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Abstract—The air traffic control paradigm is shifting from
sector-based operations to cross-border flow-centric approaches
to overcome sectors’ geographical limits. Under the flow-centric
paradigm, prediction of the traffic flow at major flow intersec-
tions, defined as flow coordination points in this paper, may
assist controllers in coordinating intersecting traffic flows which
is the main challenge for implementing flow-centric concepts.
This paper proposes to predict the flow at coordination points
through a transformer neural network model. Firstly, the flow
coordination points, i.e., the major flow intersections, are iden-
tified by hierarchical clustering of flight trajectory intersections
whose location and connectivity characterize daily traffic flow
patterns as a graph. The number of coordination points is
optimized through graph analysis of the daily flow pattern
evolution. Secondly, air traffic flow features in the airspace during
a period are described as a ‘“paragraph” whose ‘“sentences”
consist of the time and callsign sequences of flights transiting
through the identified coordination points. Finally, a transformer
neural network model is adopted to learn the sequential flow
features and predict the future number of flights passing the
coordination points. The proposed method is applied to French
airspace based on one-month ADS-B data (from Dec 1, 2019,
to Dec 31, 2019), including 158,856 flights. Results show that
the proposed prediction model can approximate the actual flow
values with a coefficient of determination (R?) between 0.909 to
0.99 and a mean absolute percentage error (MAPE) varying from
27.4% to 11.7% with respect to a 15-minute to 2-hour prediction
window. The sustainability of the prediction accuracy under an
increasing prediction window demonstrates the potential of the
proposed model for longer-term flow prediction.

Index Terms—air traffic management, flow-centric operation,
air traffic flow prediction, transformer neural networks.

I. INTRODUCTION

The traditional Air Traffic Control (ATC) service is es-
tablished in geographically partitioned sectors, organized and
managed by the national Air Navigation Service Provider
(ANSP) under expected traffic demand and airspace availabil-
ity [1]. However, such local sector-based approaches prevent
the regional level management and optimization of air traffic
as it only manages individual flight paths within a sector.
Facing the growth of air traffic demand and difficulties in
subdividing heavily loaded sectors, researchers have started
examining and testing the concept of sectorless ATC, which
views the airspace as a whole instead of the current practice
of dividing the airspace into small sectors [2].

One primary practice of sectorless airspace is flow-centric
operation [3], which relies on controlling and monitoring flow-
based formation and evolution of air traffic instead of a fixed
number of geographical sectors. The flow-centric approach is
based on the management of dynamic flow corridors. It opens
the opportunity to distribute air traffic more efficiently in the
airspace without being constrained by sector boundaries.

Despite the benefits of the flow-centric concept, its im-
plementation has been rather limited. One primary challenge
is the coordination between traffic flows to avoid potential
conflicts [4]. The highly dynamic nature of air traffic flow
brings uncertainties into the flight routes, traffic pattern, and
airspace constraints, adversely affecting the effective, efficient,
and safe coordination and regulation of air traffic. An accurate
short-term prediction of air traffic flows, i.e., one to two hours
look-ahead time [5], in the airspace can provide network-wide
flow information to ANSPs and airspace users. It can be a
vital support to flow coordination beforehand to avoid conflict
situations involving a large number of flights. For instance,
flow regulation measures, such as traffic re-routing, can be
executed in advance to provide a smooth and efficient flow of
traffic when the predicted flow exceeds available capacity [6].

In the literature, most research modeled air traffic flows
as the number of flights at specific geographical locations
in the airspace, such as airways, waypoints, or sectors [7].
one way of making air traffic flow prediction is to predict the
individual flight trajectories over time and count the future
number of flights in the airspace [8]. The prediction error
of such trajectory-based methods increase exponentially when
the forecast time horizon increases beyond 20 minutes, which
may be caused by its sensitivity to the prediction accuracy
of various flights under consideration [9]. Furthermore, the
dimension of the models depend on the number of flights in
scope, making such models untenable in real world practice
due to limited computational resources.

An alternation to the trajectory-based approach is the aggre-
gate air traffic flow prediction model focusing on predicting
the overall distribution of the air traffic flows [10]. The aggre-
gated prediction methods are less sensitive to the uncertainty
factors related to individual flights, which can achieve a
longer forecast time horizon with less prediction errors and
requires significantly less computational cost comparing to the



trajectory prediction based approaches.

One way to make aggregate flow prediction is to describe
the number of future flights handled by a control center or a
sector as a linear function of a collection of influencing
observations. Examples include the Linear Dynamic System
Models (LDSM) based on state transition matrices [11], [12]
and the linear regression model [13]. The major shortcoming
of those linear models is their incapability in describing
complex relations other than linearity among the air traffic
flow and the contributing variables. Considering the air traffic
flow in the airspace is the consolidated operation of a va-
riety of stakeholders over space and time, e.g., controllers,
airspace users and ANSPs, simple linear models may not be
able to capture the complex and dynamic behaviors of air
traffic flow to produce accurate short-term predictions. Another
widely discussed approach for aggregated flow prediction is
the machine learning based model [14], such as time-series
extraction and prediction of the number of flights passing
a given waypoint using Extreme Learning Machine based
models [15], prediction of air traffic demand between two
airports using long Short-Term Memory (LSTM) and Support
Vector Machine (SVM) [16], and end-to-end spatial-temporal
time-series prediction based on the concatenation of Convo-
Iutional Neural Networks or Graph Convolutional Networks
(GCN) with recurrent neural networks, such as LSTM, to
respectively capture spatial and temporal features [S], [17].
Most of the time-series models use the number of flights
passing areas or points in the airspace as the only input
feature. Those models mainly analyze the temporal or spatial-
temporal variation of the number of flights [18], which may
fail to consider more detailed air traffic features, such as the
flight sequences transiting through different flow coordination
points, and therefore, limits the prediction accuracy.

In view of the above analysis, this paper proposes a
transformer base model for predicting traffic flow at the
major flow intersections.First, the flow coordination points are
identified by clustering the flight trajectory intersections using
a hierarchical clustering algorithm. The number of clusters is
determined through graph analysis of the flow pattern evolu-
tion. Then, the complex and dynamic airspace flow features
are described as a “paragraph” with “sentences” representing
sequences of the time and callsigns of flights transiting through
the coordination points. Finally, These sequential flow details
are used as the input to a transformer neural network model to
extract the contextual relations of elements in long sequences
and predict future flow on the coordination points.

II. METHODOLOGY

A. Methodology Overview

Focusing on the flow-centric concept, this paper investigates
air traffic flow prediction in two main steps. The first step is to
develop a mechanism to identify the flow coordination points
where major air traffic flows intersect from air traffic data. The
second step is developing a flow prediction model to predict
the number of flights passing the identified coordination points

during different look-ahead periods. Fig. 1 presents a concept
diagram of the proposed flow prediction method.

In the flow-coordination-points identification step, the daily
flow patterns are represented as a graph whose nodes are
extracted from clusters of daily flight trajectory intersection
points and whose edges are constructed based on the connec-
tivity between the nodes. To determine the optimal number of
clusters for flow representation, this paper proposes a graph
analysis approach that evaluates the homogeneity of nodes and
edges across graphs constructed from different days of air
traffic. By maximizing the homogeneity between the graph
representations of the daily air traffic flow, the cluster number
of trajectory intersection points is determined, and the centers
of the clusters are identified as the flow coordination points.

In the air traffic flow prediction step, each flight trajectory
is represented as a sequence of the identified coordination
points through trajectory registration which minimizes the
dissimilarity between the original trajectory and the trajectory
formed from the coordination points. Then, the flow feature
in the airspace during a period is modeled as sequences of
flights transiting through the set of coordination points. It is
forwarded to a transformer based flow prediction model to
learn the contextual description of the complex dynamics of
the air traffic flow and predict the behavioral dynamics of the
flow components, i.e., the number of flights transiting through
the coordination points during a future period.

B. Flow Regulation Points Ildentification

ADS-B data for aircraft surveillance can give highly ac-
curate aircraft position and velocity information, providing
a valuable source for analytical solutions to effective and
efficient airspace usage [19]. This paper identifies the flow
coordination points based on the flight trajectories analysis
using ADS-B data, including intersection points clustering,
daily flow representation, and graph analysis.

1) Intersection Points clustering: As mentioned in Section
II-A, the flow coordination points in this paper are defined as
the positions in the airspace where air traffic flows intersect.
Therefore, this paper proposes to determine the coordination
points clustering the intersection points of flight trajectories.

The intersection points between flight trajectories in this
paper are calculated as the intersections of the mapped tra-
jectories onto the earth’s surface determined by latitudes and
longitudes. Then clustering algorithms are applied to extract
the natural groupings of the trajectory intersection points to
identify the flow coordination points.

Hierarchical clustering relies on the hierarchical decomposi-
tion of the data based on group similarities to find a multilevel
hierarchy of clusters, where clusters at one level are joined
as clusters at the next level [20]. Air transportation networks
are commonly a nodal hierarchy that follows the spoke—hub
structure in which traffic flows are often concentrated around
the traffic hubs, and flight routes are organized as a series of
“spokes” that connect outlying areas to a hub area. There is
a hierarchy of air traffic flows ranging from regional feeders
to international hubs [21]. Therefore, this paper adopts the
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Figure 2: An example of the intersection point clustering.

hierarchical clustering algorithm to discover the representative
flow coordination points.

Fig. 2 shows an example of the clusters of intersection
points. The white curves depict the flight trajectories, and the
solid red circles denote the major flow intersections, which are
the centers of the identified trajectory intersection clusters. The
size of each circle is proportional to the number of intersection
points in the cluster.

The number of clusters to be identified by the hierarchical
clustering algorithm is an important parameter, as the clus-
tering outcome should be able to discover and represent the
natural organization of traffic flow intersections in the airspace.
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On the one hand, if the number of clusters is too large,
the clustering result will be susceptible to small fluctuations
in air traffic flow, which may be unable to capture major
flow patterns to produce credible flow prediction results. On
the other hand, when the number of clusters is too small,
the identified flow intersections can largely deviate from real
flow paths, which dilutes the implementation significance as a
supporting tool to controllers for flight coordination.

2) Daily Flow Pattern Representation: To determine the
optimal number of clusters that should be identified by the
clustering algorithm, this paper proposes a graph [22] based
approach which represent the daily air traffic flow pattern
as a weighted graph G = (V,E), where V is the set of
nodes denoting the air traffic flow components, i.e., the flow
coordination points, which are represented as the centers of the
identified clusters. The flow connections between the nodes
can be described by the weighted edges E. If two nodes
are passed by a flight consecutively, they will be considered
connected, and there will be an edge between them. The
weight of each edge is proportional to the air traffic volume
transiting through it, i.e., the number of flights whose trajecto-
ries consecutively cross the two nodes connected by the edge.

C. Graph Analysis

Considering the necessity of consistent and dependable
performance of airspace users for improvement of the ATM
system predictability, [23], the representation of the traffic
flow patterns should be able to describe the behavioral con-
sistency of air traffic flow in the airspace as well as the daily
alternations in the geographical positions of the intersection
points and the variations in the flow structure. Thus, this



section proposes to determine the optimal number of clusters
by modeling the consistency of daily flow intersection patterns
versus the changes in the number of clusters.

The flow patterns can evolve temporally following the daily
alternations in the air traffic flow, geographically and struc-
turally. Therefore, the flow pattern consistency is evaluated
from two perspectives: 1) geographical consistency in node
positions; 2) structural consistency in node connections.

a) Nearest neighbour analysis: To measure the geo-
graphical consistency in the daily node positions, a nearest
neighbour based analysis is conducted to match the nodes
on the temporal horizon. Concretely, given the traffic pattern
graphs for two consecutive days, for each node in a graph, this
analysis first searches in the other graph to find its nearest node
based on the geographical coordinates. Considering the daily
flow consistency, this pair of nodes is expected to represent the
same flow coordination point in the airspace despite some mi-
nor positional shifts. Therefore, under a proper graphical flow
pattern representation, the resulting nodes pair, a node with
its identified nearest neighboring node, should be identical for
the nodes in both graphs. Conversely, an unqualified graph
representation may result in significantly different matches
between the nodes. Therefore, the geographical consistency
in node positions is quantified as the ratio of the mutually
matched nearest node pairs to the total number of nodes in
the graphs.

Given a number of nodes n in the graph Gy, let
Vi = {vi, v}, .. 0},..,00} represent the set of nodes
in the graph constructed for day Dy, and let Viy1 =
Vhi 15Ut 1s 0 Vky 15 -+ Uy 1 Tepresent the set of nodes in the
graph G4 constructed for day Dj1. For each node v;, in
Vi, find its nearest node v, in Vi11. By representing the
(latitude, longitude) of node v} as (¢}, A}) and node vy,
as (P41, A\jy1), the nearest neighbour of node vy, in Vi1 is
identified according the great circle distance:

argmin  D(ij) = R - 2sin~*(min(1,Vh))
{4} ey

a; =
where

h = sin? (%) + cos ((pi) cos (wiﬂ) sin? (%)

Ap =l — vl @
A= — AL,

R is earth’s radius (mean radius = 6,371km), and h is the
haversine formula which determines the great-circle distance
between two points on a sphere given the longitudes and
latitudes.

By identifying the nearest neighbouring node v;’, ; of node
vi for i =1,...,n and identifying the nearest neighbouring
node ij of node vi 41 through the same calculation, two
sets of matched node pairs between the two graphs can
be obtained: Sy : (vj,vply), (7, vp2y), ..., (v, vpt,) and
Syt (v, vEyq), (02,02, 1), ooy (V7 v}, ). Thus, the geo-
graphical consistency gc in node positions is quantified as:

51U )

where |S7 U Sp| represents the number of node pairs in the
union of S7 and S5, which will be denoted as [ in the paper.

b) Graph structure analysis: Let S = S7 U .Sy represent
the set of paired nodes of graph G} and graph G411, while
Cr = {cp.Chyoci} and Crpy = {Clchrl? Chatr -+ Chi1}
denote the nodes from graph G and Gj1 in S respectively.
Let e ). represent the edge connectmg nodes ¢, and cj. Let
wi_ J. represent the weight on edge e, 7.

The structural consistency in the air traffic flow pattern is
measure by the divergence in the weighted edges between
graphs. More specifically, with the set of paired nodes between
graphs, the structural consistency is evaluated by the mutual
flow connections of nodes in C}, and Cy41 versus all the flow
connections in graph Gy and Gy, which is formulated as:

-1 I . i e
> im1 Zj:i+1 mm(wi ivwi ]k+1)

5 X (2?511 Z?:H—l wk T+ > i Z] i+l wk+1(z‘-)

By calculating the geographical consistency gc; and the
structural consistency gcs versus varying number of clusters,
a “saddle point” on the curve can be adopted as the optimal
number of clusters for traffic flow representation.

gca =
0

D. Air Traffic Flow Prediction

Most traffic flow prediction model adopts recurrent neural
networks, e.g., LSTM and GRU [24], to capture the temporal
relations in a time series data. However, data in such sequential
models need to be processed in order, i.e., the model archi-
tecture requires the output of the previous state to calculate
the next state, which makes it difficult to capture long-term
relations in the sequences, reducing the model’s prediction
power when the prediction window increases.

Transformers are the state-of-the-art neural networks that
learn context by tracking relationships in sequential data
like the words in the sentence. A transformer combines the
attention mechanism (a mechanism that enables to highlight
of relevant features of the input sequence dynamically) based
representations and a parallel architecture in processing el-
ements in a sequential input. Without the use of recurrent
connections, the transformer model allows the ingestion of an
entire sequence in parallel and has the potential to understand
the relationship between sequential elements that are far from
each other.

The seminal transformer uses an encoder-decoder architec-
ture. The encoder extracts features from an input sequence,
and the decoder uses the features as input to produce an output
sequence, such as translating an English sentence into a French
sentence. Therefore, the air traffic flow prediction model in
this paper proposes to adopt a transformer neural network
architecture to extract the air traffic flow sequence features
and predict future air traffic flow.



Moreover, most existing air traffic flow prediction models
are flow-density-based models that only analyze the temporal
or spatial-temporal variations of the number of flights. They
may not be a potent representation of the airspace’s complex
air traffic flow features. In this consideration, air traffic flow
information in this paper is described by a detailed “para-
graph” whose “sentences” are the sequences of flights passing
the flow coordination points in a time sequential order.

In view of the above analysis, this section first registers the
flight trajectories onto a sequence representation of the flow
coordination points. The traffic flow context in the airspace
during a period is then represented as a “paragraph” whose
“sentences” are the sequences of flights (characterized by
the flight callsigns) in the airspace. Then this contextual
description of air traffic flow is used as input to a prediction
model to learn from the flow context and predict the future
air traffic flow. Details of each step will be illustrated in the
following paragraphs.

1) Trajectory Registration: The objective of trajectory reg-
istration in this paper is to search for a sequence of flow
coordination points that can optimally approximate the original
trajectory. This objective is formulated as finding the minimum
dissimilarity between the original trajectory and a represen-
tative trajectory constituted by a subset of the coordination
points. Let T, represent a flight trajectory which is depicted
by a sequence of points {p} — p2,— ...,— pM} obtained
from ADS-B data. Let FRP = {pi,pr,...,pr,. PN} rep-
resent the set of IV identified flow coordination points. Let

{plr — pr2 —, ..,— pi™} represent a sequence
of m flow coordination points with r; being a numerical
index referring to the r;-th points in the original coordination
points set. Therefore, the objective of trajectory registration is
to find a representative trajectory 7., which has the largest
similarity to the original trajectory 7, from all the possible
T,.. The trajectory similarity in this paper is measured by
the Frechet distance [25], a measure of similarity between
curves by taking into account the location and ordering of the
points along the curves. Thus, the objective function of the
trajectory registration is formulated as follows:

obj = argmln 0r (T, T))
T, = {pj* = p[2 —,...,— pim} )
{pr 7pr 9. '7p'7,:7n} 6 FRP

The function 6 (T,,T,) denotes the Frechet distance
between T, and ;.. After trajectory registration, the trajectory
T, Wlll be represented as the sequence T, = {pr1 — p: -
sy PrE = prm }. The flight crossing time at point prE
is apErommated as the flight crossing time at the closest point
to p.* in T),.

2) Flow Context Extraction: As mentioned before, the
traffic flow context in the airspace during a period is then rep-
resented as a “paragraph” whose “sentences” are the sequences
of flights (characterized by the flight callsign) in the airspace.
Use ty and t; to denote the start and end times of a period. Let
FPF¥ denote the traffic flow at coordination point p¥ during

to and t;. FP* can be described as a sequence of flights
(callsigns) according the time flights passing p¥, i.e., FPF :
Ti f2 s fiy o [ with ff denoting the i-th flight in the se-
quence and my, denoting the total number of flights passing p¥.
Analogizing FP" as a “sentence” depicting the flow context
at p’,f, the combinations of “sentences” during ¢y and ¢4, i.e.,
“to—ti: fLfE o S S S s I SR Y
constitute a “paragraph” descrlptlon of the flow context in the
entire airspace. The paragraphs for various periods will be used
as inputs to the transformer based prediction model, introduced
in the next section, to learn the contextual relations between
air traffic flow and make predictions about the future air traffic
flow.

3) Transformer based Prediction Model: The structure of
the transformer based prediction model is shown in Fig. 3. The
main components are tokenization, embedding, transformer
encoder, and a fully-connected layer to produce the prediction
outcome.

a) Tokenization: Given an input sequence, i.e., the traffic
flow context including the time and the flight callsign se-
quences at different flow coordination points, tokenization [26]
is applied to convert the input into a list of integers that can be
embedded into a vector space. The flight callsigns in the input
sequence refer to specific flights in the airspace, which differ
from the natural word composition, whose prefixes, suffixes,
and infixes can change their inherent meaning. Therefore the
tokenization in this study adopts word-tokenization, which
splits the data based on natural breaks and meaning, such as
time (number), callsigns (words), and sequence separations
(delimiters).

b) Embedding: After tokenization, the token embedding
layer converts the list of integers, i.e., tokenized flow sequence,
into a list of vectors, as is the case in language processing
applications in general. For the model to use the order of
the elements in the sequence, positional embeddings, which
contain information on the relative or absolute position of the
elements, are added to the token embeddings as the input to
the transformer encoders. The embeddings are trained jointly
with the rest of neural network. Back-propagation is carried
through all the network layers up to the embeddings that are
updated as other parameters. After embedding the elements in
the input sequence, each of them flows through the transformer
encoders which will be described in the follow section.

c) Transformer encoder: The transformer encoder pro-
cesses each element in the input sequence and compiles the
information it captures into a context tensor, i.e., an array of
numbers. The encoder sends the context tensor to the fully-
connected layer to project the context to the predicted flows.
As shown in Fig. 3, the transformer encoder is composed of
a stack of N, encoder blocks. Each encoder block consists of
two sub-layers. The first layer is a multi-head self-attention
mechanism, and the second layer is a position-wise fully
connected feed-forward network.

The self-attention mechanism allows the encoder to look at
other elements in the input sequence when encoding a specific
element. The self-attention creates three vectors from each
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of the encoder’s inputs, Query vector, Key vector, and Value
vector, by multiplying the embedding by three matrices trained
during the training process. The three vectors are used to score
the relevance of other elements in the sequence against the
specific element. The intuition of self-attention is to keep the
values of relevant elements intact and drown out irrelevant el-
ements. Multi-headed attention refined the self-attention layer
by adding a mechanism called “multi-headed” attention that
runs through an attention mechanism several times in parallel.
Intuitively, multi-head attention allows the model to jointly
attend to information from different representation subspaces
at different positions [27].

The output from the encoder is then forwarded to a fully
connected layer to obtain the flow prediction results for
different looking-ahead windows, i.e., future period 1, period
2,..., and period N,

III. EXPERIMENTAL STUDY

To verify the efficacy of the proposed method, an experi-
mental study has been carried out on the French airspace using
one-month ADS-B data from December 1 to December 31,
2019, including a number of 158856 flights. This study focus
on the en-route air traffic above 10,000 ft. The prediction target
in this experimental study is set as: using the past one-hour
traffic information in the airspace to predict the future number
of flights that will transit through a flow coordination point in
the coming 15 minutes, 30 minutes, 45 minutes, 1 hour, 1.25
hours, 1.5 hours, 1.75 hours, and 2 hours.

A. Flow Regulation Points Identification

By finding intersections of flight trajectories in the French
airspace and clustering the intersection points to identify the
major flow intersections on a daily basis, a graph representa-
tion of the daily air traffic flow pattern can be obtained. The
nodes in the graph show the major flow intersections, and the
edges describe the flow volume between these intersections.

Fig. 4 shows the constructed graphs for the air traffic flow in
the French airspace on December 1, 2019. The sub-figures 4a,

(¢) Cluster number: 1000

(d) Cluster number: 2000

Figure 4: The constructed graphs for the air traffic flow in the French airspace on Dec
1, 2019 with different nodes.

4b, 4c, and 4d display the constructed graph when the number
of clusters is set as 300, 600, 1000, and 2000 respectively.
Each green node in the graphs denotes a flow intersection
point, and the node’s size is proportional to the number of
trajectory intersections in the corresponding cluster. Each red
line represents an edge in the graph, while the line thickness
is proportional to the number of flights traveled between the
edge’s start/end nodes. It can be observed from Fig. 4 that,
on the one hand, when the number of clusters is small, the
graph depicts air traffic flow features between city pairs, as
most of the identified flow intersections are featured by the
geographical locations of the metropolis and small cities. Such
a graph may fail to represent important intersecting flows
in the en-route phase of flights. On the other hand, when
the number of clusters is large, the graph structure becomes
complex as it may be affected by trivial interactions between
the air traffic flow.
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In accordance with a set of different cluster numbers ranging
from 100 to 1500, this paper calculated the geographical
consistency gcy and the structural consistency gce. Fig. 5
shows the changes of gc; and gce which are scaled between



0 an 1 versus the varying number of clusters. A “saddle
point” is observed for gcy and gco around the cluster number
605. Therefore, this paper takes the value 605 as the number
of clusters to be identified by the hierarchical clustering
algorithm. The centers of identified clusters are determined
as the flow coordination points.
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Figure 6: Comparison of the identified flow coordination points for two different days:
Ist (red dots) and 2nd (green dots), December 2019.

Fig. 6 shows the identified flow coordination points for
December 1 (red dots) and 2 (green dots), 2019. The sizes
of the dots are proportional to the traffic volume passing the
corresponding coordination points. It can be observed that
the identified coordination points show consistent patterns in
geographical distributions and traffic volumes, although there
are some variations in their geographical locations due to the
differences in daily air traffic flow organizations.

B. Air Traffic Flow Prediction

The last one-hour flight sequences at all flow coordination
points are extracted from the air traffic data and fed to the
transformer neural network flow prediction model to predict
the traffic flow for up to two hours in the future. The
transformer encoder module in this study adopts a widely
used structure that stacks six encoder blocks. The mean square
error (MSE), a commonly used metric for the evaluation of the
performance of regression algorithms, between the predicted
and true values is used to compute the model’s loss function.
The batch size is sixteen during the training phase, and the
learning rate is 0.00002. The training, validation, and test
data consist of 60%, 20%, and 20% of the whole data set,
respectively. Concretely, eighteen days of flow data are used
for model training, the following six days of data for model
validation, and the last six days of data for testing the model.

C. Result Analysis

Given that there are over 600 flow coordination points
identified, this section uses the coordination point, which is
over the Paris area control center and handles the highest traffic
volume, as an example to present the prediction result on the
test dataset.
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Figure 7: Flow prediction results for Dec 30, 2019 over different time horizons as shown
by the y-axis.

Fig. 7 presents the traffic flow prediction result from 00:00
to 23:59 on Dec 30, 2019. The eight panels plot the pre-
diction results for the future 15 minutes, 30 minutes, 45
minutes, 1 hour, 1.25 hours, 1.5 hours, 1.75 hours, and 2
hours respectively. The blue solid shows the actual number
of flights passing the coordination point, while the red line
shows the predicted value with the proposed transformer
neural network prediction model. We can observe from Fig. 7
that the proposed method sustainably gives forecasts in close
proximity to the actual flow value as the prediction window
increases from 15 minutes to 2 hours. Furthermore, the model
performs better in approximating the true flow value under
a larger prediction window, as the prediction curve is more
laminated on the actual curve for the 2-hour prediction window
than the 15-minute window.

The proposed model has been compared with the canonical
Multi-layer Perceptron (MLP) neural network. Blue dashes in
Fig. 7 show the predicted values using MLP neural network.
We can observe that the proposed model gives better predic-
tions for all prediction windows.

Table I shows the quantified prediction performance of
the proposed method, including four metrics: Mean Absolute



TABLE I: Prediction performance of the proposed method under different prediction
windows in terms of MAE, MSE, MAPE, and R?.

MAE MSE MAPE R?
15 minutes  1.683 6.082  0.274  0.909
30 minutes  2.339  12.184 0217  0.951
45 minutes 2755 17.092  0.179  0.968
1 hour 3.102  21.819 0.155 0.977
1.25 hours  3.378 28561 0.139  0.980
1.5 hours 3.794 34200 0.129  0.983
1.75 hours  3.958 34.934 0.122  0.988
2 hours 4129 35837 0.117  0.990

Error (MAE), Mean Squared Error (MSE), Mean Absolute
Percentage Error (MAPE), and R-squared (R2). It can be
seen from Table I that the MAE, MSE, and R? values of the
proposed method increase with the prediction window, while
the MAPE value decreases with the prediction window.

Fig. 8 visualizes the changes in the prediction performance
of the proposed method versus MLP for varying prediction
windows. It can be observed that the proposed method outper-
forms MLP in all of the metrics. The MSE, MAE, and MAPE
values of the proposed method are lower than MLP, indicating
more minor prediction errors. At the same time, the R? value
is higher than MLP, showing a better approximation to the
actual flow curve. The growth in the MSE and MAE values
shows that the gap between the predicted value and the true
value increases as the prediction window increases. The reason
for this may be the increase in the number of flights passing
the coordination points in a 2-hour duration compared to 15-
minute duration. As can be seen from Fig. 7, the maximum
number of flights in a 15-minute duration is 24, while in a 2-
hour duration is 120. In contrast, the decreasing MAPE value,
as a percentage, and the increasing R?, as a regression per-
formance metric, indicate that the model’s prediction accuracy
improves as the prediction window increases. The reason may
be that the number of flights transiting in the air space during
the next 2 hours has less variation compared to a future 15-
minute duration, which is more stable and predictable.
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Figure 8: Prediction performance (MAE, MSE, MAPE, and R?) of the proposed method
versus MLP as the prediction window increases.

IV. CONCLUSIONS

Aimed at contributing to the future flow-centric ATC
paradigm, this paper proposed a transformer neural network
approach for air traffic flow prediction at flow coordination

points. Firstly, the flow coordination points were identified
through hierarchical clustering of the flight trajectory intersec-
tions and the number of clusters was identified by analysing
the consistency of daily traffic flow patterns modelled as
graphs. Secondly, this paper described the air traffic flow as a
“paragraph” of the flights sequences passing the coordination
points and a transformer neural network model was adopted
to learn from the contextual descriptions of air traffic and
predict future air traffic flow at the coordination points. An
experimental study on French airspace using the flight data
from December 1-31, 2019. Results showed that the proposed
prediction model approximated the true flow values with
a R? between 0.909 to 0.99 and a MAPE varying from
27.4% to 11.7% for a 15-minute to 2-hour prediction window.
The sustainability of the prediction performance under the
increasing prediction window demonstrated the potential of
the proposed model for longer-term flow prediction.

The proposed air traffic flow prediction method provides
a graph-based approach to modelling air traffic flow patterns
under the flow-centric paradigm. Predicting the future flow
on the coordination points can inform flow-centric operations
of the anticipated intersecting flows so that flow coordination
can be applied in advance to avoid complex and conflicting
situations involving a large number of flights.

This paper’s prediction of air traffic flow only considered
flight numbers as the prediction target. However, the mixture
of the intersecting flows can also affect the complexity and
difficulty in flow management. A flow scenario with more
crossing traffic is more challenging than a scenario with
more parallel traffic, although the same number of flights are
involved. Therefore, in the future, this traffic flow prediction
method can be improved by considering the prediction of flow
mixture to deliver a more meaningful prediction result.
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