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Abstract—Very critical convective weather leads to sharp drop
in air-traffic en-route sector capacity keen on creating severe
demand-capacity imbalances, called also hotspots. Following the
knock-on effect, these imbalances spread across the network,
causing the so-called netspots. The problem of demand-capacity
hotspot/netspot mitigation with demand-side measures aims at
solving these imbalances using ground delays and reroutings,
while minimizing the total delay at arrival. A simulated-annealing
hyper-heuristic relying on efficient neighborhood operators is
proposed. A study on the combination of different delay-based
and rerouting-based neighborhood operators is conducted. The
best combination is used to solve a large-scale and challenging
instance, in a relatively short computation time.

Keywords—demand-capacity balancing, hyper-heuristics, sim-
ulated annealing

I. INTRODUCTION

Up to 2019 just before Covid-19 crisis, “ATFM en-route”
has been the second most important cause of delay (after
airlines operations) in air transport in Europe [1], with the
highest delays being recorded in summer 2018. The upturn
in air traffic, more recently, paves the way unfortunately for
delay figures to soar again. Delays due to “ATFM en-route”
are typically those impacting flights take-off time, when en-
route sectors cannot accommodate the high air traffic demand.
A sector capacity can fall during some time intervals due
to local critical convective weather conditions (e.g., storms),
which consequently, creates an imbalance between demand
and capacity. An imbalanced sector during a given period of
time, e.g., a sector-hour, is called a demand-capacity hotspot.
In the current operational process, on the day of operations,
Flow Manager Positions (FMPs) use Computer-Assisted Slot
Allocation (CASA) system to mitigate such hotspots, by
defining regulations for the imbalanced sectors. CASA issues
new (delayed) take-off times for flights that are impacted by
regulations. Following the knock-on effect, regulated flights
propagate delay through the network, by creating new demand-
capacity hotspots, hundreds of nautical miles far from the
convective weather zone, as observed in summer 2018. The
aggregation of demand-capacity hotspots spread across the
network, e.g., the European airspace, created by the knock-

on effect, while their origin is a local convective weather, is
called a netspot. The use of conventional CASA regulations
reveals inefficient to solve netspots as excessively large delays
are generated, especially for flights that are captured by several
regulations. Several improvements of the current operating
concepts in air traffic flow management have been identified to
“hedge” against the impact of very-critical weather conditions
on the air traffic situation at the network level. In this context,
SESAR-H2020-funded project ISOBAR (for Artificial Intelli-
gence Solutions to Meteo-Based DCB Imbalances for Network
Operations Planning) seeks to leverage Artificial-Intelligence
techniques to better predict high-risk convective weather and
sector capacity drop, to identify and to efficiently mitigate
hotspots at the network level, i.e., netspots, both at pre-tactical
(one day before operations) and tactical (the day of operations)
stages.

This paper focuses on hotspot mitigation at the pre-tactical
stage, defined as the problem of accommodating air traffic
through the airspace, by delaying take-off times and changing
planned routes, in order to meet reduced sectors capacity,
while minimizing deviations with respect to the original flight
plans. A hyper-heuristic algorithm using an efficient combi-
nation of neighborhood operators is proposed as a solution
method. In the following Subsection I-A, the general principles
of hyper-heuristics are presented. The scope of the paper is
presented in Subsection I-B.

A. Hyper-heuristics

Search algorithms called metaheuristics are approximate
solution methods that iteratively search for a good-quality
solution to a given optimization problem, while trying to
escape local optima. Metaheuristics operate directly on the
solution space, and keep track of either: a single solution
(e.g., simulated annealing, tabu search, etc), or a population
of solutions (e.g., genetic algorithm, etc). On the other hand,
hyper-heuristics are approximate optimization algorithms with
a higher level of automation than metaheuristics. They operate
on a space of low-level heuristics (each of which operates
directly on the solution space), and use a strategy for either



selecting or generating low-level heuristics, throughout the it-
erations. For an extensive literature review on hyper-heuristics,
the reader is redirected to [2], [3]. A selection-based hyper-
heuristic relies on: (1) a pool of low-level heuristics, (2) a
strategy to select the low-level heuristic for the next iteration,
and (3) a strategy to update low-level heuristics scores. Low-
level heuristics (LLH), called also neighborhood operators in
the metaheurisitcs vocabulary, are procedures that operate on
the solution space in order to generate a new solution from
a current one. Low-level heuristics are problem-specific, and
can be classified either as diversification or as intensification
operators. Very often, an initial score is given to each low-
level heuristic, then is updated throughout the iterations based
on each LLH performance. There are several strategies to
select the LLH to apply for the next iteration, among them:
the max strategy, and the roulette-wheel strategy. The max
strategy selects always the LLH with the best score, while the
roulette-wheel randomly selects LLHs with probabilities that
are proportional to their scores. Hyper-heuristics have been
applied successfully to many optimization problems; to name
a few recent applications in air traffic management: [4], [5].

B. Scope of the paper

In this paper, we consider an optimization problem similar
to the one presented in [6], where demand-capacity hotpsots
are to be mitigated using two types of demand-side measures:
ground delay, and alternative trajectories selection. Alternative
trajectories are assumed to be agreed on between airspace
users and the Network Manager at a strategic level. We focus
on situations of very-critical convective weather, leading to
sharp en-route sector capacity drop with respect to nominal
values. We opt for entry count as the capacity metric, since
finer-grained metrics, such as occupancy count [7] or geo-
metrical complexity [8], cannot be used with a lookahead
time of 24 hours before operations, due to high uncertainty.
We propose a simulated-annealing-based hyper-heuristic using
efficient low-level heuristics relying on the concept of flight
overload factor. Recently, a similar concept has been applied
successfully to airspace congestion mitigation using departure
slots assignment [9]. We conduct a numerical study to identify
the best combination of neighborhood operators, the best
strategy to select them, and the best strategy to update their
score, at every iteration.

The remainder of this paper is organized as follows. Sec-
tion II presents more formally the demand-capacity-balancing
problem, with demand-side mitigation measures. Mathematical
notations are summarized in Table I. The solution method
based on a simulated-annealing hyper-heuristic is described
in Section III. The numerical study is reported in Section IV.
Section V concludes this paper.

II. PROBLEM STATEMENT

Consider a time horizon decomposed into P equal-length,
possibly overlapping, time periods. Each time period p ∈ P =
{1, 2, . . . , P} has a start time tp and an end time tp > tp, such
that: tp − tp = l > 0, where l is the time-period duration or

TABLE I. NOTATIONS SUMMARY

Notation Definition

F Set of flight indices
F̄ ⊂ F Set of indices of flights eligible for hotspot

mitigation measures
F̄max Set of indices of highly-overload flights
P Set of counting periods
S Set of sectors of interest
Sf ⊂ S Set of sectors crossed by flight f ∈ F
Tf Set of alternative trajectories for flight f ∈ F̄
P Number of counting periods in P
tp Start time of counting period p

tp End time of counting period p
m Time shift between two consecutive time periods
l Length of one time period
Cp

s Capacity of sector s during period p
Dp

s Demand of sector s during period p
Op

s Overload of sector s during period p
Tf ∈ Tf Selected trajectory decision variable for flight f ∈ F̄
T org
f Original trajectory for flight f ∈ F

tf,0 Take-off time decision variable for flight f ∈ F̄
torgf,0 Original take-off time for flight f ∈ F
tf,s Entry time of flight f ∈ F to sector s ∈ S
tf,∗ Arrival time for flight f ∈ F̄
torgf,∗ Original arrival take-off time for flight f ∈ F
dmax
f Maximum possible take-off delay for flight f ∈ F̄

of Flight overload factor for flight f ∈ F
omax Maximum flight overload factor over all flights in F
v Overload tolerance threshold
T =

(
Tf

)
f∈F̄ Vector of the selected trajectories decision variables,

t0 =
(
tf,0

)
f∈F̄ Vector of the take-off times decision variables,

w1 Weight for the total arrival delay term
w2 Weight for the total unsustainable overload term
w ∈ (0, 1] User-defined coefficient in roulette-wheel selection
α ∈ (0, 1) Scale factor of the cooling schedule
β Minimum acceptance ratio threshold during cooling

length; the same for all time periods, e.g., l = 60 minutes.
We have also: tp+1 − tp = m > 0 and m ≤ l, where m is
the time shift, or move, between two consecutive time periods
such that p ∈ {1, 2, . . . , P − 1}. Typically, m = 20 minutes.

Consider a set of S sectors indexed by s ∈ S . Let Cp
s ≥ 0

denote the capacity of sector s during time period p ∈ P ,
expressed as the maximum number of flight entries to sector s
during time interval [tp, tp), that can be handled by air traffic
controllers (ATCOs). During a given time period p ∈ P , a
sector s ∈ S can be either open or closed. An open sector
is controlled by a couple of ATCOs, hence it has a positive
capacity Cp

s > 0. When sector s is grouped with other sectors
into a larger collapsed sector, it is no more monitored on its
own, while the larger sector is. In this case, sector s is said
to be closed during time period p, and its capacity is set to
Cp

s = ∞.
Consider a set of flights indexed by f ∈ F . Each flight f has

an expected take-off time (commonly abbreviated ETOT) torgf,0 ,
and an original trajectory T org

f . A trajectory is represented as a
sequence of entry times to a subset of sectors. Assume a flight
f crossing a subset of sectors Sf ⊂ S following a trajectory
Tf , then:

Tf = {(tf,s, s), s ∈ Sf} (1)



where tf,s is the entry time of flight f to sector s. Let Fp
s

denote the set of flight indices that enter sector s during
period p:

Fp
s = {f ∈ F | s ∈ Sf and tf,s ∈ [tp, tp)} (2)

Let Dp
s denote the demand of sector s during time period

p ∈ P , expressed as the number of flight entries to sector s
during the time interval [tp, tp). We establish that:

Dp
s =

{
|Fp

s | if sector s is open during period p
0 if sector s is closed during period p

(3)

When demand exceeds capacity in a given sector s during
a time period p, i.e., Dp

s > Cp
s , we say that sector s is

overloaded during period p. The overload of open sector s
during period p is expressed as:

Op
s =


Dp

s − Cp
s

Cp
s

if sector s is open during period p

0 if sector s is closed during period p

(4)

In practice, small overloads can still be managed by ATCOs.
Hence, we define v ∈ [0, 1) an overload-tolerance threshold,
set by the user. A typical value for overload tolerance is v =
10%. A demand-capacity hotspot occurs in a sector s during
period p when: Dp

s > Cp
s × (1 + v), i.e., Op

s > v. In order to
mitigate hotspots, that is to ensure that demand and capacity
are balanced, flight departure times can be delayed and original
trajectories can be changed.

We consider F̄ ⊂ F a subset of flights that can be
modified, i.e., delayed or rerouted, while flights in F\F̄ are
considered as fixed. For example, in Europe, flights eligible
for modification are those departing from European airports,
i.e., typically their airport code starts with L, E, GC, or GM.
However, flights planned to depart from America or Asia
and to use the European airspace cannot be modified by the
Network Manager Operating Center. We assume that every
flight in F̄ has a set of alternative trajectories Tf ∋ T org

f .
The Demand-Capacity Balancing (DCB) problem in AT-

FCM, defined for a set of counting periods P and set of
sector indices S, consists in finding for every flight f ∈ F̄ , an
adjusted take-off time tf,0 ≥ torgf,0 , and a trajectory Tf ∈ Tf ,
such that all demand-capacity hotspots are mitigated, i.e.
Op

s ≤ v for all (s, p) ∈ S×P , while minimizing the total delay
at arrival, incurred by all flights. Moreover, the take-off delay
per flight may be bounded by dmax

f for every flight f ∈ F̄ . The
complete model of the demand-Capacity Balancing (DCB)
problem in ATFCM reads:

min
t0,T

∑
f∈F̄

(tf,∗ − torgf,∗ ) (5)

s.t. Op
s ≤ v (s, p) ∈ S × P (6)

tf,0 − torgf,0 ∈
[
0 , dmax

f

]
f ∈ F̄ (7)

Tf ∈ Tf f ∈ F̄ (8)

where torgf,∗ , and tf,∗ denote respectively the original, and the
adjusted, arrival time of flight f . These arrival times can be

computed directly from take-off times, tf,0 and torgf,0 , using the
flight duration of the corresponding trajectories.

Relaxed DCB problem

Finding a feasible solution to the DCB problem is not
straightforward, especially when the initial overload situation
is too critical. For this reason, we consider the relaxed problem
where capacity constraints (6) are integrated into the objective
function, as follows:

min
t0,T

w1

∑
f∈F̄

(tf,∗ − torgf,∗ ) + w2

∑
(s,p)∈S×P

max+ (Op
s − v)

s.t. Constraints (7) and (8)
(Relaxed DCB)

where w1 and w2 are user-defined weights, and max+(·) =
max (0, ·). Note that for the relaxed problem, the solution with
no delay at departure and no change in trajectories, is a feasible
solution. We call the term

∑
(s,p)∈S×P

max+ (Op
s − v) the total

unsustainable overload. A feasible solution of the relaxed
problem (Relaxed DCB) that has a null total unsustainable
overload is a feasible solution of the original problem, given
by equations (5) – (8). We define the best solution as the
one that has, most importantly, the lowest total unsustainable
overload (ideally no unsustainable overload). Then, for two
solutions with equal total unsustainable overload, the one with
the smallest total arrival delay is the better.

III. SIMULATED-ANNEALING HYPER-HEURISTIC

Simulated annealing (SA) is a well-known metaheuristic
that mimics the annealing process from metallurgy [10]. While
classical SA relies on a single neighborhood operator, we
propose a simulated-annealing-based hyper-heuristic to solve
the relaxed version of the DCB problem (Relaxed DCB),
using a pool of neighborhood operators, designed using the
idea of flight overload factor. Each neighborhood operator
is given a performance score, that is updated along the
iterations according to predefined rules. At every iteration,
a neighborhood operator is selected according to specific
strategies. In our study, we evaluate different rules to update
the performance scores of neighborhood operator, and differ-
ent strategies to select the neighborhood operator at every
iteration. In Subsection III-A, we briefly review SA applied
to our problem. The hyper-heuristic procedure is presented
in Subsection III-B. The pool of neighborhood operators is
presented in Subsection III-C. The studied rules to update the
operators’ score and the strategies to select them are presented
in Subsection III-D.

A. Simulated annealing

SA starts with an initial solution, represented by a vec-
tor of decisions. In our problem, each decision specifies,
for each flight, the on-ground delay and the trajectory, i.e.(
tf,0 − torg

f,0 , Tf

)
. Using a predefined neighborhood operator,

the current solution is evolved into a new one, and evaluated
in terms of objective function. The acceptance of the new



solution is driven by the Metropolis acceptance criterion [11],
that stipulates that an improving solution is always accepted,
while a non-improving solution is accepted with a probability
controlled by an internal parameter, called the temperature.
Assuming objnew and objcurr are the objective function values
of the new and the current solutions respectively, and Temp
the temperature parameter, the acceptance probability, AP ,
according to the Metropolis criterion, in the minimization case,
reads:

AP =

{
1 if objnew < objcurr,

e−(objnew−objcurr)/Temp otherwise.

In SA, the temperature parameter is initialized, either statically
or dynamically through a heat-up procedure, then it decreases
following a cooling schedule. The Metropolis criterion ensures
that as the temperature decreases, the probability of acceptance
of non-improving solutions converges to zero, which allows
for exploration at the early search stages, and exploitation at
the late ones. Note that a too fast cooling schedule could lead
to pre-mature convergence of the search to a local optimum,
while a too slow cooling may extend the computing time. Re-
heating or temperature reset are also common strategies to
help the search escape from local optima. Several strategies to
set the initial temperature, as well as to conduct cooling, and
reheating or temperature reset, are proposed in [12].

B. Hyper-heuristic procedure

Algorithm 1 Hyper-heuristic procedure
1: Initialize neighborhood operators’ score
2: Initialize the temperature
3: Initialize the current solution
4: while stopping criterion is not met do
5: for a number of iterations do
6: Select a neighborhood operator
7: Generate a new neighboring solution
8: if Metropolis acceptance criterion is met then
9: Update the current solution

10: end if
11: Update the selected neighborhood operator’s score
12: end for
13: Temperature cooling or reheating
14: end while

We propose a hyper-heuristic algorithm based on simulated
annealing, as sketched in Algorithm 1. In the initialization
phase (lines 1–3), we assign and initialize a performance
score to each neighborhood operator, we compute the initial
temperature using a heat-up procedure (see Subsection III-B1),
and we set the current solution to the “no delay, no rerouting”
solution. At the beginning of each round of iterations, a
neighborhood operator is selected according to a predefined
strategy (line 6), then used to generate a new solution (line 7).
The Metropolis criterion is applied to decide whether to accept
the new solution or not (lines 8–10). Subsequently, the perfor-
mance score of the selected neighborhood operator is updated
according to predefined rules (line 11). After every round of
iterations, the temperature parameter is revised, either cooled

or re-heated (line 13), as described in Subsection III-B2. The
algorithm stops either when the temperature is too low, or
when a predefined time limit is exceeded (line 4).

1) Heat-up procedure: We set the temperature to a first
value, for example, computed as the maximum difference
between two neighbor solutions [10]. We generate a random
solution. Then, it is evolved during nb iter iterations using
neighborhood operators, where nb iter is a user-defined pa-
rameter. The heat-up procedure is stopped if the acceptance
ratio over the last nb iter iterations is greater than or equal
to a predefined target value (typically 99%). Otherwise, the
temperature is increased by a heat-up factor (e.g., by a factor
of 2), and a new round of neighboring solution generation is
restarted for another nb iter iterations.

2) Cooling and re-heating schedule: We opt for a geomet-
ric progression with a scale factor α ∈ (0, 1) for temperature
cooling; Tempi+1 = Tempi × α, where Tempi and Tempi+1

denote the temperature values for two successive iterations. We
define β the minimum acceptance ratio threshold over nb iter
iterations, typically β = 90%. During the cooling process, if
the acceptance ratio over the last nb iter iterations is below β,
then we suspend the cooling schedule. The temperature is kept
at the same value for additional nb iter add iterations. The
cooling schedule is resumed when either the acceptance ratio
is greater than or equal to β, or a predefined maximum number
of iterations at the same temperature, denoted max nb iter,
is reached. This procedure has the merit to avoid too early
convergence without causing divergence, unlike re-heating
schemes where the temperature is simply increased.

C. Neighborhood operators based on flight overload factor

In order to design an efficient hyper-heuristic, one needs
to design well-performing neighborhood operators tailored to
the problem at hand. For the DCB problem with demand-side
decisions, one key idea is to modify flights that are very much
involved in hotspots. To measure the degree of involvement
of individual flights in the overall demand-capacity overload
situation across the region of interest, we define the flight
overload factor of ≥ 0, for a given flight f ∈ F , as the sum
of all fractions of unsustainable overload of the sector-periods
crossed by f . It reads:

of =
∑
s∈Sf

∑
p∈P |tf,s∈[tp,tp)

max+ (Op
s − v) (9)

The definition of flight overload factor not only takes into
account the number of unsustainably overloaded sector-periods
crossed by a given flight but also the amplitude by which
the overload tolerance is exceeded in each sector-period. Note
that a flight f with a null overload factor, i.e., of = 0, is
a one that does not cross any hotspot. We shall call a flight
with a positive overload factor, i.e., of > 0, an overloaded
flight. The neighborhood operators should focus on flights with
high overload factor, by either delaying them, to overstep the
overloaded time periods, or by rerouting them, to hopefully
deviate from some overloaded sectors. To allow a flexible



selection among highly overloaded flights, we rely on roulette-
wheel selection based on flights overload factor, as follows.
First, the largest flight overload factor, omax, is found. Then,
all flights with an overload factor within [w × omax , omax]
are shortlisted, where w ∈ (0, 1] is a user-defined coefficient.
Finally, a roulette-wheel selection is applied on the shortlisted
flights where each flight’s selection probability is proportional
to its own overload factor, as described in Algorithm 2.

Algorithm 2 Roulette-wheel selection based on flight overload
factor
Require: w ∈ (0, 1] a user-defined coefficient

1: Find the largest flight overload factor, omax

2: Select all flights with an overload factor within [w × omax , omax], and store
them in F̄max.

3: Let: probf =
of∑

k∈F̄max

ok
, for every f ∈ F̄max

4: Apply a roulette-wheel selection among the selected flights where probf is the
selection probability of flight f ∈ F̄max.

The proposed neighborhood operators are summarized in
Table II. The operators from DO-0 through DO-2 apply delay,
while operators from RO-1 and RO-2 apply rerouting. The
neighborhood operator LS is a local search procedure, that
can be applied directly after any DO-x operator, so that the
delay assigned to the flight selected in DO-x can be locally
optimized. When applied in a given iteration, DO-x operators
assign a new delay to a selected flight, regardless its last
delay value, from the previous iterations. Hence, DO-x can
be considered as diversification operators, while LS can be
seen as an intensification operator. DO-2 and RO-2 are further
described in Algorithms 3 and 4 respectively.

TABLE II. NEIGHBORHOOD OPERATORS

Identifier Neighborhood operator description

DO-0 Delay a random flight
DO-1 Delay the most overloaded flight
DO-2 Delay a highly-overloaded flight
LS Search for the best delay of a given flight, around a given

delay value

RO-1 Reroute the most overloaded flight
RO-2 Reroute a highly-overloaded flight

Algorithm 3 DO-2 : Delay a highly-overloaded flight
Require: dmin and dmax

1: Select a flight using the roulette-wheel procedure defined in Algorithm 2
2: Apply a random delay between dmin and dmax to the selected flight.

Algorithm 4 RO-2 : Reroute a highly-overloaded flight
1: Select a flight using the roulette-wheel procedure defined in Algorithm 2
2: Randomly select an alternative trajectory for the selected flight.

D. Strategies for neighborhood operators management

We study two strategies to update neighborhood operators
scores:

• Additive: if the new solution improves the objective func-
tion’s value, the score is incremented by 1. Otherwise,
the score is decremented by 1, while ensuring that the
minimum score is 1.

• Customized: if the new solution improves the objective
function’s value, the score is incremented by 1. Other-
wise, the score is square-rooted.

We study two strategies to select the next neighborhood
operator:

• Max strategy: the neighborhood operator with the high-
est score is systematically selected.

• Roulette-wheel strategy: neighborhood operators are
selected with probabilities proportional to their scores.

IV. NUMERICAL STUDY

We conduct a numerical study to identify the best com-
bination of neighborhood operators, the best rule to update
neighborhood operators’ score, and the best strategy to select
the next operator. First, we test the three delay-based neighbor-
hood operators, with and without the local search procedure,
introduced in Subsection III-C. The best delay-based operator
is the one that solves (ideally) all unsustainably-overloaded
sector-periods, while generating the smallest total delay. After
selecting the best delay-based neighborhood operator, combi-
nations with rerouting operators are tested, assuming that at
every iteration of the hyper-heuristic, the two neighborhood
operators are selected with a 50% probability each. The
best combination between delay-based and rerouting-based
operators is selected to test the rules to update neighborhood
operators’ score, and the best strategy to select the next
operators, among those introduced in Subsection III-D.

Details about the studied instance and the parameter values
is given Subsection IV-A, and Tables III and IV therein.
Results of delay-based neighborhood operators are presented
in Subsection IV-B. Results of the combination of the best
delay-based neighborhood operator and rerouting operators are
given in Subsection IV-C. Rules to update neighborhood oper-
ators’ score and strategies to select neighborhood operators are
studied in Subsection IV-D. Finally, more insights are given
in Subsection IV-E about the best solution obtained in terms
of the overload situation, the issued delay and rerouting. The
proposed hyper-heursitic was developed in JAVA programming
language, and all results are obtained on a Windows 11
platform, with an Intel(R) Core(TM) i5 CPU @ 1.60GHz and
12 GB RAM. The maximum time limit is set to 5 minutes.

A. Instances and parameter values

We focus on July 27th 2019, where very high delay was
recorded due to very convective weather in Europe. All
elementary and collapsed sectors in ACCs: Karlruhe (EDU-
UUAC), Zagreb (LDZOACC), Barcelona (LECBACC), Mar-
seille (LFMMACC), and Vienna (LOVVACC) are considered.
Eurocontrol DDR2 traffic files, so6 and t5, are used. Entry
times to sectors are retrieved from t5 files, while meta data
on flights (callsigns, aircraft operators, etc) are taken from
so6 files. Predicted capacity data was generated by machine



learning, and provided as an input from ISOBAR consortium
partners. Details on the instance size and the initial overload
situation are provided in Table III. The hyper-heuristic param-
eter values are given in Table IV.

Alternative trajectories: To retrieve a set of alternative
trajectories for each flight, we analyse the so6 and t5 files
for the day of interest, and we group all trajectories by four
criteria: origin (O), destination (D), aircraft type (AC) and
airspace user (AU). Then, for every set of trajectories sharing
the same values for the four criteria, we eliminate equivalent
trajectories. Two trajectories are assumed to be equivalent if
they cross the same sectors in the same order. The final sets
of non-equivalent trajectories grouped by (O, D, AC, AU)
are used to fill in the set of alternative trajectories for every
flight. It is noteworthy that the merit of the retrieved alternative
trajectories is twofold: they are realistic, and they integrate the
airspace user’s dimension.

TABLE III. INSTANCE DETAILS

Day of traffic:
Nb counting periods (l = 60 min, m = 20 min) 72
Nb sectors of interest 175
Nb flights crossing airspace of interest 12 224
Nb flights eligible for hotspot mitigation measures 10 924
(departing from airports: L* E* GC* GM*)

Predicted overload situation:
Maximum overload per sector-period 56%
Total unsustainable overload 48.84
Nb overloaded sector-periods 522
Nb unsustainably-overloaded sector-periods 330

TABLE IV. PARAMETER VALUES

Parameter Value Parameter Value
α 0.99 w1 1.0
β 0.90 w2 2000.0
w 0.2 v 10%
nb iter 200 dmax

f 180 min
nb iter add 50
max nb iter 400

B. Results of delay-based neighborhood operators

Results of the three delay-based neighborhood operators,
with and without the local search procedure, are given in
Table V and Figure 1. Figure 1 gives the evolution of the
best solution’s total unsustainable overload (upper figure) and
total delay (lower figure) over iterations, for the 6 delay-
based neighborhood operators. Note that total unsustainable
overload of the best solution decreases over the iterations, for
all neighborhood operators. DO-2 and DO-2+LS exhibit the
fastest decrease, while DO-1 and DO-1+LS are stuck, very
early, at a large value of the total unsustainable overload. The
best solution with random delay operators, DO-0 and DO-
0+LS, has a slow decrease in total unsustainable overload,
but still ends at a low value. In terms of total delay, the best
solutions using DO-1 and DO-1+LS present the lowest delay.
DO-0 and DO-0+LS have a bell-shaped total delay evolution.
For DO-0, after a dramatic increase, the total delay decreases

significantly to reach competitive values with DO-2 and DO-
2+LS. However, DO-0+LS reveals to be much slower (due
to the additional local search at every iteration) than DO-
0, hence, it has not enough time to decrease its total delay
figure. Delaying systematically the most overloaded flight
(DO-1) at every iteration reveals to be inefficient, since the
total unsustainable overload is only slightly decreased. Clearly,
highly overloaded flights are the best candidates to mitigate
hotspots. The first expected effect of the additional local search
procedure is to extend the time to accomplish one iteration,
and hence to reduce the number of iterations made within the
time limit of 5 minutes. Nevertheless, a better performance
of DO-1+LS and DO-2+LS was achieved compared to their
simple counterparts, in less iterations. All in all, the best delay-
based neighborhood operator is DO-2+LS, since it mitigates
all unsustainable overloads, while generating the smallest total
delay. In the next subsection, we present the results of the
combination of DO-2+LS with the two proposed rerouting
operators RO-1 and RO-2.
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Figure 1. Evolution of the best solution’s total unsustainable overload (upper
figure) and total delay (lower figure) over iterations for the 6 single neigh-
borhood operators based on delay. The same time limit of 5 minutes was set.

C. Results of the combination of delay and rerouting operators

Table VI shows the total residual unsustainable overload, as
well as information on the total delay, the number of delayed
flights, and the number of rerouted flights (column “# rerouted
flights”), for the two combinations of DO-2+LS with RO-1 and
RO-2. Since both tests reached the time limit of 5 minutes, the
“CPU” column was omitted. We notice that using rerouting
operators decreases significantly the total arrival delay, as



TABLE V. RESULTS FOR THE DELAY-BASED NEIGHBORHOOD OPERATORS. TILIM STANDS FOR TIME LIMIT = 5 MINUTES.

Neigh. Op. CPU Res. unsus. Total delay # delayed Avg. delay Max delay
(sec) overload (min) flights (min) (min)

DO-0 215.7 1.03 142 346 9980 14.3 178
DO-1 TiLim 37.56 10 775 104 103.6 177
DO-2 TiLim 0 168 980 1850 91.3 180
DO-0+LS TiLim 4.83 736 058 9633 76.4 180
DO-1+LS TiLim 36.82 9 172 104 88.2 178
DO-2+LS TiLim 0 122 205 1403 87.1 180

expected. Moreover, using a roulette wheel over flights with
a high overload factor performs better than automatically se-
lecting the flight with the highest factor at every iteration. The
best combination with rerouting operators is DO-2+LS+RO-2,
where delay and rerouting operators are selected with a 50%
fixed probability each, along the iterations. In the following
subsection, we study the effect of the two proposed score
update rules (additive, customised) and the two neighborhood
selection strategies (max, roulette wheel).

D. Results for strategies to select neighborhood operators and
to update their score

Table VII shows the results for the retained neighborhood
operators DO-2+LS+RO-2 with the four possible combinations
of score update rules and neighborhood operator selection
strategies, in addition to the baseline case (denoted “No
update, Roulette-Wheel”) retained from Subsection IV-C. All
tests reached the time limit of 5 minutes. Notice that the max
rule to select neighborhood strategies lead to not calling the
rerouting operator. On the other hand, updating the neighbor-
hood scores, either with the additive or the square-root rule,
improves on the case with no update. This reveals that at
different search stages, delay and rerouting operators do not
have the same performance, and the hyper-heuristic calls them
with different probabilities. The percentage of cumulative calls
to the two operators is plotted in Figures (2a) and (2b), for
the additive and the custom score update rules respectively.
The best combination as reported in Table VII is to update
scores using the additive rule and to use the roulette-wheel
for neighborhood operator selection. In the next subsection,
we show more details on the solution returned by this best
combination.

E. Best solution details

The best combination of neighborhood operators (DO2-LS-
RO2) with an additive score-update scheme, and a roulette-
wheel selection over operators was applied again on the
studied instance with a time limit of 1 minute. The same
solution was returned, showing that the best solution is found
in the early stages of the search and is not updated later.
Also, this highlights the performance of the designed hyper-
heuristic to find very-good quality solutions in a relatively
short computation time. Some details of the best solution are
given in Figures 3, 4a, and 4b. The distribution of overloads
over sector-periods, before and after optimization, is given
in Figure 3. All unsustainably overloaded sector-periods are

(a) Additive rule.

(b) Square-root-based rule.

Figure 2. Percentage of cumulative number of calls to delay and rerouting
operators, with a roulette-wheel selection strategy, and different score-update
rule.

mitigated, at the price of an increase in the overload ranges of
−10− 0% and 0− 10%. The distribution of arrival delay, and
of extra mileage are given in Figures 4a and 4b respectively.
Flights with a negative arrival delay, correspond to rerouted
flights, with alternative trajectories that are shorter than their
planned trajectories. Although, such reroutings may be inter-
esting to solve the DCB problem, in real life, airlines may
not be keen on accepting such reroutings. Indeed, there are
situations where the shortest trajectory yields a high operating
cost for the airline, due to high overflight fees of some
countries. Moreover, 24.73% of the rerouted flights do not
cross the sectors considered for the DCB problem anymore.
In this sense, they do not contribute to the load of the studied
sectors, however, their new trajectories must increase the load
of sectors beyond the region of interest. This suggests that
neighbouring sectors should also be monitored for demand-



TABLE VI. RESULTS FOR THE COMBINATION OF THE TWO REROUTING NEIGHBORHOOD OPERATORS WITH THE RETAINED DELAY-BASED OPERATOR.

Neigh. Op. Res. unsus. Total Arrival # delayed Avg. delay # rerouted
overload delay (min) flights (min) flights

DO-2+LS+RO-1 0 102 950 1185 85.4 75
DO-2+LS+RO-2 0 88 761 1177 75.4 181

TABLE VII. RESULTS FOR THE STRATEGIES TO SELECT NEIGHBORHOOD OPERATORS AND TO UPDATE THEIR SCORES.

Score-update Neigh. Op. Res. unsus. Total Arrival # delayed Avg. delay # rerouted
rule selection overload delay (min) flights (min) flights

No update Roulette-Wheel 0 88 761 1116 75.4 181

Additive Roulette-Wheel 0 73 893 985 68.5 279
Max 0 115 543 1329 86.9 0

Custom Roulette-Wheel 0 85 096 1086 73.2 244
Max 0 115 543 1329 86.9 0

capacity balancing, and new DCB problems, with a larger
geographical scope, may need to be solved.

Figure 3. Sector-period overload distribution: comparison between the initial
and the final situations.

V. CONCLUSION

The problem of demand-capacity hotspot mitigation using
ground delay and rerouting was considered in the case of
very critical convective weather, leading to a sharp decrease in
en-route sector capacity. A simulated-annealing-based hyper-
heuristic using efficient low-level heuristics relying on the
concept of flight overload factor was proposed. A numerical
study was conducted to identify the best combination of low-
level heuristics. Applying a roulette-wheel on a subset of
flights with a high overload factor reveals to be the best flight
selection rule along the algorithm iterations, either to apply
delay or rerouting. Moreover, following the delay heuristic
by a local search procedure decreased significantly the total
arrival delay. Future work will focus on integrating uncertainty
on capacity data, as predictions 24 hours before operations
cannot have high accuracy. Also, a two-stage procedure can
be put in place in order to update the mitigation plan, once a
more accurate capacity drop prediction is provided on the day
of operations.

Although a DCB solver based on the optimization of
individual flights, called cherry-picking measures, can reduce

(a) Arrival delay distribution.

(b) Extra-mileage distribution among rerouted flights.

Figure 4. Best solution characteristics.

the total delay compared to CASA, its applicability is still very
questionable. On the one hand, FMPs think usually in terms of
regulations applied to sector-periods or traffic volumes. Also,
airspace users may not be keen on delaying their flights, just
for the sake of “global optimality”, while they do not cross
hotspots. Consequently, such a paradigm change may need
time, and hybrid DCB mitigation technologies as well as, more
collaborative operations, may be required.
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