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Abstract—This paper explores innovative low-cost technolo-
gies, widely used outside of Air Traffic Management (ATM), for
use in airport surface surveillance. These technologies consist
of a 5G-signal-based surveillance solution and a millimeter
wave (mmWave) radar augmented with artificial intelligence
(AI). The 5G solution is based on the combination of 3D
Vector Antenna, innovative signal processing techniques, and
hybridization techniques based on time-of-arrival and angle-of-
arrival estimates with uplink and downlink 5G signals, as well
as Machine Learning (ML)-based Line of Sight (LOS) detection
algorithms. The mmWave solution is based on mmWave radar for
non-cooperative target’s positioning and sensing, combined with
deep learning for objects classification. Standalone 5G positioning
accuracy reaches m-level accuracy in LOS scenarios and it is
better with downlink reference signals than with uplink ones,
while it deteriorates quite drastically in NLOS scenarios. LOS
detection accuracies above 84% average accuracy can be achieved
with ML. The mmWave radar is tested in different scenarios
(short, medium and long range) and it provides cost-effective
surface surveillance up to few hundred meters (depending on the
object radar cross section RCS) with ±60° field of view. The work
is being conducted within the H2020 European-funded project
NewSense and it delves into the 5G, Vector Antennas, mmWave,
and ML/AI capabilities for future ATM solutions.

Keywords—5G, Angle of Arrival (AoA), Air Traffic Manage-
ment (ATM), Artificial Intelligence (AI), Communications, Line
of Sight (LOS) detection, Machine Learning (ML), Millimetre
Wave, Positioning, Sensing, Surveillance, Time of Arrival (ToA),
Vector Antenna (VA), Synthetic-aperture Radar

I. INTRODUCTION AND MOTIVATION

The increasing growth in air traffic is putting pressure on
airports for greater capacity and increased safety, which is
pushing airports to be equipped with an advanced surface
movement guidance and control system (A-SMGCS). While
most of the world’s largest airports have initiated the imple-
mentation of an A-SMGCS, small and medium-sized airports
cannot afford such systems due to the high costs of the
necessary infrastructure (multilateration deployment (MLAT)
and surface movement radar (SMR)). Alternative low-cost
solutions for airport surface surveillance such as cameras and
LIDAR (Laser Imaging Detection And Ranging) have been
assessed in SESAR 2020 Exploratory Research ENVISION

project and SESAR 2020 Industrial Research project EARTH
(solution PJ02.06) and results demonstrated that the optical
sensors have limited performances in low visibility conditions
that could be caused by rain, frog, snow, darkness, dazzling
sunlight, and other meteorological constraints.

The potential of radio frequency (RF) signals and Sin-
gle/Multiple Input Multiple Output (SIMO/MIMO) systems
in measuring an object’s position and velocity seamlessly
and independently of visibility conditions have proved their
efficiency in automotive and industrial applications [1] [2] [3]
[4] [5]. In one hand 5G networks, already in commercial phase
and expected to be large-scale deployed in the next decades -
thus offering the opportunity to use 5G network infrastructure
-, in the other hand the increasing use of mmwave radar for
automotive and industrial applications, and the recent interest
in applying deep learning algorithms to radar data should be
considered when looking for alternative affordable surveillance
solutions for the future ATM. Thus, the NewSense project
proposes innovative surveillance solutions to improve airport
surface surveillance and situational awareness in all weather
and visibility conditions. These positioning and sensing solu-
tions, completely new for ATM context, are based on timing
and angle measurements from 5G RF signals, mmWave radar
augmented with artificial intelligence (AI), and 5G RF-based
radar as illustrated in Fig. 1. The novel work done in the scope
of this research includes:

• The design of a 5G-signal-based surveillance solution for
the airport surface including a 3D vector antenna (3D VA),
a 5G positioning function to measure cooperative targets
position using their transmitted 5G RF signals, and a ML-
based LOS detection mechanism

• The design of a radar-like system relying on 5G signals to
calculate non-cooperative targets position from reflected 5G
base station RF signals.

• The evaluation of a low-cost mmWave radar as a non-
cooperative surveillance solution to position and classify
targets using reflected mmWave radar signals and deep
learning methods.
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Figure 1. Illustration of the integrated-concept architecture for airport surveillance

• The validation through in-lab measurements of some of
the proposed solution. Part of our measuremet data has also
been made available in open-access on Zenodo repository
[6].
This paper is elaborated in continuity of the previous work

detailed in [7], in which we described in the 5G framework
the working principle of the 3D-VA, the 5G reference signals,
the angle-delay estimation algorithms, and the imaging algo-
rithms. In the mmWave radar framework, we described FMCW
mmWave radar working principle and the signal processing
chain applied to mmWave signals. We provided also the
preliminary results for both frameworks.

In this paper, we will describe the implemented channels
models with 5G signal and the obtained results in Section II.
The simulations with 3D-VA are provided in Section III. In
Section IV, mmWave radar setup, mmWave measurements
scenarios, ML algorithms and obtained results are described.
In section V LOS detection with 5G signals is explained.The
measurement setup using 5G signals and the 3D-VA, and the
corresponding results are provided in Section VI At last, the
conclusion and future work are given in the Section VII.

II. SIMULATION TOOLBOXES FOR 5G SIGNALS

The main idea of 5G-signal-based positioning algorithms
is exploiting the always-on reference signals of 5G NR to
estimate the position of user equipment (UE). Our previous
work in [7] has introduced the 5G reference signals used in
positioning and the time-based and angle-based estimators.
We have now developed an in-house Matlab-based simulator
for uplink and downlink 5G signals that is based on Matlab
5G toolbox and covering three types of positioning-related
reference signals, namely Sounding Reference Signals (SRS)
for uplink (UL) and Positioning Reference Signals (PRS)
and Channel State Information Reference Signals (CSI-RS)
for downlink (DL). Our simulator also comprises four types
of channel models: the Additive White Gaussian Channel
(AWGN) model taken as benchmark, the 3GPP Tapped Delay
Line (TDL) and Cluster Delay Line (CDL) models, and the
Matlab WINNER II channel model. AoA-based and ToA-
based estimators for the three types of reference signals and
a selected NLOS channel (CDL-A channel) are shown in
Fig. 2. Similar behaviour was observed for LOS channels.
Clearly, time-based estimates are much more sensitive to the

type of the reference signal than angle-based estimates, with
PRS providing the best performance and CSI-RS providing
the worst performance. AoA-based estimates are also much
more accurate than our ToA-based estimates, no doubt due to
the fact that a high-resolution MUSIC algorithm was used for
AoA, while a simple correlation-based estimator was used for
ToA results.
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Figure 2. Root Mean Square positioning Errors (RMSE) for CSI-RS, SRS,
and PRS signals in a a CDL NLOS channel. Left: AoA estimator; right: ToA
estimator.

-35 -30 -25 -20 -15 -10

SNR (dB)

0

10

20

30

40

50

R
M

S
 E

rr
o

r 
(m

)

AoA-based Estimation Error vs SNR, PRS signals 

WINNER II LOS

WINNER II NLOS

TDL LOS (TDL-E)

TDL NLOS (TDL-A)

CDL LOS (CDL-E)

CDL NLOS (CDL-A)

AWGN

-35 -30 -25 -20 -15 -10 -5

SNR (dB)

10
1

10
2

10
3

10
4

R
M

S
 E

rr
o
r 

(m
)

TOA-based Estimation Error vs SNR, PRS signals 

WINNER II LOS

WINNER II NLOS

TDL LOS (TDL-E)

TDL NLOS (TDL-A)

CDL LOS (CDL-E)

CDL NLOS (CDL-A)

AWGN

Figure 3. Root Mean Square positioning Errors (RMSE) for different channel
types, based on PRS signals. Left: AoA estimator; right: ToA estimator.

Fig. 3 also shows the positioning error performance under
five channel types: AWGN, two LOS channels (TDL and
CDL), and two NLOS channels (TDL and CDL). The left-hand
plots are based on AoA estimators and the right-hand plots on
ToA estimator. Clearly, the performance in AWGN and LOS
channels is significantly better than in NLOS channels. The
saturation point in AWGN channels and ToA-based estimation
is due to the sampling frequency that defines the maximum
resolution in time domain; we used a sampling frequency
of 15.36 MHz, which limits the time-domain resolution to
19.5 m. Higher time resolutions can be achieved with higher
sampling frequency, at the expense of a higher complexity
and longer simulation times. WINNER II channels are the
most challenging for a ToA-based estimator, followed by
TDL channels, while TDL channels are the most challenging
for AoA estimators, followed by CDL channels. AoA-based



estimators also have better results than ToA-based estimators
for all the considered wireless channels.

III. SIMULATIONS WITH 3D VECTOR ANTENNA

A. Vector antenna description

The 3D-VA is constituted from an arrangement of Vivaldi
antennas. it is particularly interesting for this application since
it exhibits a directional radiation pattern with a stable gain
over a wide bandwidth and beamwidth. In addition to that,
it presents a good polarization discrimination allowing DoA
capability with physical characteristics of low-profile, light-
weight, and low-cost.

The proposed 8-port vector antenna is here
supposed to retrieve independently the six components
(Ex, Ey, Ez, Hx, Hy, Hz) of an incoming EM wave in
the entire 3-D space. The corresponding sets of weighting
coefficients and EM components are reported in Table I.
The corresponding set of six radiation patterns will be
called RPC0. In addition to that, additional set of radiation
patterns (RPCs) can be used in order to improve the DoA
performances. The additional weighting coefficient used to
define these additional RPC’s are obtained from a parametric
analysis [8]. We will focus particularly in two RPCs called
RPC1 and RPC2 that consists of a set of different weighting
coefficients that provide same radiation patterns with a
rotation of 90o along the azimuth angle ϕ. The RPC1 is
chosen to improve the vertical polarized DoA while the RPC2
to improve the horizontal polarized DOA. Only port 1 to 4
are used for RPC1 while Port 5 to 8 are used for RPC2.

TABLE I. SET OF WEIGHTING COEFFICIENTS ASSIGNED TO THE SIGNALS
RECEIVED AT THE EIGHT ANTENNA PORTS FOR SYNTHESIZE THE SIX MAIN
RADIATION PATTERNS AND ADDITIONAL RPCS

RPC Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8

0

0 0 0 0 1 1 -1 -1
0 0 0 0 1 -1 -1 1
1 1 1 1 0 0 0 0
0 -1 0 1 0 0 0 0
1 0 -1 0 0 0 0 0
0 0 0 0 1 -1 1 -1

1

1 1 1 -1 0 0 0 0
1 1 -1 1 0 0 0 0
1 -1 1 1 0 0 0 0
-1 1 1 1 0 0 0 0

2

0 0 0 0 1 1 1 -1
0 0 0 0 1 1 -1 1
0 0 0 0 1 -1 1 1
0 0 0 0 -1 1 1 1

B. Simulation experiments

In this section, the DoA arrival accuracy is assessed at
3.5 GHz according to the RPCs used. The AoA estimation
accuracy refers to the angular error between the estimated
and expected angles of an incoming EM wave. The AoA

accuracy depends on the signal to noise ratio which is defined
in the MUSIC algorithm and the propagation effects of the
corresponding EM wave. This parameter is usually given by
Root-Mean-Square (RMS) values. More specifically, the AoA
angular accuracy may be defined with

ϵRMS(Ω) =

√√√√ 1

L

L∑
i=1

|Ω− Ω̂|2 (1)

where Ω is the expected angle (along the azimuth ϕ or
elevation angle θ), Ω̂ is the estimated angle, and L is the
number of trials.

On the other hand, the angular distance ∆α can be defined
as the minimal distance between the expected angle set (θ, ϕ)
and estimated direction (θ̂, ϕ̂) given by

∆αRMS
=

√√√√ 1

L

L∑
i=1

|∆α(θ, ϕ)|2 (2)

with,

∆α(θ, ϕ)
= cos−1(cos θ cos θ̂ + sin θ sin θ̂ cos (ϕ− ϕ̂)) (3)

Table II shows the conditions applied for the scenario under
test in order to compute the angular distance associated with
the θ, and ϕ angles of the proposed VA.

TABLE II. PARAMETERS USED FOR ANGULAR DISTANCE ESTIMATION

Number of incoming EM fields 1

Polarization of the incoming EM field Vertical

Angular coverage ϕ ∈ [0◦ ; 360◦]
θ ∈ [0◦ ; 120◦]

Angular resolution ∆ϕ = 5◦

∆θ = 5◦

Incoming EM field power density -91 dBW.m-2

Noise power level -111 dBm

Mean SNR 9 dB

Number of DoA estimation 20

Snapshots per DoA estimation 50

Frequencies of interest 3.5 GHz

The figure 4 depicts the simulated angular distance RMS
error for θ, and ϕ and the angular distance (∆αRMS

) using
the MUSIC algorithm for an azimuth angular range of 360◦

and an elevation angular range of 120◦ i.e. −30◦ toward the
bottom direction. As a recall the 0◦ elevation angle is toward
the zenith. The six components derived from the proposed VA
(RPC0) are considered only. The maximal error is around 1.5◦

for elevation angle in a range of 80◦ to 1000◦ and around 30◦.
The ∆αRMS

error is due to a mixed error on the ϕ and θ angle
error.

In figure 5 the six components derived from the proposed
VA (RPC0) and the additional RPC’s 1 and 2 are considered.
The error for both angles is reduced. The VA is now capable
to accurately estimate sources in the bottom half-space until



Figure 4. Angular distance, θ, and ϕ error for SNR = 9 dB and with RPC0
used.

−30◦. A small error persist around 30◦ and 100◦ for elevation
angle.

Figure 5. Angular distance, θ, and ϕ error for SNR = 9 dB and with RPC0,
RPC1, and RPC2 used.

IV. MMWAVE RADAR AUGMENTED WITH AI

In addition to the assessment of a 5G-signal based posi-
tioning solution, the objective in this study is to localize non-
cooperative targets on the airport surface and identify their
type (mainly aircraft, vehicle and person) using Frequency
Modulated Continuous Wave (FMCW) mmWave radar and AI.
Understanding the technology concept of this type of radar
is essential to properly configure the mmWave sensor and
optimize its use. The mmWave technology description, the
operational principles of an FMCW mmWave radar and the
data processing chain to detect and calculate the target’s range,
angle and velocity have been detailed in [7].

A. mmWave radar configuration

Three scenarios have been used to configure the radar and
the parameters have been computed in order to have the
best precision depending on the targeted area. On the airport
surface, we distinguish three areas that should be covered by
the radar: the parking, the taxiway and the runway. The first
scenario is the Long-Range Radar (LRR) that will cover a
section of the runway. The second scenario is the Medium
Range-Radar (MRR) that will cover the taxiway and the
parking area. Finally, the Short Range-Radar will cover mainly
the parking area. Configuration parameters and corresponding
range and velocity values are given in Table III.

B. Testbed description

The radar testbed is composed of the mmWave radar
AWR2243BOOST EVM [9] combined with the data capture
module DCA1000EVM [10] mounted on a tripod. A host com-
puter is used to record received data from the DCA1000EVM
for post processing purposes. A camera is also used in order
to keep the ground truth image corresponding to radar data.

TABLE III. AWR2243 [9] CONFIGURATION FOR LRR, MRR AND SRR
SCENARIOS

Parameter LRR MRR SRR

Idle time/Inter-chirp duration (µs) 2.5 3 3

Number of ADC samples 128 256 256

ADC sampling frequency (Msps) 22.50 14.40 7.00

Chirp duration active/Ramp end time (µs) 9 21 40

Number of chirps per profile 255 128 128

Frequency slope (MHz/µs) 10.042 14.001 15.015

Number of RX channels 4 4 4

Number of TX channels 2 2 2

Frequency Limit Low (GHz) 79.50 79.50 79.50

Maximum theorical range (m) 302.27 138.75 62.89

Range resolution (m) 2.624 0.602 0.273

Maximum velocity (Km/h) 147.51 70.60 39.33

Velocity resolution (m/s) 0.321 0.306 0.171

Finally, we use a portable battery to power the devices as most
of the testing is done outdoors.

C. Positioning results

Several measurements with the radar have been conducted
in laboratory, underground and external parkings with persons
and vehicles, and in real air-side environment (Muret–Lherm
Aerodrome, France). Measurements done in external parking
and in airfield are very interesting for the study as they make
possible to assess the sensor in an environment very close to
the targeted deployment environment. Measurements for SRR,
MRR and LRR scenarios have been conducted in an external
parking for moving person and vehicle. These scenarios have
been also tested at Muret airfield for persons in the parking
area and for General Aviation (GA) aircraft in the parking,
taxiway, and a segment of the runway.

The radar is able to detect a person to up to 66 meters, a
vehicle to up to 113 meters and a GA aircraft to up to 83
meters. A truck has also been detected at a distance of 138
meters. Some measurements results are shown in Fig.6. Within
the same configuration (transmit power, SNR, RX and TX
antenna gain) and as commercial aircraft have an higher Radar
Cross Section (RCS) than targets used within this study, we
could estimate that the radar may detect commercial aircraft
up to few hundred meters. The maximum range of the radar
could be increased if the radar transmit power increases. As
examples, the maximum transmit power of an ATC primary
surveillance radar (PSR) is 100 kWatt [11] and typical Surface
Movement Radar has a transmitting power superior than 180
Watt. In the scope of this study we used an evaluation module
for the mmWave radar with a transmit power up to 0.016 Watt.

The range resolution obtained by the mmWave radar makes
possible to distinguish two close objects. Fig.6 shows a moving
person detected near the aircraft and the radar was capable to
distinguish it from the aircraft at a distance less than 1 meter.



Figure 6. mmWave radar positioning results, no tracking filter is applied

D. AI applied to mmWave signals

ML will be used to process mmWave radar signals for
detection and classification purposes. As there are not many
open-access datasets on mmWave radar data, and even non-
existent in the airport context, a dataset should be created
by making several measurements and tests in different envi-
ronment (external parking, roads, etc.) and especially at the
airport.

1) Classification using the Micro-Doppler Signature: A
Micro-Doppler Signature of a target results from the additional
motions of the target (rotation, vibration, etc.), other than main
mass translation, which generates a time varying frequency
modulation imparted in the echo. This signature contains
target’s features and therefore can be used for classification.
The Micro-Doppler is calculated using the Short-Time Fourier
Transform (STFT) of the signal during a short laps of time (in
our case, 1 second).

Fig.7 shows examples of STFT heatmaps (in the third
column). STFT heatmaps contain information about how the
object is moving as a whole, and how individual part within
the object are moving. For example, with a propeller plane,
the STFT heatmap will display both the Doppler shift of the
moving plane, as well as the Micro-Doppler shifts of the
propeller. For a moving person, it shows his velocity and also
the Micro-Doppler of his arms and legs.

We chose EfficientNetV2 [12] as the model for the classi-
fication for 3 main reasons:
• At the time of the model selection, EfficientNetV2 was

amongst the best neural network on several image classifi-
cation benchmarks.

• As discussed earlier, our dataset will be smaller than
images dataset. Moreover, each sample is longer to process,
since the dimension of the last channel is greater than the
traditional 3 for Red Green Blue images. EfficientNetV2
was designed to have less weights (thus needing less data)
and shorter training time than other state-of-the-art models.

• EfficientNetV2 is widely used, which makes it accessible
with pre-trained weights in several libraries.

Figure 7. Camera image, Range-Velocity heatmap and STFT heatmap of
person, a car, and GA aircraft

The dataset includes 2802 examples, with 2324 examples
of aircrafts, 240 examples of pedestrians and 238 examples
of cars. As such, the classes present in the dataset are im-
balanced. This means that accuracy alone cannot be used to
evaluate different models, because a model that always answer
“aircraft” would have an accuracy of 83% in our case, while
giving nothing of value. To ensure that our model does not act
that way, we train it with a weighted loss function. This means
that misclassifications during training are penalized more the
less a class is present in the dataset. We trained several models
while varying the degree to which the minority classes were
favorized, and even in the most favorable case, planes were
detected correctly with an accuracy of 93,6%, vehicle with an
accuracy of 61,5% and pedestrian with an accuracy of 34,0%.

We see two solutions as the most promising to improve
the model further. The first one simply consists of gathering
more data, especially for vehicles and pedestrians. The second
is to use data augmentation, to create new examples from
our current ones. It could be done at two levels: at the
STFT heatmaps level or directly at the raw radar data level.
Radar data augmentation is a less studied field than image
data augmentation, but new research tries to tackle this issue
[13]. In order to ameliorate classification results with Micro-
Doppler data, future work will consist of creating new STFT
heatmaps from our current radar data by simply shifting the
time window used to generate the heatmaps.

2) Classification using the Range-Angle heatmap: The pre-
vious method was showing a lot of promise, but the reliance
on the Doppler effect made it unusable when a target was
not moving at all. For that reason, we tried an alternate
method, based on the Range-Angle heatmap. The proposed
method would use image detection (i.e., means classification
and localization of the object of interest in the image) instead
of image classification. The image detection method used is
YOLOv4 [14]. Like EfficientNetV2, YOLOv4 was chosen



for his performance on image detection benchmark and for
his wide use in the industry. At the beginning, we tried to
train the model using the Range-Angle heatmap obtained
using the 3FFT [7]. However, the high-level of noise and
the low resolution in these heatmaps make it hard to create
the image that YOLO would be used on. We have tried
then another direction-of-arrival estimation method: the high-
resolution MUSIC algorithm. Thus, we have obtained better
results for the Range-Angle heatmaps as illustrated in Fig.8.
Future work will be to train the model and evalutate the
performance of this model in objects’ detection.

Figure 8. Examples of Range-Angle images on the left and zoom on targeted
object on the right

V. LOS DETECTION

The accuracy of positioning is highly deteriorating in the
presence of NLOS, therefore the classification into LOS and
NLOS scenarios is a fundamental block towards a compre-
hensive 5G-based positioning solution. There are typically
two main classes of LOS detection algorithm: one based on
signal processing models, where different characteristics of
the received signal are extracted from measurement data and
compared to a threshold, and another one based on ML, and
relying on some training phase, where relevant features are
extracted from the available data and then ML algorithms are
applied to classify the data based on those features. Examples
from the first category are: kurtosis-based detection [15],
[16], cross-polarization discrimination [17], channel impulse
response entropy [18], Rician-factor-based detection [16] or
time-space-frequency correlation [19]. Examples from the
second, ML-based, category for LOS detection can be found
in [20]–[24]. ML-based algorithms are typically understood to
exhibit better performance than the model-based algorithms
and they have been poorly studied so far in the context
of 5G signals. Therefore, our focus has been on ML-based
LOS-detection, by using our in-house 5G signal simulator
(Matlab-based) and two classes of wireless channels: Tapped
Delay Lines (TDL) and Clustered Delay Lines (CDL) channel
models. Each class had five sub-categories (denoted A to E),
with categories A-C modeling NLOS cases and categories D-
E modeling LOS cases. More details about TDL and CDL

channels can be found, for example, in [25] and they are
widely known in the 5G research community. In our analysis,
1000 random samples were generated per channel category
(total 5000 samples); 80% of data was used for training and
20% of data for testing. We studied both downlink and uplink
configurations, but since the obtained results were similar,
for clarity purpose we only show here the downlink results
based on PRS reference signals. An example of channel
impulse response (CIR) obtained from the correlations with
PRS downlink signals under LOS and NLOS scenarios is
shown in Fig. 9 for CDL channels.
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Figure 9. Examples of correlation outputs under LOS and NLOS scenarios
with CDL channels (different curves show different realizations of the
channel). SNR= 0 dB; PRS downlink signal.

Based on the literature search, several features were in-
vestigated for use with ML, namely time-domain correlation,
frequency-domain spectrum, and kurtosis of the received sig-
nal. Results comparing the LOS detection probability under
different features are shown in Table IV with CDL and TDL
channels and with Support Vector Machine (SVM) classifier
with medium Gaussian kernel.
TABLE IV. LOS DETECTION PROBABILITIES WITH SVM CLASSIFIER AND
DIFFERENT NUMBER OF FEATURES

Features TDL CDL

1 feature (time) 84% 90%

1 feature (frequency) 77% 85%

1 feature (kurtosis) 69% 71%

2 features (time + frequency) 83% 88%

2 features (time + kurtosis) 78% 86%

2 features (frequency+kurtosis) 83% 86%

3 features (time + frequency + kurtosis) 84% 88%

The results in Table IV show that time-domain features
are the strongest among the other investigated features and
combining several features together cannot surpass the perfor-
mance with a single feature only when time-domain correla-
tion is used as the single feature. In addition, LOS detection



Figure 10. The hardware configuration schematic.

probabilities were slightly better for CDL channels than for
TDL channels, no doubt due to the higher richness of time-
domain features in a CDL compared to TDL. Different ML
classifiers have also been investigated and an example of
results is shown in Table V for five selected classifiers and
time-domain features. As the selected classifiers are well-
known from the ML literature, their exact description is not
added here for lack of space.

TABLE V. LOS DETECTION PROBABILITIES WITH SVM CLASSIFIER AND
DIFFERENT NUMBER OF FEATURES

Classifiers TDL CDL

SVM, medium Gaussian 84% 90%

XGboost 80% 89%

Random Forest 79% 87%

Neural Networks (NN) 81% 85%

Cosine Nearest Neighbours 79% 85%

The SVM classifier gave the best results, followed by
XGboost and NN classifiers. Again, the results based on CDL
channels were slightly better than with TDL channel.

VI. MEASUREMENTS WITH 3D VECTOR ANTENNA

The in-lab validation of the 5G-based algorithms has been
done based on the block diagram in Fig. 10. The in-lab
set-up comprised one PC (Intel i7-8700, with CPU at 3.20
GHz, 32 GB RAM, and 1TB SSD) to host the LabVIEW
to run the AoA and time delay estimation algorithm; one
cabled PCI Express Switch Box x4 10 Port ( CPS-8910) to
connect the three USRPs to the PC’s PCIe adapter; one PCIe
adapter used in motherboard-level connections as an expansion
card interface; several SMA cables for 10 MHz clock and
PPS distribution for synchronization and another group for
RF signal connection; a four-Way DC Pass Power Splitter
(ZN4PD-272-S+) in the frequency range 500 - 2700 MHz at
50Ω to deliver multiple output signals with specific output
phase and amplitude characteristics; three RIO USRPs (two
NI USRP-2954R for receiving signals and one NI USRP-
2953R for transmitting signal; a 3D vector antenna connection
with 8 ports, among which 4 electric ports were used connect
to the two receiver USRPs; one OctoClock CDA-2990 with
10MHz reference clock and PPS output to build multi-channel
systems that are synchronized to a common timing source; and
a GPS antenna to drive the external clock of the OctoClock.
Mesaurements were performed at 2.1 GHz carrier frequency.

Several transmitter antennas have been used (e.g.,
monopole, Yagi); an example of the in-lab set-up with a Yagi
antenna with 5dBi antenna gain and a frequency range between

700MHz and 6GHz is shown in Fig. 11. Data was collected
under both LOS and NLOS scenarios. The obstacle used for
NLOS measurements is also illustrated in the lower plot of
Fig. 11.

Figure 11. lEFT plot: Lab picture with the Yagi antenna at the TX and the
3D VA at the RX. Left: LOS scenario; right plot: Obstacle used for NLOS
scenario in the wave path.

The AoA algorithm has been implemented in LabVIEW
2021, as illustrated in Fig. 12.

Figure 12. 3D-VA MUSIC Algorithm steps in LabVIEW.

Snapshot examples of AoA estimates under static and mov-
ing scenarios are depicted in Fig. 13 and Fig. 14, respectively
and show perfect estimates under noiseless scenarios.
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Figure 13. AoA estimation with 3D-VA at 100°.
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Figure 14. Snapshots of moving the Tx back and forth of different angles.

Part of our AoA measurements with this setup are now
available in open source at [6]. The LOS detection algorithm
testing via the in-lab set-up is still on-going; part of the
measurements have already been collected and an example of
correlation outputs under LOS and NLOS scenarios with SRS
5G signals is given in Fig. 15. Compared to the theoretical
LOS/NLOS models of Fig. 9, the measured NLOS channel
has a lower amount of multipath; the noise floor is higher in
LOS compared with LOS case in both simulated and measured
data.
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Figure 15. Examples of LOS and NLOS correlation outputs based on measured
data with 5G SRS signals and 3D VA.

VII. CONCLUSION

In this paper, we demonstrate that positioning and sensing
using angle and/or timing information combined with 5G
reference signals and mmWave radar are promising com-
plementary tools in future airport surveillance. The perfor-
mances of 3D-VA have been evaluated in the context of
AoA estimation. We have addressed the problem of LOS
detection through ML algorithms. The testbed setup with the
3D-VA was described. Current 5G-based results show that a
receiver can achieve promising accuracy (order of few meters
positioning error and close to zero direction-estimation errors
with suitable antennas) when receiver is in LOS connection
with at least 3 base stations. We have also shown that NLOS
scenarios can be detected wit accuracies as high as 90%
with machine learning algorithms if enough training data is
available. In order to further improve the positioning and
direction-estimation results also in NLOS scenarios, the 5G-
based surveillance solution, encompassing positioning, LOS
detection, and radar-like sensing is to be further investigated
through hybridization with additional sensors and possible
map information. Measurements using the FMCW mmWave
radar and obtained results prove the potential of using this
type of radar for airport surveillance. We have assessed the

mmWave radar performances in terms of range, angle and
velocity calculation. We have also applied Machine Learning
methods to classify targets and we have obtained an accuracy
up to 90%. We encountered some constraints during the mea-
surements such as the test environment not large enough (e.g.
in external parking, the maximum depth is 130 meters), no
control on the target presence and trajectory (e.g. for aircraft at
Muret airfield which were sometimes out of reach of the radar)
and limited collected data as outdoor measurements have been
done during 3 days (1 day in external parking and 2 days at
Muret airfield). This is different from measurement campaigns
when the sensor is installed 24/7. Thus, we assume that posi-
tioning results could be ameliorated in more favourable testing
environment, especially if the radar is adapted and trained for
a specific airport. Future work will consist of a) completing the
5G-signal-based solution measurements with the 3D-VA and
investigating MUSIC AoA estimates under various transmit
powers and noise conditions, b) enhancing the ML applied to
mmWave data, c) evaluating the system performance against
equivalent A-SMGCS standards. This work will also feed the
EUROCONTROL A-SMGCS Task force and the EUROCAE
Working Group 41 on integrating new technical solutions
into the A-SMGCS surveillance service and its performance
framework.
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