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Abstract

In the last couple of years, performances of light soaring aircraft (para
gliders, hang gliders, or light sailplanes) have increased significantly,
allowing pilots to fly great distances using only the convective energy of
the atmosphere. This activity, called “Cross-Country flying” or ”soar-
ing”, requires topological and aerological knowledge and a lot of pre-flight
preparation in order to make the right decisions, thus maximizing the
flying distance or minimizing the flying time in a race. To optimize
these flights, a pre-tactical decision support tool has been developed.
This tool results from the adaptation of the Fast Marching Tree Star
algorithm. It is extended in such a way it can deal with differential con-
straints associated with light soaring aircraft, operating in a convective
atmosphere, in a field of wind, and close to reliefs. The method has
been tested and validated on a real competition light soaring aircraft.
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1 Introduction

For the last few years, ultralight gliders have evolved significantly making them
more efficient and accessible. Current performances allow pilots to fly large
distances without engines, using only the convective energy of the atmosphere.
This activity, called ”Cross-Country (XC) Flying”, is mainly based on flight
trajectories that join several thermals (i.e., columns of air with significant
upwind components). Spiral-like trajectories are flown inside thermals in order
to take enough altitude and then glide towards the next thermal area, repeating
this process in order to travel long distances (Fig. 1).

Fig. 1: Cross-Country (XC) flying

Year after year, more and more XC competitions take place. All com-
petitors are equipped with cutting-edge technology and it has become very
challenging to win. At present, there are two ways to compete in XC:

• to fly the longest distance (Open distance).
• to fly the first to finish (Race to goal).

When competing in Race to goal, pilots are supposed to fly all the way
through specified control points represented by virtual cylinders in the air.
Both competitions require very specific flying skills, along with an accurate
knowledge of meteorological conditions.

In order to give the pilot an idea of what could be the optimal path to
follow for such a competition, a pre-tactical decision support tool is proposed



Computing optimal trajectories for light soaring aircraft using FMT* 3

in this paper. The tool is based on a modified version of the Fast Marching
Tree Star (FMT*) algorithm. This sampling-based method takes into account
the wind forecast of the competition day and a probability map of thermals [1].
However, the model presented does not take into account the flight dynamics
of the ultralight glider and considers weather conditions as constant over time.

The main contribution of this paper is to model the path planning problem
for XC flying as an optimal kinodynamic motion planning problem. The second
contribution of this paper is to provide an extension of the FMT* algorithm
to deal with high anisotropic environments and nonlinear differential motion
constraints. Usually, the drawback of adding differential motion equations in a
sampling-based path planning algorithm is the need for a two-point boundary
value problem (TPBV) solver that computes a near optimal control input
to steer the vehicles between specified initial and final states. As a way to
get around, the TPBV has been reduced to either a quadratic or non-linear
equation. This paper is organized as follows: Section 2 presents a state of the
art of path planning algorithm and trajectory optimization for soaring flight.
Section 3 details the problem that is solved. Section 4 describes the proposed
algorithm. Finally, simulation results on a competition paraglider are presented
in Section 5.

2 Previous Related Works

The main objective of motion planning problems is to find a sequence of valid
configurations that drives an object (i.e., vehicle) from an origin to a desti-
nation point while avoiding collision with obstacles and minimizing a given
cost function (time, distance,...). Several approaches and methods have been
developed to address this problem. The most used ones are outlined below.

2.1 Discretization of the space

One approach is to discretize the research space in the form of a graph or a
tree and use this structure to find a feasible path.

2.1.1 Deterministic algorithms

The first category of discreet methods are deterministic algorithms, where the
network is fixed and therefore two same sets of initial conditions generate the
same solution. The solution is limited because it depends on the graph. A larger
problem or a continuous research space can lead to a high number of nodes
and thus, an important computational time. Dijkstra’s algorithm, introduced
by Edsger Dijkstra in 1959 [2], is a classical way to find the shortest path in a
graph with positive edge values. For a given starting node, the algorithm will
compute the minimum cost path to any node of the graph. Using a priority
queue, the time complexity is O(a+n.log(n)) with a the number of edges and
n the number of nodes. The A* algorithm is an informed path search algorithm
[3], often used when planning the path of a robot. It is close to Dijkstra’s
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method, where a heuristic function h is added and steers the path toward the
goal. The cost function is defined as follows:

f(n) = g(n) + h(n) (1)

where g(n) the cost of the path from the start and h(n), an estimation of the
cost from the node n to the goal. At each iteration, the node n that minimizes
f is added, in such a way it extends the path all the way to the goal. Since the
heuristic function must be admissible in order to ensure its optimality, this is
not an easy task for a complex problem.

2.1.2 Probabilistic algorithms

The other category of discreet algorithms is the probabilistic one. Instead of
using an explicit representation of the space, a set of points is randomly sam-
pled in the free space. Then, a research tree is built to explore the space and to
find a feasible trajectory. Compared to deterministic methods, these algorithms
are less costly from a computational time point of view and more adapted to
high dimensional space. Sampling-based methods are a family of methods that
includes multi-query algorithms, such as Probabilistic Road Map (PRM); and
single query methods, such as Rapidly Exploring Random Tree (RRT) [4].
It also includes their asymptotically optimal equivalents PRM* and RRT*. A
state-of-the-art sampling-based algorithm is the Fast Marching Tree (FMT)
algorithm [5]. It is asymptotically optimal and converges significantly faster
than its counterpart path planning algorithms, justifying its use in the article.
In the PRM, a random graph is computed in order to represent the research
space, and then, a classical path searching method is applied to this graph. In
the RRT and FMT algorithms, the rationale is different: the sampling is used
to build a research tree iteratively, from the start to the goal. An extension of
the sampling-based algorithms RRT* and FMT* have been developed in [6]
and in [7] to handle systems described by differential constraints. These meth-
ods have been applied to some aeronautic problems such as obstacle avoidance
trajectory design in [8], or more recently to emergency trajectory generation
in [9, 10].

2.2 Optimal control

Another approach to answering the motion planning problem is to solve the
associated optimal control problem (OCP). The goal is to compute, for any
time, the optimal input for a system in order to minimize an objective func-
tion, while taking into account the dynamics of the system by considering,
as constraints of the optimization, a set of differential equations. Methods to
solve OCP are based on either direct or indirect methods, among which, level-
set methods, collocation, and multiple shooting. One way to solve the OCP
is to transcript it into a non linear problem and solve it using standard non
linear programming (NLP) solvers [11]. Another way to solve OCP is to make
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an analogy with the propagation of a wave. Since a wave tends to propagate
along the path whose traveling time is shortest. By simulating the propaga-
tion of a wave, an optimal path can be determined, based on a criterion that
has to be optimized.

Fast Marching The Fast Marching algorithm presented in [12] is part of
more general method called level set algorithm. It determines the minimum
time to reach any point of the space from a starting point. This method can
be applied in the case of an isotropic environment. It can also be used in a low
anisotropic environment.

Ordered Upwind When the propagation of the front depends on the
position and on the direction of motion, the space is not considered isotropic. It
is the case under a wind field if the wind speed has the same order of magnitude
as the vehicle’s speed. The Ordered Upwind algorithm has been developed in
[13] to overcome this problem. However, it is more costly compared to the Fast
Marching algorithm.

2.3 Trajectory optimization for soaring aircraft

One of the first research on the optimization of XC flying was made by Paul
MacCready in 1954 [14]. He introduced the speed to fly as the optimal airspeed
to adopt between two thermals making some assumptions on the next thermal
vertical speed. Very popular for sailplanes, this method is less common in
paragliding since pilots do not typically have an airspeed indicator. Also, this
method does not allow an overall optimization of the path, since it considers
each leg (from thermal to thermal) independently. Since the introduction of
the MacCreardy speed to fly, several ways have been studied to optimize the
trajectory of soaring vehicles in the atmosphere:

• Integrate the dynamic equation of the glider from a starting point with a
set of control [15].

• Consider the Hamilton-Jacobi-Bellman equation for the optimal speed to fly
[16].

• Solve the optimal control problem of minimizing the altitude loss of a glider
maneuvering in still air[17].

These above approaches deal with path planning and some of them make
assumptions on the wind field that surround the aircraft. However, the pos-
sibility to optimize the trajectory without assuming the characteristics of the
aerological environment have been studied in [18] or in [19]. The method used
in [18] provides autonomous soaring for a small glider using Q-learning, a
Reinforcement Learning algorithm. However, since the paraglider dynamic is
complex, the Q-learning algorithm is not adapted. In [19], the glider uses a
visual sensor to detect clouds and deduce navigation and guidance.

Following this state of the art, FMT* seems very promising to solve the
studied problem. Indeed, it is asymptotically optimal and its time complexity
is low. Moreover, it can be adaptable to the problem of soaring flight trajectory
optimization.
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3 Problem Setup

This section formulates the problem to be solved and details the different
models that are considered.

3.1 Atmospheric model

The air vehicle evolves in a convective atmosphere and in a wind field which
are supposed constant over time for a given 3D location. The two are set as
one 3D vector field W : R3 → R3, the updraft being modeled by the vertical
wind speed as follows:

(x, y, z) 7→ (Wx(x, y, z),Wy(x, y, z),Wz(x, y)) (2)

The longitudinal components Wx, Wy are computed using a weather forecast.
The vertical component Wz can be determined in two ways. The first one is to
use a weather forecast with a high resolution mesh grid, like the one generated
with WRF (Weather Research and Forecasting tool), which directly gives the
vertical velocity. The other way is to use a thermal map [1] (See Fig. 2), where
the position of the center of thermals are indicated and noted (xi, yi),∀i ∈
N . To compute Wz from this thermal map, each thermal is modeled as 2D
Gaussian independent of the z coordinate and the maximum altitude of a
thermal is limited by the cloud ceiling noted zmax. Thus, for N thermals the
vertical component is written as:

∀(x, y) ∈ R2,Wz(x, y) =

A
N∑
i=1

exp(−(
(x−xi)

2

2σ2 +
(y−yi)2

2σ2 )) if z ≤ zmax

0 if z > zmax

(3)

where σ is the order of magnitude of the radius of a thermal and A is the
maximum velocity inside thermals (see Fig. 3).

Fig. 2: Thermal map,
dots represent position of
thermals

Fig. 3: Gaussian model of a thermal
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3.2 Terrain

The glider evolves over the ground and should avoid collision with it. Thus,
let us define the terrain as a smooth surface zt : R2 → R that is computed
by real data points (see Fig. 4).

3.3 Soaring aircraft kinematics

During the flight, the pilot can adjust the following control variables (see Fig. 5
and Fig. 6):

• the heading ψ ∈ [0, 2π[;
• the airspeed Va ∈ R3, in order to modify the glide path angle γ ∈ [−π, π].

Fig. 4: Terrain surface

Let vh and vv be the horizontal airspeed and the vertical airspeed of the glider
such that:

Va = (vh cosψ, vh sinψ, vv) (4)

The airspeed, the ground speed, and the wind field are linked through the
following differential equations which describe the motion of the aircraft in
space:  ẋ(t) = vh(t) cosψ(t) +Wx(x, y, z)

ẏ(t) = vh(t) sinψ(t) +Wy(x, y, z)
ż(t) = vz(t) +Wz(x, y)

(5)

Fig. 5: Heading control Fig. 6: Glide path angle
control
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where (x(t), y(t), z(t)) is the position at t of the aircraft in a Cartesian frame.
The real kinematic behavior of a light glider is complex and depends on its

nature (paraglider, hang glider, or sailplane). The model described here is
simplified and the following assumptions are made:

Assumption 1. Apparent mass or inertia effect are not considered. This
means that the vehicle is always in a steady-state condition.

Assumption 2. The airspeed of the glider is described by its speed polar.
This means that at any time, the vertical speed vv and the horizontal speed vh
are linked by the polar curve (see Fig. 7). This mean that vv = p(vh), where
the function p can be considered as a quadratic function (∀x ∈ R+, p(x) =
k2x

2 + k1x+ k0) or a linear one (∀x ∈ R+, p(x) = l1x+ l0) and vhmin
≤ vh ≤

vhmax
. In still air, the glider is always in descent (the flight path angle is always

Fig. 7: Speed polar of soaring aircraft

negative). The local wind field due to a thermal will affect the ground glide
path angle, allowing the glider to gain altitude in the case of sufficient upwind.

Assumptions 3. The speed polar is independent of the turn rate (may be
true for a shallow turn).

3.4 Optimal motion planning problem

Finding the minimum time trajectory between two points in XC competitions
can be expressed as an optimization problem as follows:

• Optimality Criterion: Minimize the flying time from the starting point
(x0, y0, z0) to the goal point (xf , yf , zf );

• State Variables: Position of the aircraft at the time instant t :
(x(t), y(t), z(t));

• Control Variables : At time t, the horizontal speed vh(t) and the heading
ψ(t). ∀t > 0, vh(t) ∈ [vhmin

, vhmax
], ψ(t) ∈ [0, 2π];

• Constraints: Respect Eq. (5), the speed polar, and avoid collision with the
terrain (i.e., the height of the glider is always strictly positive).
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Mathematically, this problem can be written as:

minψ(.),vh(.)

∫ T

0
dt = T

subject to: ẋ(t) = vh(t) cosψ(t) +Wx(x(t), y(t), z(t))
ẏ(t) = vh(t) sinψ(t) +Wy(x(t), y(t), z(t))
ż(t) = p(vh(t)) +Wz(x(t), y(t))
vhmin

≤ vh(t) ≤ vhmax

zt(x(t), y(t)) < z(t)
(x(0), y(0), z(0)) = (x0, y0, z0)
(x(T ), y(T ), z(T )) = (xf , yf , zf )

(6)

This optimization problem can be expressed in the general form of an optimal
kinodynamic motion planning problem as the one presented in [6]. Let the
state space χ ⊂ R3 and the control space U ⊂ R2 be compact sets such that:{

∀X(t) ∈ χ X(t) = (x(t), y(t), z(t))
∀u(t) ∈ U u(t) = (vh(t), ψ(t))

(7)

Let the subset χobs ⊂ χ be the obstacle region such that χ/χobs is an open
set and χfree = χ/χobs define the obstacle-free region such that:

∀X(t) ∈ χfree ⇐⇒ zt(x(t), y(t)) < z(t) (8)

Let χgoal ⊂ χ be the goal region and the cost functional:

g : χ → R+

X(t) 7→ g(X(t)) = 1
(9)

Finally, let X and U be the sets of all essentially bounded measurable functions
defined ∀T ∈ R+∗ from [0, T ] to χ and U , respectively. Then, the problem
writes as follows [6]: Given the state space χ, the goal region χgoal, the obstacle-
free region χobs, an initial state (x0, y0, z0) ∈ χfree and a differential equation
that describe the system dynamics. Find a control u ∈ U with domain [0, T ]
for T ∈ R+∗ such that the trajectory X ∈ X:

• verifies Ẋ = f(X(t), u(t)),∀t ∈ [0, T ];
• avoids obstacles, X(t) ∈ χfree,∀t ∈ [0, T ];
• reaches the goal region, X(T ) ∈ χgoal;
• minimizes the cost function J(X) =

∫ T
0
g(X(t))dt.

4 Problem Resolution

The algorithm used to solve the problem presented above is an adaptation
of the sampling-based algorithm FMT* [5]. The process of this algorithm is
detailed below.
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4.1 FMT* Algorithm

The environment is at first (randomly) sampled with N points or nodes. Then,
FMT* explores each node to compute the optimal path from the origin to the
goal (see Figs. 8 and 9).

Fig. 8: Tree constructed by
FMT* is exploring the space

Fig. 9: Once the goal is found,
the optimal path is retrieved

For this, at each iteration, nodes are split into 3 sets:

• Vunvisited: nodes that have never been visited by the FMT* (in green in the
following figures);

• Vopen: nodes that have already been visited but for which the cost value is
not definitively computed (in orange in the following figures);

• Vclosed: nodes that have already been visited but for which the cost value is
definitively computed (in red in the following figures).

The local optimization process works as follows (see Fig. 10) :

1. The lowest-cost open node z is selected and all its unvisited neighbors are
considered. xinit is the starting point of the trajectory, and the root node
of the tree.

2. For each unvisited neighbor x of z, all x open neighbors are considered
and an edge between x and one of these neighbors is added to make this
connection locally-optimal (without considering any constraint).

3. If this connection does not violate constraints or is collision-free, it is added
to the tree and x is removed from the set Vunvisited and added to Vopen.

4. Once all z unvisited neighbors have been visited, z is put in Vclosed and the
iteration is done.

FMT* (for which the pseudocode is given in the Appendix) is extended in
order to take into account the high anisotropic space. In the classical FMT*,
new tree nodes are added in the set named Vopen,new, and this set is added to
a global set Vopen afterward. These steps do not allow radical changes in the
direction of propagation. A way to get around this is to add new tree nodes
directly in the Vopen set.
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Fig. 10: One iteration of the FMT* algorithm

4.2 Implementation details

4.2.1 Non Uniform Sampling Strategy

During a flight, the behavior of the glider changes. When it comes to gliding
between thermals, the flight regime is constant and the trajectory is composed
of long segments. On the other hand, during the climb, the aircraft makes nar-
row spirals. To account for this, thermal areas are sampled with more density
than the free space as illustrated in Fig. 11.

Fig. 11: Non-uniform sampling of the 3D space
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To ensure asymptotic optimality, the neighbour radius rn is defined as
follows [5]:

rn = 2(1 + η)

(
1

dl

) 1
d
(
µ(χfree)

ζd

) 1
d
(
log(n)

n

) 1
d

(10)

where:

• l is the strictly positive upper bound of the probability density function
supported over χfree.

• η > 0 is a tuning parameter that depends on the nature of the problem.
In this case, the kinematic constraint is binding, the covered neighbors are
few compared to the classical case. Thus, η must compensate for this added
constraint.

• µ is the Lebesgue measure and ζd is the volume of the unit ball in
d-dimension.

4.2.2 Trajectory and Cost computation

In the FMT* algorithm, for two samples (Z1, Z2) ∈ χ2
free the function

Cost(Z1, Z2) returns the cost of the optimal trajectory that starts from Z1

and reaches Z2, when such a trajectory exists. Computing such an optimal tra-
jectory, for a line integral cost, for every connection, can be computationally
challenging. Indeed, it means solving a two-point boundary value problem for
each connection. Thus, to compute the cost between two states Z1 and Z2, the
optimal path is approximated with a cost-weighted, straight line connec-
tion which respects the differential constraint. Along the straight line Z1Z2,
the control is supposed constant and thus the solution for the control u is
piecewise-constant.

Z2 = Z1 +
∫ t2
t1
Ẋ(t).dt = Z1 +

∫ t2
t1
f(X(t), u).dt (11)

The integral is computed using a repeated midpoint rule. The interval [t1, t2]
is partitioned into m equally spaced points and h = t2 − t1. Eq. (11) can be
rewritten as follows:

Z2 = Z1 +
h

m

m∑
i=1

f(Z1 +
i(Z2 − Z1)

m+ 1
, u) (12)

The straight line connection Z1Z2 is feasible with respect to the differential
equation if and only if ∃ h > 0 and ∃ u ∈ U verifying (Eq. (12)). Thus,
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computing the cost h is equivalent to solving the following system of equations:
x2 = x1 + hvh cosψ + h

m

m∑
i=1

Wx(xmi, ymi, zmi)

y2 = y1 + hvh sinψ + h
m

m∑
i=1

Wy(xmi, ymi, zmi)

z2 = z1 + hp(vh) +
h
m

m∑
i=1

Wz(xmi, ymi, zmi)

(13)

with p the speed polar function and:

∀i ∈ [1,m],


xmi = x1 +

i(x2−x1)
m+1

ymi = y1 +
i(y2−y1)
m+1

zmi = z1 +
i(z2−z1)
m+1

(14)

For the sake of simplicity Eq. (13) is written : dx = h(vh cosψ + wxm)

dy = h(vh sinψ + wym)
dz = h(p(vh) + wzm)

(15)

4.2.3 Reachable set

Exact estimation of the reachable set is also a computationally intensive task.
However, the reachable set can be estimated. For a set V and a state Z,
Reachable(V,Z) returns the subset Γ ⊂ V such that ∀Z ′ ∈ Γ,∃h > 0,∃vh ∈
[vhmin , vhmax ],∃ψ ∈ [0, 2π[ solution of Eq. (15).

4.2.4 Cost functional with linear polar

In the case of linear speed polar p(x) = l1x + l0, solve Eq. (15) is equivalent
to solve the quadratic equation :

ah2 + bh+ c = 0 (16)

with:  a = l21(wxm
2 + wym

2)− (l0 + wzm)
2

b = 2(dz(l0 + wzm)− l21(dxwxm + dywym))

c = l21(dx
2 + dy2)− dz2

(17)

Thus, for two states Z1, Z2, Cost(Z1, Z2) return the solution h > 0 of (Eq. (16))
which verifies:

vh =
1

l1
(
dz

h
− (l0 + wzm)) ∈ [vhmin , vhmax ]
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4.2.5 Cost functional with quadratic polar

In the case of quadratic speed polar p(x) = k2x
2 + k1x + k0, the system

(Eq. (15)) can be reduced to the following equation:

(
dx

dz
(p(vh) + wzm)− wxm)2 + (

dy

dz
(p(vh) + wzm)− wym)2 = vh

2 (18)

which can be solved by using the bisection method. Thus, for two states Z1,
Z2, Cost(Z1, Z2) returns the solution vh ∈ [vhmin

, vhmax
] of (Eq. (18)) which

gives the minimum h > 0.

4.2.6 Illustration of the modified FMT*

In order to highlight the modifications on the FMT*, the steps are illustrated
(see Fig. 12) and are explained in this section.

Let us detail one iteration on a vertical example, the obstacle represented
in grey can be assimilated as a mountain. The algorithm works in the same
way in 3D.

1. The first step is the same as the classical FMT* (see Section 4.1)
2. For each unvisited neighbor x of z, all x open neighbors are considered and

all connections between x and one of these neighbors are checked.
3. The retain connection is the one that: is feasible from a kinematic point of

view (see Section 4.2.2), minimizes the flying time from the start, and is
collision-free.

4. Once all z unvisited neighbors have been visited, z is put in Vclosed and the
iteration is done.

This process is continued until the goal is reached. Once it is done, the
optimal trajectory can be recovered (bold trajectory in Fig. 12)

5 Results and Discussion

The algorithm presented above was implemented using Python and ran on a
computer with a 1,8 GHz processor, 8 Gb of RAM, and a MacOS operating
system. For the following experiments, the linear polar function representing
a competition paraglider was chosen: vv = −0.2104vh + 1.0247

vhmax
= 16m/s

vhmin
= 8m/s

(19)

Since the optimal solution of the real 3D problem is not known the algorithm is
first validated on 2D scenarios, both on the longitudinal and the vertical axis.
Then a real problem is solved and the results of the algorithm are compared
with the execution of a real flight.
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Fig. 12: Modified FMT*: One iteration and final trajectory

5.1 Longitudinal Validation: Zermelo’s Navigation
problem

The following problem is to plan a 2D trajectory in the horizontal plane from a
starting point A = (20000,−5000) to a final point B = (0, 0) while minimizing
the traveling time. In order to allow the glider to move horizontally, the upwind
Wz(x, y) = wz is set constant equal to 1.5 m/s. As dz = 0, vh is constant:

vh = − l0 + wzm
l1

= 12 m/s

The horizontal wind is set as follows:{
Wx(x, y) =Wx(y) = − vhyh
Wy(x, y) = 0

(20)

with h = 5000m. This problem is known as Zermelo’s navigation problem and
in this particular case (Wx(x, y) = f(y),Wy(x, y) = 0), it admits an analytical
solution. The solution is obtained by using Pontryagin’s maximum principle.
The optimum time solution for this problem is 1751.289 s. Algorithm 1 pre-
sented in Section 4 was run with different uniform samplings and results were
compared with the optimal (analytical) trajectory (see Fig. 13). As the number
of samples increases, the computed trajectory with FMT* converges toward
the optimum solution (see Fig. 14).
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Fig. 13: Comparison of the com-
puted trajectories with FMT* and
the optimal trajectory, from A to B.

Fig. 14: Evolution of the solution
with the number of samples.

5.2 Vertical Validation

Typical trajectories in the vertical plane in XC flying are represented in Fig. 16.
The trajectory consists of a series of gliding phases and climbing phases within
thermal areas. The structure of the minimum time trajectory depends highly
on the position of thermal areas and their intensity. If thermals are weak, the
pilot should fly at a low speed to decrease the sink rate and thus decrease the
altitude loss (blue trajectory). On the contrary, with powerful thermals with
high upwind speed, the pilot should fly at high speed because he will recover
the loss of altitude quickly in the next updraft (black trajectory).

Fig. 15: Examples of vertical trajectories in XC flying from A to B

To verify that the algorithm approximates well the optimal trajectory on
the vertical plane, the following scenario has been put in place. The problem
is to plan the minimum time trajectory from a point A = (0, 1000) to a point
B = (20000, 0) while going through different cylindrical thermal areas with
a radius equal to 150m. The longitudinal wind is null. The positions of two
thermals are [5000 m, 14000 m] with an upwind speed equal to 6 m/s. In order
to access the optimal solution, the problem can be expressed as non linear
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programming problem (NLP) where the decision variables are the altitude
entrance and exit of each thermal and the speed vh for each gliding segment.
The speed vh in thermal areas is constant and equal to the one that gives
the minimum sink rate. Then, the optimal cost and trajectory are computed
using a NLP solver. In this example, the optimal time is 1772.39 s. To point
out the importance of non uniform sampling in an anisotropic environment,
the FMT* algorithm was run with different samplings. Thermal areas, noted
χthermal ⊂ χfree, are sampled with m samples and χfree is sampled with n
samples. Let us denote α = m

n the anisotropic factor of the sampling. Fig. 17
compares the computed trajectories with the optimal one.

Fig. 16: Computed vertical trajec-
tories

Fig. 17: Evolution of the solution
with the number of samples.

When α = 0, the sampling is uniform. In this case, a high number of sam-
ples and thus a high computational time is necessary to approach the optimal
solution. When α > 0, the sampling is non uniform, and the convergence is
much faster. As pointed out above, the relative gap between the computed
time and the optimal time is decreasing when the number of samples increases
(see Fig. 17). Due to the fact that the environment is highly anisotropic, the
number of samples has to be high to approximate well the solution. The pre-
vious two sections showed that the proposed method gives correct results on
both axes, close to the optimal solution if the algorithm is set with a sufficient
number of samples.

5.3 Comparison of real and computed trajectories

The following section deals with the real 3D scenario over the
ground surface. Three different real trajectories (available at
https://www.xcontest.org/world/en/) were compared to computed ones. The
simulated trajectories show important gains in terms of flight time compared
to the real ones (Table 1). However, computed trajectories rely on a the-
oretical thermal map and on wind forecast which can be far from reality.
Comparison of trajectories produced by FMT* and real flown trajectories are
shown in Figs. 18 to 20. Other figures can be found in Section 6.
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Table 1: Cost comparison of computed trajectories with FMT* and real tra-
jectories.

Id Computed Solution (s) Real trajectory (s) Gain (%)

1 3345 4919 32
2 3524 5392 34.6
3 3266 3566 8.4

Fig. 18: Comparison between a computed (blue) and a flown trajectory (black)
for the first scenario, red quivers represent thermals.

Fig. 19: Comparison of the longitudinal trajectories and the altitude profiles
for the first scenario.
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Fig. 20: Another comparison between a computed (blue) and a flown trajec-
tory (black) for the third scenario, red quivers represent thermals.

6 Conclusion

In this paper, a new model of path planning for soaring aircraft has been pre-
sented as well as an anisotropic extension for the FMT* algorithm. Simulations
point out that the method is well adapted to plan the path in a 3D wind field
with complex kinematics motion while avoiding terrain collision. However, sev-
eral points have to be improved. Because the quality of the solution depends
highly on the accuracy of the probabilistic weather data (the wind and ther-
mal map), a confidence index associated with each computed trajectory could
be provided. Moreover, stochastic or robust approaches, as proposed in [20],
could be an interesting approach to further explore. Any aircraft must respect
the rules of the air and thus, avoid restricted airspace. These areas have to be
added in the obstacle set. Finally, the weather (wind and thermals) depends on
time, therefore, for trajectories longer than 2 hours, the time variability should
also be taken into account. This study opens the way for the development of
a future smartphone application to assist Cross-Country Flying competitors.
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Appendix A

Pseudo code of the FMT* algorithm.

Algorithm 1 FMT* with anisotropic extension

1: V ← {xinit} ∪ SampleFree(n) ; E ← ∅
2: Vunvisited ← V \{xinit};Vopen ← {xinit};Vclosed ← ∅
3: z ← xinit
4: while z /∈ χgoal do
5: Nz ← Near(V \{z}, z, r)
6: Xnear ← Nz ∩ Vunvisited
7: for x ∈ Xnear do
8: Nx ← Near(V \{x}, x, r)
9: Γx ← Reachable(V \{x}, x)

10: Ynear ← Nx ∩ Vopen ∩ Γx
11: if Ynear ̸= ∅ then
12: ymin ← argminy∈Ynear{c(y) + Cost(y, x)}
13: if CollisionFree(ymin, x) then
14: E ← E ∪ {(ymin, x)}
15: Vopen ← Vopen ∪ {x}
16: Vunvisited ← Vunvisited\{x}
17: c(x)← c(ymin) + Cost(ymin, x)
18: end if
19: end if
20: end for
21: Vopen ← Vopen\{z}
22: Vclosed ← Vclosed ∪ {z}
23: z ← argminy∈Vopen{c(y)}
24: end while
25: return Path(z, T = (Vopen ∪ Vclosed, E))

Appendix B

More illustrations of the comparison between real and computed 3D trajecto-
ries.
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