A Machine Learning Framework to Predict General Aviation Traffic Counts A Case Study for Nice Cote D'Azur Terminal Control Center - ENAC - École nationale de l'aviation civile Accéder directement au contenu
Communication Dans Un Congrès Année : 2022

A Machine Learning Framework to Predict General Aviation Traffic Counts A Case Study for Nice Cote D'Azur Terminal Control Center

Daniel Delahaye
Moshe Idan
  • Fonction : Auteur
  • PersonId : 1208583

Résumé

General Aviation traffic prediction is a major concern for Air Navigation Service Providers as it has a direct impact on air traffic flow and capacity management measures. However, today, few tools are available to address this issue. This paper proposes a methodology to predict GA traffic based on Machine Learning models training with historical data. Initial promising results are obtained on Nice Cote D'Azur Terminal Control Center sectors case study using meteorological and calendar data with an increase of the prediction performance of 25% compared to current tools used in operation.
Fichier principal
Vignette du fichier
SIDs_2022_paper_63.pdf (1.45 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03907368 , version 1 (20-12-2022)

Identifiants

  • HAL Id : hal-03907368 , version 1

Citer

Amir Abecassis, Daniel Delahaye, Moshe Idan. A Machine Learning Framework to Predict General Aviation Traffic Counts A Case Study for Nice Cote D'Azur Terminal Control Center. SESAR Innovation Days, Dec 2022, Budapest, Hungary. ⟨hal-03907368⟩
39 Consultations
140 Téléchargements

Partager

Gmail Facebook X LinkedIn More