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Abstract

Finding a shortest path with various constraints and cost functions is a com-
mon problem in operations research. This paper deals with the special case of
the problem of computing multiple shortest paths with capacity constraints
on a subgraph that evolves over time. Multiple shortest paths is understood
as paths for each vehicle considered. The static special case is modeled as a
Mixed Integer Linear Programming (MILP) problem, so that it can be solved
directly by a standard commercial solver. The time-dependent nature of the
problem is then modeled thanks to a sliding-window approach. This study
is motivated by the problem of minimizing the environmental impact of air
transport at the level of a complete air network, considering thereby several
aircraft. Both CO2 and non-CO2 effects are taken into account to calculate
the impact. The proposed methodology takes into account a network point
of view where airspace (subgraph) capacities evolve as well as the traffic itself
over time. Encouraging numerical results on the CO2/contrail-safe aircraft
trajectories application are obtained and show that the environmental im-
pact can be reduced while maintaining safety by guaranteeing the respect of
airspace capacities.
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1. Introduction

Finding a shortest path is a common problem in operations research. The
literature presents various way to solve such problems. The graph version
of the problem can be addressed by integer linear programming [1], or other
efficient algorithms such as Dijkstra’s algorithm [2], A* [3] or Bellman’s al-
gorithm [4] which is based on dynamic programming. In some cases, optimal
control techniques [5] can be used, especially if the path is to be computed
in a continuous space and not on a graph. The constrained variant of the
shortest path problem is subject to constraints that typically involves an up-
per limit on a function of arcs. For instance, the goal can be to minimize
the distance traveled by a vehicle with an upper bound on the travel time.
This type of problem is usually expressed for one vehicle, for one path. It is
an NP-hard problem for which some efficient methods have been developed
[6, 7, 8].

Some other problems compute several shortest paths, i.e., several vehicles
are considered via a global criterion to be minimized. This is the case for the
traffic assignment problem (TAP) which aims at reaching an equilibrium for
the vehicles or for the whole system. The type of chosen equilibrium deter-
mines the objective function to be minimized. An example is the Wardrop
user and system equilibrium [9, 10]. The problem is subject to flow conserva-
tion constraints and capacity constraints on arcs and, in the case of system
equilibrium, minimizes the average journey cost. This problem considers co-
operation and possibly a decentralized management of the traffic. On the
other hand, the user equilibrium is reached when no vehicle can lower its
transportation cost through unilateral action. It is for instance used for road
network application, where roads do not have infinite capacity but the num-
ber of vehicles that can use each road in a given amount of time is limited.

The previously mentioned problems take into account the arcs of the
graph to define routes, and possibly capacities on these routes. However,
there are also other types of problems in which the grain is coarser: nodes
are defined by geographical sector, and a total capacity on each of these
sectors is imposed. This special case therefore involves capacities on the
vertices of the graph. This type of problem appears in air transportation:
it is then named air traffic flow management problem (ATFMP), originally
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defined in [11]. The objective function of the ATFMP is the total cost of
aircraft delays, but variants can be derived by considering other objective
functions. For example, the total cost of trajectories in terms of flight time,
distance flown or CO2 emitted can be taken into account. Optimization
models addressing this problem typically involves the following decisions to
be made for each flight:

• which sector to fly and when (which may induce speed modulations)?

• when to take off (by inflicting delays with respect to the scheduled
departure time)?

Various capacity upper bounds are imposed on:

• the total number of aircraft in each sector at any given time (sector
capacity constraints),

• the total number of aircraft in each airport at any given time (airport
capacity constraints).

This is a large-grained problem, but it is also necessary to take into ac-
count the more precise spatial scale of the arcs to know where to fly through
a sector at a given time. This is done in the variant of the ATFM problem
that involves rerouting (ATFMRP), and is solved in [12] (in its deterministic
version). This problem is very detailed since it completely defines the tra-
jectory followed, and it decides the speed of each aircraft on flown arcs. It
takes into account a cost on each arc. This cost can be the flight time, the
distance flown, or estimated CO2 emissions on this arc, for each aircraft.

This paper presents a model of multiple shortest paths problem with
capacity constraints on subgraphs. The main difference with previous works
is that the capacity constraints are not defined on vertices (that can represent
sectors) but on subsets of arcs. A particular application of this problem is
discussed: the minimization of the global impact of air traffic on an area
taking into account CO2 and contrails.

The contributions of this study could be summarized and listed as:

• an optimization model in the static case that:

– computes simultaneously (not sequentially) a path for each vehicle
considered,
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– takes into account capacity constraints on subgraphs;

• an optimization model for the dynamic extension with time-dependent
costs and constraints;

• a low environmental-impact aircraft trajectory application with:

– a network approach for contrail mitigation,

– a realistic illustrative instance made publically available,

– preliminary numerical experiments that show that contrails can
be mitigated at the network scale.

This paper presents first, in Section 2, an optimization model for the
static case and its extension to the time-dependent problem. The application
to the contrail-avoidance aircraft trajectory problem is studied in Section
3. Promising numerical experiments are shown and discussed in Section 4
through a sensitivity analysis of the different parameters involved. Section 5
presents general conclusions and perspectives. Appendix A gives the time-
discretized optimization model, and Appendix B details how the application
input data are computed.

2. Mathematical optimization model

This section presents the mathematical optimization models for the subgraph-
capacity multiple shortest path problem: Subsection 2.1 presents the static
case while Subsection 2.2 addresses the time-dependent case.

2.1. Static case
This subsection focuses on the subgraph-capacity multiple shortest path

problem in the static case (input data do not evolve with time).
The classical shortest-path problem on a graph involves only one vehicle

and is modelled as follows. Let G = (V,A) be a directed weighted graph,
where V is the set of vertices, A is the set of arcs, and w : A → R is the
weight function. Let s ∈ V be the start of the path, and e ∈ V be the end of
the path. Considering that the decision-variable vector X has a component
xu,v for each arc (u, v) ∈ A, where xu,v indicates whether the arc (u, v) is part
of the solution path or not, the optimization formulation of the shortest-path
problem is:
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min
X

∑
(u,v)∈A

wu,vxu,v (1a)

s.t.
∑

(u,v)∈A

xu,v −
∑

(v,u)∈A

xv,u = 0, u ∈ V \{s, e} (1b)

∑
(s,v)∈A

xs,v −
∑

(v,s)∈A

xv,s = 1 (1c)

∑
(e,v)∈A

xe,v −
∑

(v,e)∈A

xv,e = −1 (1d)

X ∈ {0, 1}|A|, (1e)

where (1b), (1c) and (1c) are the classical network flow conservation con-
straints (see for instance [1]) that ensure that the solution is a path from s
to e (the incoming flow is equal to the outcoming flow on each vertex other
than the source and the end).

This model can be adapted in the case of several vehicles with vehicle-
specific weight functions, whose (u, v)-components are noted wu,v,i, (u, v) ∈
A, i = 1, 2, . . . ,M , where M is the number of vehicles, and for each vehicle
i = 1, 2, . . . ,M , a start vertex si ∈ V , and an end vertex ei ∈ V . Defining a
decision-variable vector Xi for each vehicle, i = 1, 2, . . . ,M , the optimization
model for the multiple shortest-path problem then reads:

min
X1,...,XM

M∑
i=1

∑
(u,v)∈A

wu,v,ixu,v,i (2a)

s.t.
∑

(u,v)∈A

xu,v,i −
∑

(v,u)∈A

xv,u,i = 0, u ∈ V \{si, ei}, i = 1, 2, . . . ,M

(2b)∑
(s,v)∈A

xsi,v,i −
∑

(v,si)∈A

xv,si,i = 1, i = 1, 2, . . . ,M (2c)

∑
(t,v)∈A

xei,v,i −
∑

(v,ei)∈A

xv,ei,i = −1, i = 1, 2, . . . ,M (2d)

Xi ∈ {0, 1}|A|, i = 1, 2, . . . ,M. (2e)

Finally, a subgraph-capacity extension can be defined, provided a parti-
tion

⋃N
k=0 Ak = A of the set of arcs is given with corresponding capacities
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Ck, k = 1, 2, . . . , N . In the sequel, we shall call sector each of the subsets
Ak, k = 1, 2, . . . , N .

Finally, we define an auxiliary decision-variable vector, Yi, for each vehicle
i, i = 1, 2, . . . ,M , whose kth component, yk,i, indicates whether vehicle i uses
arcs of sector Ak, k = 1, 2, . . . , N . The optimization model for the subgraph-
capacity multiple shortest-path problem is:

min
X,Y

M∑
i=1

∑
(u,v)∈A

wu,v,ixu,v,i (3a)

s.t.
∑

(u,v)∈A

xu,v,i −
∑

(v,u)∈A

xv,u,i = 0, u ∈ V \{si, ei}, i = 1, 2, . . . ,M (3b)

∑
(s,v)∈A

xsi,v,i −
∑

(v,si)∈A

xv,si,i = 1, i = 1, 2, . . . ,M (3c)

∑
(t,v)∈A

xei,v,i −
∑

(v,ei)∈A

xv,ei,i = −1, i = 1, 2, . . . ,M (3d)

M∑
i=1

yk,i ≤ Ck, k = 1, 2, . . . , N (3e)

yk,i = 1 iff
∑

(u,v)∈Ak

xu,v,i ≥ 1, i = 1, 2, . . . ,M, k = 1, 2, . . . , N (3f)

Xi ∈ {0, 1}|A|, i = 1, 2, . . . ,M (3g)

Yi ∈ {0, 1}N , i = 1, 2, . . . ,M. (3h)

Constraints (3b), (3c) and (3d) are the usual path flow conservation con-
straints for each vehicle, and constraints (3e) and (3f) are the subgraph ca-
pacity constraints.

Constraints (3f) enforce the definition of the auxiliary binary variables
Y1, Y2, . . . , YN . These constraints can be linearized thanks to linearization
techniques and can be written as continuous variables.

Proposition 1. Each of the constraints (3f), i = 1, 2, . . . ,M , can be replaced
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and linearized by:

yk,i ≥ xu,v,i, (u, v) ∈ Ak (4)

yk,i ≤
∑

(u,v)∈Ak

xu,v,i (5)

yk,i ∈ [0, 1] (6)

Proof. Consider a sector k and a vehicle i. Let zk,i = 1 − yk,i. Then, zk,i =∏
(u,v)∈Ak

(1− xu,v,i). Thanks to classical reformulation techniques (see for
instance [13]) on the product variable zk,i, the desired result is obtained.

2.2. Time-dependent case
This subsection defines the mathematical formulation of the problem in

the case where input data evolve with time. In the general case, we are
considering time-dependent costs. Moreover, constraints (3e) and (3f) can
also be time-dependent in case where a sector is only occupied by the vehicle
during a certain amount of time and it is not occupied when the vehicle is
not in the sector yet/anymore. The associated time-discretized model can
be found in Appendix A.

To take into account the release of the capacity of sectors by vehicles as
they move, the paths are optimized for a succession of (sliding) time win-
dows. More precisely, the paths on the graph are computed based on sector
occupancy during the time interval. Then, the time is incremented by the
sliding-window size ∆t, and the start vertex si of each vehicle i is updated: it
is replaced by the vertex reached by vehicle i in the previous sliding-window
optimization. This process is illustrated by Figure 1. When, at the end of a
time window, a vehicle is on an arc but not at a node, an artificial node is
created. The process is stopped when each vehicle has reached its destination
vertex ei, i = 1, 2, . . . ,M . The entry time in the simulation of each vehicle
is not artificially changed to coincide with the beginning of a time window.
This time-window approach may lead to suboptimal solutions but is used as
a resolution heuristic for the following reasons. First, the time-dependent
shortest path for a single vehicle is already a difficult problem [14], not to
mention the case involving several vehicles and capacity constraints. It would
have been even more difficult for several vehicles with capacity constraints.
Moreover, the time-window methodology is tailored to operational concerns.
Indeed, all relevant information is not always known for the next time peri-
ods, and this time-sequential approach breaks the uncertainties at each time
window, by taking into account updated information.
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Initial start

Initial end
First path computed

s

e

(a) Compute the path from the start point to
the end.

Initial end

New start

End of first time window

e

s′

(b) Define the new start point.

Initial end

New start

Path from new
start to the end

e

s′

(c) Compute the path from the new start point
to the end.

Figure 1: Sliding window computation of path. The final path is computed sequentially,
in pieces, for each of the time windows.

The paths on the graph are computed taking into account the capacity
constraints only for a duration corresponding to K times the length of the
sliding window, as shown by Figure 2. More precisely, constraints (3f) are
modified as follows:

yk,i = 1 iff
∑

(u,v)∈Ak,K∆t

xu,v,i ≥ 1, i = 1, 2, . . . ,M, k = 1, 2, . . . , N (7)

where Ak,K∆t is the subset of arcs from Ak that have at least one end accessi-
ble by vehicle i within a time less than K∆t from si, where K is user-defined
parameter.
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Figure 2: Capacity computation along time windows. We consider that a vehicle i con-
sumes capacity of the sectors that are accessible from the start point si within a time less
than K∆t (here: capacity is consumed only on red arcs).

3. Application to contrail avoidance and CO2 minimization

Air transport offers a study case with some particular features. First,
it is possible to optimize on a global scale by acting on all the aircraft.
Indeed, even if the planes are independent of each other, since they are owned
by different airlines, the planned paths are controlled by an independent
entity, named here the air traffic control. As mentioned earlier, the capacity
of the air sectors must be considered, and cannot be exceeded for safety
reasons. Finally, if the goal is to minimize the environmental impact of the
aircraft flying through an area (a country or a set of countries for instance),
then another particularity of air transportation has to be taken into account.
Indeed, the environmental impact of air transport is not only due to CO2

but also to non-CO2 effects such as contrails. These non-CO2 effects are still
not perfectly understood scientifically, but it is certain that contrails have a
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warming effect which is estimated at two thirds of the total radiative forcing
due to aviation [3], as illustrated by Figure 3. It is therefore important to
take these effects into account in the optimization.

Figure 3: Comparison between CO2 et non-CO2 effects in aviation, adapted from [3]. It
presents the effective radiative forcing estimated for non-CO2 effects and total effects due
to aviation (red) and the uncertainty (black) on these estimations.

This section first presents, in Subsection 3.1 the problem of contrails mit-
igation in air transport, and previous works on this issue. Subsection 3.2
then shows that contrail mitigation for several aircraft can be seen as an in-
stance of the time-dependent subgraph-capacity multiple shortest path prob-
lem modeled in Section 2. Then, the cost function computation is detailed
in Subsection 3.3. Finally, Subsection 3.4 gives more explanations about the
required input data.

3.1. Air transportation and contrails mitigation
In recent years, driven by various initiatives, the issue of green aviation

has become more prominent in the literature. Among these issues, non-CO2

effects are a particularly important topic. Several methods taking different
points of view and with different resolution strategies have been developed.

To solve the problem in the most general case, optimal control methods
have been implemented. Since the constraints related to the mechanics of
flight are enforced, the computed trajectory is flyable in the free space. The
methods chosen differ according to the dimension of the instance addressed,
the objective function considered, and the number of aircraft involved. Srid-
har et al. [15] solve the problem in 2D thanks to optimal control by mini-
mizing an objective function that takes into account contrail avoidance, fuel
and flight time. It has been used on one-aircraft instances but also for tra-
jectories between 12 city pairs. Hartjes et al. [16] solve the problem in 3D
for a single aircraft also by minimizing fuel, time and time in contrails areas.
Some other papers present methods taking into account time, such as [17].
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Other studies rely on metaheuristics to solve the problem. For instance,
Yin et al. [18] use genetic algorithms to compute transatlantic flight trajec-
tory to mitigate the impact of contrails. Methods based on graphs are also
used, like A* in [19].

Finally, other methodologies rely on MILP [20] or mixed integer quadratic
programming (MIQP) [21] formulations.

Simorgh et al. remark in [22] that Air Traffic Management (ATM) con-
siderations are generally not taken into account when multiple aircraft are
considered, although the impact on airspace capacity and controller work-
load is certain. Indeed, a risk is to empty the spaces favorable to contrails
by strongly congesting adjacent airspaces. Avoiding such situations is one of
the main contributions of this paper.

3.2. General description of the application
In the sequel, the French upper airspace will be considered. Aircraft fly

above France following a sequence of 3D or 2D points linked by straight-line
segment routes. These points are named waypoints and all the waypoints,
defined above France are the vertices of the graph. The segment routes
defined between the waypoints define the set of arcs of the graph. The
graph is thereby a directed graph, since aircraft routes can have a direction.
The problem of finding a trajectory for a flight can therefore be likened to
finding a path on a graph. The aim here is to minimize the global impact
of all flights on the environment. More precisely, the goal is to minimize the
total environmental cost while ensuring that the airspace capacities are not
exceeded. The controller point of view is taken into account, and fairness
among aircraft and airlines must be kept in mind. For this reason and in
order not to find suboptimal solutions, a sequential (one aircraft at a time),
greedy-like, computation of trajectories cannot be used, even though there
are very efficient algorithms to solve shortest-path problems.

The application we consider in this study is solved only in the 2D plane,
i.e., the altitude is not to be decided by the optimizer. This choice is mo-
tivated by several operational reasons. First, the problem is designed to
compute cruise trajectories (departing and arriving an airport is subject to
numerous extra operational constraints), and the altitude is little modified
in this phase. Moreover, the air traffic control does not know the weight of
the plane, and therefore does not know if it is possible for the aircraft to
climb. Thirdly, pilots usually choose the highest possible altitudes in order
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to consume as little fuel as possible, and therefore we can assume that CO2

is minimized by such a choice of altitude.
In the case of ground transportation, applications involving for instance

cars on a road network, one can set a limited capacity per arc. In our air
transportation application, the capacity limit is on areas (subsets of arcs),
called sectors. These sectors represent subdivisions of the upper airspace,
and more precisely a partition of the set of arcs. If the trajectories were
to be computed sequentially, then some vehicles, the first ones, would be
favored over the others. However, in the case of air transport, from the point
of view of air traffic control, no airline should be favored over another, so
such a sequential approach is not satisfactory. Above all, on the simple point
of view of optimization, the greedy-like sequential approach is likely to lead
to undesirable, suboptimal solutions.

The sliding-window approach mentioned before is adapted to the case of
airspace capacity constraints, since that the capacities can be adapted in real
time to the expected traffic. Moreover, operational capacity constraints are
defined on time periods corresponding to the size of sliding windows.

3.3. Cost computation
As explained before, the goal here is to take into account CO2 and non-

CO2 effects, and our application focuses on contrails. Bi-objective optimiza-
tion is therefore a natural point of view. However, the aim is to minimize the
global environmental impact, and for this we use a metric that is common in
climate-change literature [15, 22, 23] to balance the two effects.

The amount of CO2 emitted per liter of standard jet fuel is constant.
A first assumption can thereby be made by equating the CO2 emitted to
the amount of fuel burned. As explained before, the problem is solved in
2D, and therefore no change in altitude is taken into account. In this case,
for a given aircraft, the fuel flow, i.e., the amount of fuel consumed per
unit of flight time, is more or less constant. It will therefore be assumed
hereafter that this fuel flow is constant, and that it is the same constant for
all aircraft considered in the problem. This means that in order to minimize
the CO2 emitted, the overall flight time must be minimized. The assumption
of an equal fuel flow for all aircraft can be challenged by simply applying
a multiplicative factor to the flight time of some aircraft in the objective
function, which is a straightforward adaptation of our optimization model.

Since the goal is to minimize the overall impact, it is necessary to quantify
the impact of contrails versus that of CO2 . For this, a metric known as Global
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warming potential (GWP) is used. This metric relates the impact of most
greenhouse gases to the impact of CO2, under the form of a multiplicative
factor considering that the impact of CO2 corresponds to GWP = 1. This
metric depends on a time horizon over which the impact is computed. More
details about GWP can be found in [24]. Table 1 gives different values of
GWP for contrails according to the different time horizons, H. In the sequel,
contrail-induced cirrus (CIC) GWP will be noted gH .

H = 20 years H = 100 Years H = 500 years
GWPcontrail(H) 0.74 0.21 0.064
GWPCIC(H) 2.2 0.63 0.19

Table 1: Global warming potential for contrail for various time horizons, H.

Depending on the time horizon considered, the contrails have more or less
impact. Notably, they have less impact compared to CO2 in the long term.
In the following, only cirrus clouds induced by contrails will be taken into
account, since there are the most impacting effect on the climate. However,
contrails can also easily be considered, by a simple change in the cost function.

Without loss of generality, it will therefore be considered in the remainder
of this paper that a unit of flight time in an area not favorable to contrails
costs 1, and that a unit of flight time in an area favorable to persistent
contrails costs 1 + gH , where H is the chosen time horizon (in years).

To summarize, the cost of arc (u, v) for aircraft i reads:

wu,v,i = (1 + λu,vgH)tu,v,i, (8)

where λu,v ∈ [0, 1] is equal to the proportion of the arc (u, v) that lies is in
a persistent contrail area, and tu,v,i is the time aircraft i spends flying one
the arc (u, v). Remark that the flight time, tu,v,i, depends upon the wind
encountered. Both λu,v and tu,v,i are input data.

The sliding-window approach mentioned before is adapted in the case
of such weather-dependent cost functions, since there are uncertainties on
weather forecast. In particular, contrails are difficult to predict, and their
impact is even more difficult to predict [25]. Considering short-term path
computation mitigates the uncertainties.

Details about how weather data are processed for the cost-function com-
putation can be found in Appendix B.
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3.4. Data
This subsection details the input data of the problem. It explains in

particular how the graph is built, and how the sectors are defined. The wind
encountered and the areas favorable to contrails are also known data but the
process to obtain the related information is detailed in Appendix B.

The present study follows the new principle of free route airspace (FRA)
which is applied nowadays to the European upper airspace. The aim of FRA
is to remove the previously-established principle of air routes, and to replace
it by navigation points, called waypoints, through which aircraft pass freely.
A flight plan is therefore a simple sequence of waypoints through which the
aircraft flies. This new paradigm allows one to consider an increased number
of possible direct routes. As a consequence, the distance flown and thereby
the CO2 emissions, can be decreased.

Rules are still established to fly from a point to another even if there
number aims to be decreased. Here, these rules are approximated by the
rules established to build the graph G = (V,A) required for the optimization
model. The vertex set, V , consists of the waypoints. The arcs (set A) con-
nect two waypoints when their inter distance is less than some user-defined
threshold distance, D. One could alternatively consider the complete graph,
but this would not be coherent with operational practice, not to mention the
increase of complexity in regards with the preliminary nature of the present
study.

We construct our instances based on only the French waypoints that are
located in the western and southern parts for now, see Figure 4 (the arcs
are not displayed as they depend upon the maximum threshold distance, D,
chosen).

Our set of arcs is therefore:

A = {(u, v) | u ∈ V, v ∈ V, du,v ≤ D}, (9)

where V is the set of waypoints, and du,v is the distance between waypoints
u and v.

For the subgraph capacities, the partition of the set A of arcs into N
subsets, called sectors, {Ak}k=1,2,...,N , is initially defined with respect to way-
point set, as shown in Figure 5 for our instances. Then, all arcs with one
of its ends in one such vertex sector is considered to be in this (arc) sector:
Ak = {(u, v), u ∈ Vk or v ∈ Vk}, where Vk is the subset of vertices that are
in vertex sector k.

14



Figure 4: The FRA waypoints above France constituting our instance set.

Figure 5: Vertex sectors considered above France for building the arc sectors for our
instances.

The next section reports computational results.
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4. Results and sensitivity analysis

This section presents an illustrative instance of the subgraph-capacity
multiple shortest path problem together with various results obtained from
numerical experiments resulting from a sensitivity analysis of the different
parameters involved. An example of results is given in Subsection 4.1. Then,
Subsection 4.2 focuses on the impact of wind on the results, while Subsection
4.3 addresses the impact of the time horizon chosen for the GWP computa-
tion on the results. Finally, the impact of the imposed airspace capacity, Ck,
for sector Ak, k = 1, 2, . . . , N , is discussed in Subsection 4.4.

4.1. Description of the illustrative instance
In the sequel, one instance of the problem is addressed but with vari-

ous cost functions and various levels (right-hand side) for the capacity con-
straints. This subsection details the definition of this instance.

The graph is computed thanks to rules detailed in Section 3 (see Figures 4
and 5). Twenty aircraft are entering (taking off or entering the French upper
airspace) per 30 minutes simultaneously for 3 hours. The source-end vertex
pair (si, ei) of each aircraft i, i = 1, 2, . . . ,M , are chosen randomly i, the
vertex set so that the minimum distance (as the crow flies) is 200 Nautical
Miles and the instance is then named FRA-200. A Nautical Mile (NM) is
the distance unit used in aeronautics, and corresponds to 1.852 km. In order
to define the arc set, A, we set the maximum distance between two linked
points at D = 75 NM. The airspeed of all aircraft is set to 400 knots (a
knot (kt) is the speed unit used in aeronautics and corresponds to 1 NM/h
or 1.852 km/h). This speed is chosen in adequacy with the typical airspeed
of a standard commercial aircraft, namely the Airbus A320 [26]. Figure 6
displays the wind encountered, and Figure 7 shows the persistent contrails
areas.
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Figure 6: Wind encountered in instance FRA-200.

Figure 7: Persistent-contrail areas used for instance FRA-200.

The size of the sliding window for time-dependence consideration is set
to ∆t = 15 minutes. The parameter K for capacity consumption (as defined
in Equation 7) is set to K = 1.25. If nothing else is explicitly mentioned, it
is considered that:

• the capacity of each sector k is set to Ck = 20, k = 1, 2, . . . , N ;

• the time horizon chosen for the GWP computation is set to H =
100 years.

Table 2 summarizes the features for instance FRA-200. The details about
the instance can be found in [27].
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Feature Notation FRA-200
Aircraft and trajectory features

Number of aircraft M
20 per 30 minutes

for 3 hours
Airspeed of aircraft 400 kts
Minimum distance between si and ei 200 NM

Airspace features
Number of sectors N 23
Maximum distance for arc definition D 75 NM
Capacity of each sector Ck 20

Optimization model features
Time-window size ∆t 15 minutes
Time horizon for the GWP computation H 100 years

Table 2: Features of the illustrative instance.

Instance FRA-200 is solved using the sliding window process explained
in Subsection 2.2. The following results are obtained with the Java API
of CPLEX on a computer with an Intel Core i5-10210U, 1.60 Hz, with 8
Go RAM and a Debian Linux OS. Figure 8 shows the solution obtained on
instance FRA-200 on maps. The trajectories are represented by groups of
20 aircraft on different maps for reading purposes. The computation time is
137.2 s.
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(a) Flights 0-19 (b) Flights 20-39

(c) Flights 40-59 (d) Flights 60-79

(e) Flights 80-99 (f) Flights 100-119

Figure 8: Results obtained on instance FRA-200, grouped by 20 aircraft, sorted by in-
creasing entry time.

In the sequel, the instance under study is instance FRA-200.
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4.2. Impact of wind
The wind has a certain impact on the results. To quantify this impact,

two variants of instance FRA-200 have been solved:

1. without wind and without contrails: wu,v,i = du,v, (u, v) ∈ A, i =
1, 2, . . . ,M ;

2. with wind and without contrails: wu,v,i = tu,v, (u, v) ∈ A, i = 1, 2, . . . ,M .

Figure 9 displays the additional flight distance and flight time in the
second case (with wind) in comparison to the first case (without wind).
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(b) Additional flight time

Figure 9: Additional flight time and flight distance when wind is considered (flight time
minimization) in comparison with results obtained when wind is not taken into account
(only distance is minimized: wu,v,i = du,v).

The results show that in general, the flight distance is increased to the
benefit of a reduced flight time, which was expected.

4.3. Impact of the time horizon used for GWP computation
As explained in Subsection 3.3, the cost factor associated with contrails

depends on the chosen time horizon, H. Intuitively, the shorter the time
horizon, the more impact the contrails have, and therefore the more beneficial
it is to lengthen the trajectories to avoid contrails. To confirm this thought,
three variants of instance FRA-200 are solved:

1. no contrail consideration: gH = 0;
2. contrails consideration with H = 100 years: gH = g100 = 0.63;
3. contrails consideration with H = 20 years: gH = g20 = 2.2.
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Figures 10 and 11 display comparative results for variants 1 and 2, and
for variants 1 and 3, respectively.
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Figure 10: Additional flight time and flight distance when H = 100 years (gH = g100 =
0.63) when compared with the case without contrails (gH = 0).
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Figure 11: Additional flight time and flight distance when H = 20 years (gH = g20 = 2.2)
when compared with the case without contrails (gH = 0).

The flight time is higher because of the avoidance of contrail area. Fig-
ures 10 and 11 show that the dependence on the time horizon is important
since in the case of a short horizon the optimal trajectories are much longer
than in the case of a longer time horizon. If the contrails impact is considered
high, the flight time has a lower impact on the objective-function, and then is
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highly increased to avoid as much as possible the areas favorable to contrails.
Indeed, Figure 11 shows optimal trajectories with an increase of more than
30% in flight time. Fuel consumption therefore explodes from an environmen-
tal point of view, it is not necessarily relevant to choose such a trajectory. It
is also economically costly (increase in fuel and extra cost associated to flight
delays). Finally, such extra consumption has also an impact on safety since
a significant part of the extra fuel that every aircraft must carry in order to
anticipate a possible diversion to another airport will be used for avoiding
contrails. An extra constraint should therefore be added to our optimization
model to avoid such undesirable solutions. Such an extra constraint is also
likely to satisfy other operational needs. For example, if an airline is plan-
ning connections between its flights, it is desirable that the flights involved
are not delayed too much so that the connection is guaranteed.

Let t0,i be the flight time without any contrail consideration. It can be
computed thanks to the optimization process with gH = 0. We propose to
add to the model constraints

∑
(u,v)∈A tu,v,i xu,v,i ≤ C t0,i, i = 1, 2, . . . ,M ,

where tu,v,i is the flight time over the arc (u, v) for the flight i, and where C
is a user-defined constant to control the additional flight time allowed.

Figure 12 shows an example of results obtained when such constraints are
added with C = 1.1, (10% of additional flight time is allowed).
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Figure 12: Additional flight time and flight distance with extra flight time constraints
added when H = 20 years, in comparison with the case without contrails.

Because of the sliding-window process, the extra constraints are not glob-
ally respected, but they are respected locally at each step, and are nearly
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respected at the global scale, as can be observed in Figure 12.

4.4. Impact of airspace capacity
A last parameter to be studied is airspace capacity. The same setup con-

cerning aircraft is taken with a GWP computed with, this time, H = 100
years. Several results are impacted by changing the airspace capacity Ck, k =
1, 2, . . . , N , especially the obtained optimal objective-function value, and the
computation time. Indeed, in order to satisfy capacity constraints, some air-
craft may be forced to fly longer or through contrail zones. The problem
can be harder to solve if the capacity constraints are restrictive, and so the
computation time increases. Figure 13 shows the evolution of the optimal
objective-function value and the computation time obtained for various ca-
pacity levels, Ck, assumed constant for every sector k, k = 1, 2, . . . , N , and
at each time window.
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Figure 13: Results comparison in terms of objective-function value and computation time
when the airspace capacity, Ck, changes.

The above results show how the right-hand side of the airspace capacity
constraints affect the feasibility of the problem and the environmental impact.
The higher the capacity of the airspace is, the better the results are. However,
beyond a certain value of Ck, no change is observed in computation time, nor
in objective-function value since the capacity constraints are not saturated.
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5. Conclusion

We introduced a new model for the multiple shortest-path problem that
takes into account capacity constraints on subgraphs. In the static case, the
model is based on the computation of the number of vehicles occupying each
subgraph. Dynamic aspects have also been taken into account by establishing
an adapted model with time windows over each of which the static model is
solved. Taking this time-dependent aspect into account is essential because
as vehicles move, they free up capacity and costs can also change over time.
The model used does not provide the same quality of solution as if the static
model had been discretized in time, but it fits better the operational reality
as illustrated by the application addressed in our study. Moreover, it was
shown that the problem could be solved directly by a standard commercial
solver without deploying special techniques.

The application addressed in this paper gives a new model for the contrail-
avoidance problem when considered at the network scale and from the air
traffic control point of view. A time-window strategy has been chosen in this
study to model the time-dependence because the time during two contrail
predictions can be high. Work has also been done on the cost of arcs, so that
they can be adapted to the ATM point of view. This allows one to consider
other non-CO2 effects due to air transport, or to use more elaborate metrics
to determine the impact of contrails.

Future tracks of research should focus on the numerous sources of un-
certainty to be taken into account when addressing the contrail-avoidance
problem. There are several uncertainties to consider when studying contrail-
favorable (or persistent-contrail-favorable) areas, as shown by Gierens et al.
[25]. Other source of uncertainty are the wind estimation and the presence
of traffic.

Moreover, when considering the air traffic control point of view, one faces
another crucial criterion: fairness. It was not explicitly optimized in this
preliminary study. Future work should adapt the proposed model so as to
quantify and enforce equity between airlines.

Finally, the cruise altitude should also be envisaged as decision variables
since it is an efficient mean of mitigating contrail impact, as shown by Fichter
et al.[28].

This leads to several issues including the knowledge of some critical air-
craft parameters (such as its mass at any moment) which are not always
known from the air traffic control point of view. Moreover, fuel consumption
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depends on the altitude as well as on the type of aircraft. It could thereby
be considered to use models allowing to have the same information as those
of the air traffic control while approaching the true fuel flows. For that,
the OpenAP [29] database could be used, or other models based on machine
learning as it has been done in [30] for the approach and landing phases.

Appendix A. Time discretized optimization model

The mathematical optimization model obtained in the static case can be
discretized to obtain the time-dependent optimization model. This transfor-
mation is based on the classical time-dependent shortest path problem [31].

Some notations should be defined first:

• Ti = {t0,i, . . . , tf,i}: the set of time periods for vehicle i;

• T =
⋃M

i=1 Ti;

• Ck,t: the capacity of sector k, k = 1, . . . , N , during time period t, t ∈ T ;

• wt
u,v,i: the cost for vehicle i, i = 1, . . . ,M , to go through arc (u, v) ∈ A

at time period t, t ∈ Ti;

• ∆t
u,v,i: the time necessary for vehicle i, i = 1, . . . ,M , to go through arc

(u, v) ∈ A at time period t, t ∈ Ti.

The decision variables are:

• xu,v,i ∈ {0, 1} is equal to 1 if vehicle i goes through arc (u, v);

• ztu,v,i ∈ {0, 1} is equal to 1 if vehicle i enters arc (u, v) at time period t;

• ytk,i ∈ {0, 1} is equal to 1 if vehicle i flies through sector k at time
period t, t ∈ T .

The model is then:
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min
X,Y,Z

M∑
i=1

∑
t∈Ti

∑
(u,v)∈A

wt
u,v,iz

t
u,v,i (A.1a)

s.t.
∑

(u,v)∈A

xu,v,i −
∑

(v,u)∈A

xv,u,i = 0, u ∈ V \{si, ei}, i = 1, 2, . . . ,M

(A.1b)∑
(si,v)∈A

xsi,v,i −
∑

(v,si)∈A

xv,si,i = 1, i = 1, 2, . . . ,M (A.1c)

∑
(ei,v)∈A

xei,v,i −
∑

(v,ei)∈A

xv,ei,i = −1, i = 1, 2, . . . ,M (A.1d)

∑
(u,v)∈A

ztu,v,i −
∑

(v,u)∈A

z
t+∆t

v,u,i

v,u,i = 0, u ∈ V \{si, ei}, i = 1, 2, . . . ,M, t ∈ Ti

(A.1e)∑
(si,v)∈A

z
t0,i
si,v,i

= 1, i = 1, 2, . . . ,M (A.1f)

∑
t∈Ti

ztu,v,i = xu,v,i, (u, v) ∈ A, k = 1, . . . , N, i = 1, . . . ,M

(A.1g)
M∑
i=1

ytk,i ≤ Ck,t, k = 1, 2, . . . , N, t ∈ T (A.1h)

ytk,i = 1 iff
∑

(u,v)∈Ak

ztu,v,i ≥ 1, i = 1, 2, . . . ,M, k = 1, 2, . . . , N, t ∈ Ti

(A.1i)
ytk,i = 0, i = 1, 2, . . . ,M, k = 1, 2, . . . , N, t ∈ T\Ti

(A.1j)

Xi ∈ {0, 1}|A|, i = 1, 2, . . . ,M (A.1k)

Zi,t ∈ {0, 1}|A|, i = 1, 2, . . . ,M, t ∈ Ti (A.1l)

Yi,t ∈ {0, 1}N , i = 1, 2, . . . ,M, t ∈ Ti (A.1m)

Constraints (A.1b),(A.1c) and (A.1d) are the flow conservation constraints.
Constraints (A.1e) and (A.1f) enforce consistency of space-time flow conser-
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vation. Constraints (A.1g) make the link between the time-dependent and
the static decision variables. Constraints (A.1h) are the time-discretized
capacity constraints. Constraints (A.1i) and (A.1j) define the auxiliary vari-
ables ytk,i. The former can easily be linearized, as for the static model (see
Proposition 1).

Appendix B. Data processing for numerical experiments

This section shows how data for computational experiments have been ex-
tracted and computed. Appendix B.1 deals with wind data, while Appendix
B.2 focuses on contrail data.

Appendix B.1. Wind data
The costs defined by (8) involves the computation of the flight time over

each arc (u, v) ∈ A. For this, the wind on the arcs, and the distance between
u and v, the two ends of the arcs, have to be known.

Let λu and λv be the latitude of vertices u and v respectively, and let ϕu

and ϕv be their longitude. The distance between u and v is given by:

du,v = R crad(km), (B.1)
= 60 cdegrees(NM), (B.2)

where R = 6, 371 km is the Earth radius, crad and cdegrees represent the
following c values, expressed in radians and in degrees respectively:

c = arccos
(
sin(λu) sin(λv) + cos(λu) cos(λv) cos(ϕv − ϕu)

)
. (B.3)

Then, the flight time for aircraft i, noted tu,v,i, between points u and v is
given by:

tu,v,i =
du,v

GSu,v,i

, (B.4)

where GSu,v,i is the ground speed of aircraft i on arc (u, v). It can be com-
puted via:

GSu,v,i = Vai +Wu,v, (B.5)

27



where Vai is the airspeed of aircraft i (considered constant), and Wu,v is the
wind encountered on the arc (u, v).

Wind data have been extracted from the website Windy [32] on a square
grid of size 0.2 degree above France, as shown on Figure B.14.

0.2◦

0.2◦

Figure B.14: 2D grid used for wind data extraction from Windy [32].

To compute the wind on each node of the graph, a so-called Shepard
interpolation [33] was used. More precisely, for each node P located in a 2D-
square P1P2P3P4 of the data grid, the wind W (P ) at P is calculated from
the wind at Pk, k = 1, 2, 3, 4, using the distance from P to each of these
points (noted respectively d1, d2, d3 and d4) as follows:

W (P ) =

∑4
i=1 W (Pi) ∗ d−p

i∑4
i=1 d

−p
i

, (B.6)

where p > 1 is a user-defined parameter (set to p = 2 in this study). Figure
B.15 summarizes the notations required to compute the wind at P from the
known winds at Pk, k = 1, 2, 3, 4.

P1

P2

P3

P4

P
d1

d2 d4

d3

Figure B.15: Notations for estimating the wind at P via Shepard interpolation.

Finally, the wind along an arc (u, v) is simply defined as the average of
that at u and at v:

W(u,v) =
W (u) +W (v)

2
. (B.7)
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Figure B.16 shows data used for the examples presented in the result
section (Section 4).
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Figure B.16: Wind encountered in the example of the result.

Appendix B.2. Contrail data
Contrails are formed in cold and humid areas. They persist and induce

cirrus if the air is supersaturated in ice. The computation of persistent
contrail areas is performed in two phases:

1. Areas favorable to contrail formation
2. Areas in which contrails will persist (ice supersaturated areas).

In [23], contrails areas are computed thanks to the Schmidt-Appleman
criterion. This criterion gives a minimum threshold, rmin, of relative humid-
ity of the air in liquid water, noted RHw, above which contrails are formed:
contrails are assumed to form when RHw ≥ rmin, where

rmin =
G(T − Tc) + eliqsat(Tc)

eliqsat(T )
, (B.8)

eliqsat(T ) is the saturation vapor pressure over water, Tc is the estimated thresh-
old temperature (in Celsius degrees) for contrail formation at liquid satura-
tion. The later is computed via:

Tc = −46.46 + 9.43 log(G− 0.053) + 0.72 log2(G− 0.053), (B.9)
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where G =
EIH2O

CpP

ϵQ(1−η)
, EIH2O = 1.25 is the water vapor emission index,

Cp = 1004 J.kg−1.K−1 is the heat capacity of the air, P is the ambient
pressure (in Pascals), ϵ = 0.6222 is the ratio of the molecular masses of
water and dry air, Q = 43∗ 106J.kg−1 is the specific heat of combustion, and
η = 0.3 is the average propulsion efficiency of a commercial aircraft.

In [23], the ice super saturated areas are determined thanks to the fol-
lowing criterion: RHi > 1, where the relative humidity over the ice, noted
RHi is computed as follows:

RHi = RHw ∗
6.0612 ∗ exp( 18.102∗T

249.52+T
)

6.1162 ∗ exp( 22.577∗T
273.78+T

)
, (B.10)

and where T is the ambient temperature in Celsius degrees.
The relative humidity and temperature are also computed from data ex-

tracted from Windy [32] on a 2D-grid, and interpolated via quadratic inter-
polation. Figure B.17 shows the data used for the examples presented in the
result section (Section 4), where red areas are persistent-contrail-favorable
areas to be avoided.

Figure B.17: Persistent-contrail areas used for our instances.
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