10% more costly.

(a) Side/Top view. (b) Top view. (c) Side view.

Fig. 31 Trajectory generated without wind.

(a) Side/Top view. (b) Top view. (c) Side view.

Fig. 32 Trajectory generated with wind from the south (top view)

The algorithm still needs improvements in order to return a better and more realistic trajectory. Though these first

results are encouraging, there are still some validations to be made in order to make sure that the optimal trajectory is

computed and that the constraints are fully respected.

B. Computation analysis

In this section, the computation times and the stored data sizes for the proposed algorithm are presented. Such

results are displayed in Tables 1a and 1b. They summarise the computation time and the stored data size of each part
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of the algorithm. The phases considered in this analysis are the FMT* approximate trajectory generation, the octree

generation, the balancing operation, the level difference computation, the propagation and the back propagation of the

3D Fast Marching algorithm.

(a) Computation Times (in Milliseconds) of the complete
algorithm (FMT* + Fast Marching)

FMT* + FM
FMT* trajectory generation 200

Octree generation 700
Balancing operation 100

Level difference computation 50
Fast Marching (propagation) 2000

Fast Marching (back propagation) 500
Total 3550

(b) Stored Data Sizes (in Kilo bytes)

File Size
Terrain Data 491 649

FMT* trajectory 1
Octree 67

Balanced Octree with X 75

Though the step sizes are different, the Fast Marching algorithm in three dimensions takes more time to converge

than the Fast Marching algorithm in two dimensions. This is mainly due to the more complex procedures that have to be

evaluated throughout the propagation. However, the algorithm computes a solution in less than 4 seconds, which is

acceptable for an emergency trajectory generation.

Again, some improvements have to be made in order to make the algorithm workable on an aircraft. The

implementation of functions (creation of octrees, balancing, Fast Marching...) must be optimised in order to obtain a

stronger method. The study of "critical" scenarios can also help to improve the algorithm, as it is here tested on a simple

case.

Nevertheless, we have great expectations for the algorithm, as it checks almost every stake for the problem of

generating optimal emergency trajectories.

VII. Conclusion
The objectives were to develop an algorithm able to rapidly generate a safe trajectory in the event of an on-board

emergency, in order to provide help to pilots in such a situation. The constrained optimisation problem has been

established: the final trajectory must respect flight path and heading angle constraints. The problem has been proposed

to be solved by an algorithm based on a three-dimensional Fast Marching method. These methods are known to be

efficient due to their low complexity and to provide smooth trajectory as they are not limited by the graph structure. In

order to build an optimised meshing of the three-dimensional space, an octree has been built and balanced in order to

strongly reduce the number of cells to consider. An acute tetrahedrisation of this structure, obtained thanks to the study

of combinatorics and symmetries, has been also proposed as tetrahedrons better propagate information than cubes.

The 3D update procedure has been developed on a tetrahedron. It has a similar formulation to the one in

two-dimensions, only a surface isocost is now used to propagate the costs. Procedures to account for the wind and
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aeronautical constraints have also been developed for both 2D and 3D frameworks.

Results for the three-dimensional algorithm show that it is able to provide efficiently a smooth and safe trajectory to

be followed by the pilots. This algorithm takes into account the initial and final heading of the aircraft, the aeronautical

constraints from flight dynamics and the wind. Finally, the small memory space used and the reduced computation time

make the algorithm promising for use in an FMS.

An extension of this work would be to study more complex scenarios and real cases (US Airways 1549, Swissair

111...) in order to fully validate the method, as well as to compare its performance with other trajectory generation

algorithms. Improvements are yet to be found with the octree tetrahedrisation. The idea of using Delaunay tessellation

was used in order to highlight similarities with the work in 2D, but other tessellations might be more convenient for

these applications.

Finally, one can also propose other applications for this algorithm, as it gives a solution to a more general

problem of finding the shortest paths for a vehicle that must satisfy certain dynamic constraints (robots, soaring flights,

helicopters,...).

Appendices

A. Enumeration of the octree configurations
The objective of this appendix is to enumerate all the possible configurations for a node in a 2-balanced octree. An

octree node is represented as a cube, with � = 6 faces, � = 12 edges and + = 8 vertices.

Two configurations are said to be identical if they possess the same activated points. A point is said to be activated

if it is part of the final mesh. There are 6 + 12 + 8 points that can be activated in a cube: the centers of the 6 faces, the

centers of 12 edges and the 8 vertices, as shown in Fig. 33a.

At first glance, there are 2�+� = 218 configurations possible for a node, whether each of its points are activated or

not (its # = 8 vertices are always part of the mesh, thus are always activated).

However, if a center of one face is activated, the four centers of the edges composing this face are also activated.

Indeed, since the octree is 2-balanced, neighbors in this direction have a level difference of 1 with the current node, thus

there are 4 of these neighbors, which match the edges of the octree node and activate the centers of these 4 edges. This

is illustrated in Fig. 33b.

This observation reduces strongly the number of configurations to study. Below are presented the only 10 cases to

consider in order to enumerate all the possible configurations exactly once. For each case, the number and relative

positions of neighbors in cardinal directions of considered node is set. The number of free edges, i.e. the number of

30



(a) Points of an octree node that can be part of the final
mesh.

(b) Points activated by smaller neighbors in the Up direc-
tion.

Fig. 33 Notion of activated points.

centers of edges that still can be activated (by inter-cardinal neighbors) among the � = 12 possibles points, are counted.

If 5 is the number of free edges, and B the number of symmetrical configurations for the considered case, the total

number of configurations for this particular case is B × 2 5 .

Case 1: No neighbors in any cardinal direction

• Number of free edges: 12.

• Number of symmetrical configurations: 1.

• Total number of configurations : 1 × 212 = 4096.

Case 2: Neighbors in 1 cardinal direction

• Number of free edges: 8.

• Number of symmetrical configurations: � = 6.

• Total number of configurations : 6 × 28 = 1536.
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Case 3: Neighbors in 2 adjacent cardinal directions

• Number of free edges: 5.

• Number of symmetrical configurations: � = 12.

• Total number of configurations : 12 × 25 = 384.

Case 4: Neighbors in 2 opposite cardinal directions

• Number of free edges: 4.

• Number of symmetrical configurations: �/2 = 3.

• Total number of configurations : 3 × 24 = 48.

Case 5: Neighbors in 3 adjacent cardinal directions

• Number of free edges: 3.

• Number of symmetrical configurations: + = 8.

• Total number of configurations : 8 × 23 = 64.

Case 6: Neighbors in 2 opposite cardinal directions and 1 other

• Number of free edges: 2.

• Number of symmetrical configurations: 2 × � = 12.

• Total number of configurations : 12 × 22 = 48.
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Case 7: Neighbors in 3 adjacent cardinal directions and 1 other

• Number of free edges: 1.

• Number of symmetrical configurations: � = 12.

• Total number of configurations : 12 × 21 = 24.

Case 8: Neighbors in 2 opposite cardinal directions and 2 other

opposite cardinal directions

• Number of free edges: 0.

• Number of symmetrical configurations: �/2 = 3.

• Total number of configurations : 3 × 20 = 3.

Case 9: Neighbors in 5 cardinal directions

• Number of free edges: 0.

• Number of symmetrical configurations: � = 6.

• Total number of configurations : 6 × 20 = 6.

Case 10: Neighbors in 6 cardinal directions

• Number of free edges: 0.

• Number of symmetrical configurations: 1.

• Total number of configurations : 1 × 20 = 1.

Thereby, the overall number of configurations to consider in now : 4096+1536+384+48+64+48+24+3+6+1 = 6210

configurations.
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B. Update Procedure on a Tetrahedron
The objective of this appendix is to extend the update procedure established by Kimmel and Sethian in [27] to the

three-dimensional case.

We want to build a simple update procedure for the tetrahedron ABCD in which the point to update is �, with

) (�) ≥ ) (�) ≥ ) (�). All 4 triangles are supposed to be acute, as shown in Fig. 34.

Fig. 34 Given the tetrahedronABCD, such that Dmin = ) (�)−) (�) and Dmax = ) (�)−) (�), find) (�) = ) (�)+C
such that (C − Dmax)/ℎ = �.

This means that we search for C such that
C − Dmax

ℎ
= �. (19)

By similarity:

) (�) − ) (�)
��

=
) (�) − ) (�)

��
=⇒ C

��
=
Dmax
��

=⇒ �� = ��
C − Dmax

C
(20)

) (�) − ) (�)
��

=
) (�) − ) (�)

��
=⇒ C − Dmin

��
=
Dmax − Dmin

��
=⇒ �� = ��

C − Dmax
C − Dmin

(21)

Considering that ℎ is the distance between the point � and the plane (
−−→
�� ,
−−→
��), we have:

ℎ =
|−→= · −−→�� |
| |−→= | |

(22)

with −→= the normal vector of the plane (
−−→
�� ,
−−→
��), which is defined as:

−→= = −−→�� × −−→�� (23)
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From equations Eqs. (20) and (21),
−−→
�� and

−−→
�� are expressed as functions of C:

−−→
�� =

−−→
�� + C − Dmax

C

−−→
�� (24a)

−−→
�� =

−−→
�� + C − Dmax

C − Dmin

−−→
�� (24b)

Eq. (23) is developed as:

−→= = C − Dmax
C − Dmin

(−−→�� × −−→��) + C − Dmax
C
(−−→�� × −−→��) + (C − Dmax)2

C (C − Dmin)
(−−→�� × −−→��) (25)

Hence, the numerator of Eq. (22) is rewritten:

���−→= · −−→����� = 6(C − Dmax)2
C (C − Dmin)

VABCD (26)

withVABCD the volume of the tetrahedron ABCD.

The denominator of equation Eq. (22) can also be developed:

| |−→= | | = 2(C − Dmax)

√
A2BCD
(C − Dmin)2

+
A2ACD
C2
+ (C − Dmax)2
C2 (C − Dmin)2

A2ABD (27)

with ABCD =
1
2
| |−−→��| | | |−−→�� | | | sin \� |, AACD =

1
2
| |−−→��| | | |−−→�� | | | sin \� | and AABD =

1
2
| |−−→��| | | |−−→��| | | sin \� | the

areas of the triangles BCD, ACD and ABD respectively (see Figure 35).

(a) Triangle BCD (b) Triangle ACD (c) Triangle ABD

Fig. 35 Triangles in the tetrahedron.

Replacing (26) and (27) in (22), then in (19):

A2BCDC
2 + A2ACD (C − Dmin)2 + A2ABD (C − Dmax)2 = 9�2V2ABCD (28)
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We end up with the quadratic equation for C:

(
A2BCD + A

2
ACD + A

2
ABD

)
C2 − 2

(
A2ACDDmin + A2ABDDmax

)
C + A2ACDD

2
min + A

2
ABDD

2
max − 9�2V2ABCD = 0 (29)

The solution C must satisfy Dmax < C, and should be updated from within the tetrahedron, namely:

�� cos \� < �� <
��

cos \�
(30a)

�� cos \� < �� <
��

cos \�
(30b)

�� cos \� < �� <
��

cos \�
(30c)

Now in terms of C:

�� cos \� < ��
C − Dmax
C − Dmin

<
��

cos \�
(31a)

�� cos \� < ��
C − Dmax

C
<

��

cos \�
(31b)

�� cos \� < ��
C − Dmin

C
<

��

cos \�
(31c)

The update procedure is given as follows:

Algorithm 3 Update on a 3D Meshpoint Procedure
1: Solve Eq. (29). Note C the solution.
2: if C > Dmax and all 3 conditions of Eq. (31) are checked then
3: ) (�) = min () (�) , C + ) (�))
4: else
5: Solve quadratic equation in the triangle ABD. Note C ′ the solution.
6: if C ′ > Dmin and condition of Eq. (31c) is checked then
7: ) (�) = min () (�) , C ′ + ) (�))
8: else
9: ) (�) = min () (�) , �� × � + ) (�) , �� × � + ) (�) , �� × � + ) (�))
10: end if
11: end if
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