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Abstract: Predicting flight delays has been a major research topic in the past few decades. Various
machine learning algorithms have been used to predict flight delays in short-range horizons (e.g.,
a few hours or days prior to operation). Airlines have to develop flight schedules several months
in advance; thus, predicting flight delays at the strategic stage is critical for airport slot allocation
and airlines’ operation. However, less work has been dedicated to predicting flight delays at the
strategic phase. This paper proposes machine learning methods to predict the distributions of delays.
Three metrics are developed to evaluate the performance of the algorithms. Empirical data from
Guangzhou Baiyun International Airport are used to validate the methods. Computational results
show that the prediction accuracy of departure delay at the 0.65 confidence level and the arrival delay
at the 0.50 confidence level can reach 0.80 without the input of ATFM delay. Our work provides an
alternative tool for airports and airlines managers for estimating flight delays at the strategic phase.

Keywords: strategic flight schedule; machine learning; distribution prediction; flight delay

1. Introduction

Air transport demand has been increasing continuously before the coronavirus pan-
demic. The number of flights performed in mainland China by passenger airlines reached
4.611 million in 2019, which is 6.1% higher than the previous year. The on-time performance
has been improved as well. The punctuality in 2019 is 81.65%, while the average flight
delay is 14 min per flight [1]. Although the coronavirus pandemic has brought a huge
impact on the air transport industry, it is foreseen that air traffic would recover quickly
when the pandemic ends. Nevertheless, air transport demand at most busy airports will
exceed airport capacity due to slow improvement in airport capacity. Thus, demand and
capacity management is still one of the most important issues in the air transportation field.

Slot allocation is an effective means of airport demand-capacity management [2,3]. A
slot is defined as the right given to an air carrier to use all the infrastructure and services
within the airport at a specific date and time. The slot coordinator or slot coordination
department will allocate slots to the airlines under the guidance of certain rules given
airlines’ slot requests and the declared capacity of the airport. The Worldwide Airport
Slot Guidelines (WASG) issued by the International Air Transport Association (IATA) is
a fundamental regulatory reference for most countries. The slot allocation process takes
place twice a year, namely the summer season and the winter season [4]. The summer
season starts on the last Saturday in March of the calendar year, and it ends on the Saturday
before the last Sunday in October of the following year, while the winter season is from
the Saturday before the last Sunday of October of the calendar year to the last Sunday of
March of the following year. Airlines generate flight schedules based on the allocated slots
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to provide air transport services to customers. The flight schedule, which is up to several
months prior to the day of the flight operation, is mainly based on the allocated airport
slots. This flight schedule submitted by the airline after the slot allocation is also known as
the strategic flight schedule. The strategic flight schedule is generally in the form of a series
of scheduled arrival and departure operations. For example, flight CA1365 is scheduled
to operate at 4 p.m. every day from Monday to Sunday, taking off from Beijing Capital
International Airport (IATA code: PEK) and landing at Guangzhou Baiyun International
Airport (IATA code: CAN), using the Airbus A330 aircraft.

Much research effort has been devoted to the optimization of slot allocation, which
generally aims to minimize displacements to airline’s slot requests [5]. In [2], the authors
present an extensive review of the current slot allocation models and practices. They
classified the models into two categories: single airport slot allocation optimization model
and network-wide slot allocation optimization model. A single airport slot allocation
optimization model, with the goal of minimizing the displacements between the airlines’
slot requests, is developed in [3]. The testing results at several airports in Europe show that
fewer interventions could achieve the optimal allocation of slots with such an optimization
model. In practice, airlines have to obtain at least one departure slot at the origin airport
and one landing slot at the destination airport to operate a flight. Sometimes, an airline
may have to negotiate with other airlines or slot coordinators to swap/adjust the allocated
slot to match the origin airport slot. An integer linear programming model is developed
in [6] to study slot allocation at all airports in Europe, considering all the constraints in
a single slot allocation model as well as flying time constraints. Both single airport slot
allocation and network-wide slot allocation ensure that the number of scheduled flights
per unit of time does not exceed the airport declared capacity. There would be no delay if
the flights departed or arrived at their scheduled slots. However, flights often experience
arrival/departure delays during the day of the operation due to uncertainties such as
weather, aircraft maintenance, and passengers. The currently published strategic flight
schedules do not provide information on the potential flight delays that may occur.

Over the past years, there are extensive studies on flight delays from various perspec-
tives, including modeling and measuring delay propagation [7–10] and predicting flight
delays [11–14]. Of particular interest is predicting flight delays using machine learning
techniques. A recent study [15] presents a review of flight delay prediction works. The
commonly investigated methods include decision tree, Bayesian learning, neural networks,
support vector machines, and random forest [16–18]. One group of studies aims to predict
the values of flight delay. For instance, a reinforcement learning algorithm is developed
to predict the average airport delay time. The algorithm is tested with data from the New
York John F. Kennedy Airport (JFK). The results show that if the accuracy is set within the
±5 min range, the prediction accuracy can achieve 60% approximately [19]. To account
for the importance of weather in affecting flight delays, a prediction model that estimates
airport delays using data from weather forecast products is developed in [20]. In [21], the
authors propose a random forest algorithm to predict flight departure delay in the air traffic
network. The most delayed network connections (i.e., origin–destination airport pair) are
selected for testing. The results show that the average regression test error achieves 19%
for a 2 h prediction horizon with a 60 min delay threshold. The second group of studies
aims to predict the levels of flight delays. This group of studies is also known as delay
classification prediction. For example, the authors uses recurrent neural networks to classify
delays at several airports [16]. The performance of the model at the network level would
be enhanced if one uses a deeper network architecture. The work in [17] combines the
multi-label random forest classification algorithm and the approximate delay propagation
model to improve the prediction performance.

Although machine learning methods are extensively used in flight delay prediction,
most of the works focus on short-range flight delay prediction, from a few hours to a few
days (see Figure 1). The common purpose of predicting tactical/pre-tactical flight delays is
to support the preparation and implementation of traffic flow management initiatives, such
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as Ground Delay Programs, Mile-In-Trail restrictions, etc. Little work has been conducted
to predict flight delay at the strategic stage. Of course, the needs for predicting flight delays
at the strategic level are different from the former two. One possible application of strategic
flight delay prediction is to assess the quality of flight schedule. Airlines and airports may
need that information to develop strategic plans for preparing their resources in reaction to
severe flight delays. For example, additional staff would be scheduled in a particular time
because those frequent long-time flight delays were predicted. An urgent need for strategic
flight delay prediction is the setting of airport declared capacity. As discussed above, great
efforts have been devoted to optimizing slot allocation under the assumption that the
airport declared capacity is determined (i.e., how flights can be scheduled in one time
unit). In fact, setting airport declared capacity is challenging due to unresolved issues [22].
Setting a higher declared capacity can schedule more flights, but it may result in frequent
flight delays because of low operation capacity. Setting lower declared capacity can provide
high on-time performance, but it may waste scarce airport capacity. The prediction of
flight delays at the strategic level can provide support to decision makers to choose airport
declared capacity.

Day of operation

Few hours

Few days

~6 months

Tactiacl flight delay prediction
Input: Flight plan, airport/airspace capacity, 
weather forecast
Purpose: tactical air traffic flow management, 
e.g. Ground delay programs, Miles-in-trail 
restictions

Pre-Tactiacl flight delay prediction
Input: Flight plan, airport/airspace 
capacity, weather forecast
Purpose: pre-tactical air traffic flow 
management, e.g. allocation of 
airspace capacity, staff air traffic 
controllers

Strategic flight delay prediction
Input: Flight schedule, historical 
operaitonal data 
Purpose: assessing flight 
schedule, setting the level of 
airport declared capacity
(The focus of the present study)

Time

Figure 1. The classification of predication of flight delay.

We note that the work in [23] develops a machine learning approach to predict flight
delays and cancellations in the strategic phase (6 months prior to the day of the operation)
using features from the strategic flight schedule. The machine learning algorithms, Light-
GBM, multilayer perceptron (MLP), and random forest (RF), were tested with the data
from London Heathrow Airport. Among many input features of the model, the arrival Air
Traffic Flow Management (ATFM) delay deserves further debate. ATFM delay is defined
as “the duration between the last Estimated Take-Off Time (ETOT) and the Calculated
Take-Off Time (CTOT) allocated by the Network Manager” [24]. Thus, predicting flight
delay requires calculating the CTOT, which is estimated from software (Network Manager).
As expected, the overall prediction accuracy varies between 0.75 and 0.79 depending on
the machine learning algorithms. The recall is around 0.5. Predicting the status of a flight
several months in advance is indeed challenging.

Almost all the above-mentioned work aims to predict the deterministic status of flight
delay, which is either given by the value of flight delay or by the status of delay (on-time,
delayed, cancelled). In contrast, Zoutendijk and Mitici [25] develops a machine learning
method, using mixture density networks and random forest regression to predict proba-
bilistic individual flight delays. The estimated distribution of flight delays was integrated
into a flight-to-gate assignment model. The results show that integrating probabilistic
delay prediction into the flight-to-gate assignment problem can significantly improve the
robustness of the solution.

In [23], the authors develop classification algorithms for flight delay prediction. How-
ever, simply predicting whether a strategic flight has an arrival/departure delay is only
a rough reflection of the strategic flight’s performance. So, we convert the strategic flight
delays prediction problem into a forecasting problem. Forecasting strategic flight delays is a
huge challenge in the strategic phase because it occurs long before the day of the execution.
To improve the robustness of the forecasting algorithms, we focus on the prediction of
the distribution for flight delay. To the best of our knowledge, in this paper, we address
for the first time the prediction distributions of strategic flight delays. Taken together,
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we propose a machine learning-based approach to predict distributions of strategic flight
delays. Specifically, we propose supervised machine learning algorithms to predict distri-
butions of flight delays scheduled in the strategic phase (several months prior to the day of
operation). Three evaluation metrics are proposed to measure the prediction results. We
demonstrate the performance of our approach using flight schedule data from Guangzhou
Baiyun International Airport in the period 2017–2019.

The structure of this paper is organized as follows. Section 2 describes the data used in
this paper. Section 3 introduces the features engineering and machine learning algorithms.
Three metrics are proposed to evaluate the prediction results. Section 4 compares the
performance of algorithms. Section 5 summarizes the contributions of this paper and
provides outlines for future research.

2. Data

The scheduled flights data of Guangzhou Baiyun International Airport (ICAO code:
ZGGG) were used in this study. The data contain six strategic flight schedules covering all
the flights operated from 26 March 2017 to 28 March 2020. An example of scheduled flights
from the data is shown in Table 1. Every scheduled flight has the following information:
flightID, aircraft type, origin airport, destination airport, Estimated Time of Departure
(ETD), Estimated Time of Arrival (ETA), and days of the week. Days of the week shows
which days of the week the strategic flight will be executed. For example, “123....” means
that the strategic flight will be executed on Monday, Tuesday, and Wednesday each week.
The Actual Time of Departure (ATD) and Actual Time Arrival (ATA) of a scheduled flight
are recorded if the flight was operated. A flight is said to be delayed if it departs (arrives)
more than 15 min after the scheduled time of departure (arrival). A departure (arrival) flight
is considered to be cancelled if this flight is not executed in the day scheduled to depart
(arrive). Due to the limitation of the data, we do not consider cancellation in this work.

Table 1. Strategic Flight Schedule.

FlightID Aircraft Type Origin Airport Destination Airport ETD ETA Days of the Week

CSN3777 A320 ZGGG ZSNB 0725 0935 123....
CXA8313 B738 ZBTJ ZGGG 0705 1010 1234567
CES2551 B738 ZHYC ZGGG 1100 1300 . . . 456.

According to the regulations of Federal Aviation Administration (FAA) and the Civil
Aviation Administration of China (CAAC), a flight is considered to be cancelled if its delay
is greater than 180 min. Thus, we removed all the flights that were delayed more than
180 min.

Figure 2 plots the average hourly departure (arrival) delay of flights operated from
6:00 a.m. to 24:00, while Figure 3 plots the departure (arrival) delay rate of hourly flights
operated from 6:00 a.m. to 24:00. The delay rate is defined as the proportion of flights
with delay longer than 15 min to the total number of hourly scheduled flights. As it can
be seen from Figure 2, the average departure delay at ZGGG is significantly higher than
the average arrival delay. The average arrival delay of the airport increases almost linearly
before 16:00; then, it fluctuates slightly and goes up to the maximum of 20 min per flight.
The average departure delay of the airport increases almost linearly before 17:00; then, it
fluctuates slightly and goes up to a maximum of 35 min per flight. Similar trends can be
observed in arrival delay. That is, delay increases almost linearly from 8:00 to 21:00. From
Figure 3, we can see that the average departure delay rate of the airport is significantly
higher than the arrival delay rate. The average arrival delay rate at the airport is less than
0.24, while most of the hourly departure delay rates vary between 0.5 and 0.6.
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Figure 2. Average hourly arrival/departure delay.

Figure 3. Airport hourly arrival/departure delay rate.

Figures 4 and 5 shows the distribution of arrival (departure) delay of one flight in one
schedule season. The kernel density estimation and the normal distribution fitting are used
to fit the curves. It can be seen that the kernel density curve is very close to the fitted normal
distribution curve. Therefore, we assume that flight delays follow normal distributions.
The mean µ and standard deviation σ are used to describe the delay distribution. Thus, the
goal of our supervised learning algorithms is to predict the µ and σ for every flight in the
strategic flight schedules.

Figure 4. An example of an arrival flight delay distribution.
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Figure 5. An example of a departure flight delay distribution.

3. Machine Learning Algorithms for Distribution Prediction of Flight Delays
3.1. Feature Selection

Here, we discuss the selection of features that are used in our prediction model. The
final features selected are shown in Table 2. The features Aircraft, Airport, Year, Day of
week, Airline, STD Hour, and STA Hour are directly obtained from the strategic flight
schedules. Flight frequency is the frequency of a flight operated per week. Flying Time is
the time difference between ETD and ETA (i.e., schedule block time). Base Aviation is a
binary variable, indicating whether the airline has a base in ZGGG. Hourly flights is the
number of scheduled departure (arrival) flights per hour at ZGGG.

Table 2. Feature description for the algorithm (C—Categorical, N—Numerical, T—trigonometric
transform function).

Feature Feature Type Feature Description

Aircraft C The type of aircraft, e.g., Airbus 320
Airport C The origin or destination airport of flight
Year N The scheduled year of flight
Day of week T The scheduled day of the week of flight
STD hour T The scheduled departure hour of the day of flight
STA hour T The scheduled arrival hour of the day of flight
Flight frequency N The times of flight operated in one week
Airline C The airline which operates flight
Base aviation C Whether the airline has base in ZGGG

Flying time N The scheduled block time, i.e., the time difference between
scheduled time of arrival and the scheduled time of departure

Hourly flights N The number of scheduled flights per hour

Because Aircraft, Airport, and Airline are categorical variables, machine learning algo-
rithms may not be able to process them directly. Due to the high dimension of classification
features, binary encoding and one-hot encoding methods are not suitable for our work.
These two algorithms will generate high-dimensional columns, and the training time will
be greatly increased. Ordinal encoding is not suitable neither because ordinal encoding is
often used for data with size relationships between variables. Thus, the beta object coding
method is used to encode these variables [26].

Trigonometric functions are employed to convert Day of week, STD Hour, and STA
Hour to keep the nature of periodicity [27]. For example, t = 24:00 and t = 01:00 cannot
be directly encoded as 24 and 1, which makes them far apart. In fact, they are continuous,
24:00 today is 0:00 tomorrow. Therefore, for a particular hour t on one day, the trigono-
metric functions sin(2t/24) and cos(2t/24) are converted to ensure 24 h periodicity. After
trigonometric conversion, t = 24:00 and t = 1:00 will be continuous hours. Similarly, the
period of the feature Day of week is 7 days.
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Numerical variables such as Flying time and Hourly flights are normalized; that is,
the data are mapped uniformly to the interval [0, 1]. This will change the dimensional
expression into a dimensionless expression. The normalization method used here is Max–
Min standardization, which is the linear transformation of original data. The transformation
function is given as follows:

x =
x−min

max−min
(1)

where x is the original data, min is the minimum in the original data, and max is the
maximum in the original data.

3.2. Framework for Distribution Prediction of Flight Delays

According to previous studies [23], three machine learning algorithms are selected
to predict the distribution of flight delays: multilayer perceptron (MLP), LightGBM and
random forest (RF). The work in [28] proved through a large number of experiments
that random search is better than grid search in machine learning tuning. Therefore, the
random search algorithm is adopted in this paper to search for the hyperparameters of
every machine learning algorithm.

Figure 6 shows the main process of machine learning algorithms for distribution
prediction of strategic flight delays. The process is divided into three parts: feature en-
gineering, machine learning algorithms, and performance evaluation. First, the features
are determined and encoded using corresponding methods. Then, the data are divided
into a training set and test set. Specifically, the training set contains five strategic flight
schedules, which are used to train the machine learning algorithms. The test set contains
one strategic flight schedule to test the performance of every algorithm. The output of an
algorithm include the mean µ and standard deviation σ of every flight. Last, we compare
the algorithms’ performance via three evaluation metrics (see more detail in Section 3.3).
The k-fold cross-validation is adopted to evaluate the algorithms’ performance [29]. The
main idea of the k-fold cross-validation is that the sample will be split into k groups. Each
group will be treated as a validation sample (or a testing data set) to evaluate the model.
Because we have six flight schedules, therefore, we set k = 6.

Figure 6. Machine learning algorithms for distribution prediction of flight delays.

3.2.1. MLP

MLP is a forward-structured artificial neural network that maps a set of input variables
to a set of output variables [30]. MLP can be viewed as a directed graph consisting of
multiple layers of nodes fully connected to the next layer. The MLP network structure
includes an input layer, hidden layer and output layer, and an algorithm called back
propagation is used to train the model. MLP often uses the dropout to drop part of the
input in the neural network layer to solve overfitting to a certain extent. The loss function
of MLP is the difference between the predicted value and the real value, and the algorithm
updates the network weights through back propagation according to the loss function to



Sustainability 2022, 14, 15180 8 of 14

train the network. Therefore, the choice of the loss function has a great influence on the
training effect of the algorithm. For the regression prediction problems, the loss function
usually is the Mean Squared Error (MSE), which is shown in Equation (2).

LossMSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (2)

where yi is the original data, ŷi is the predicted data, and m is the number of samples in the
original data.

However, our focus here is on interval prediction rather than point prediction. Our
attention is given to whether the predicted delay distribution is close enough to the real de-
lay distribution. Thus, the quantile loss function (Quantile) which estimates the conditional
quantile of a given predicted value is selected in this work (see Equation (3)).

LossQuantile =
1
m

m

∑
i=1

(
∑

i:yi<ŷi

(1− γ)|yi − ŷi|+ ∑
i:yi>=ŷi

γ|yi − ŷi|
)

(3)

where γ is the quantile setting value, γ ∈ [0, 1].
The hyperparameter settings of MLP (MSE) and MLP (Quantile) are given in

Tables 3 and 4.

Table 3. The hyperparameter setting of MLP (MSE).

MLP (MSE) Number of Layers Number of Neurons
Per Layer Dropout Rate Learning Rate

Arr.delay 3 300 0.00 0.001
Dep.delay 4 450 0.05 0.0001

Table 4. The hyperparameter setting of MLP (Quantile).

MLP (Quantile) Number of Layers Number of Neurons
Per Layer Dropout Rate Learning Rate

Arr.delay 3 250 0.05 0.001
Dep.delay 4 400 0.05 0.0001

3.2.2. LightGBM

Traditional Boosting algorithms require scanning all sample points for every feature
to select the best segmentation point, which is very time consuming. The work in [31]
proposes Light Gradient Boosting Machine (LightGBM) to solve this problem. LightGBM
uses Gradient-Based One-side Sampling (GOSS). Instead of using all sample points to
calculate gradients, LightGBM calculates gradients after sampling. Exclusive Feature
Building (EFB) does not use all features to obtain the best segmentation point but rather
correlates some features together to reduce the feature dimension. General decision tree
algorithms grow trees through a level-wise strategy, which does not distinguish leaf nodes
in the same layer, but in fact, some leaf nodes in the same layer do not need to grow.
LightGBM uses leaf-wise tree growth to avoid these problems, and it prevents overfitting
with a max depth limit. Table 5 shows the hyperparameter settings of LightGBM.

Table 5. The hyperparameter settings of LightGBM.

LightGBM N_Estimators Max Depth Subsample Colsample Learning Rate

Arr.delay 400 8 0.9 0.85 0.01
Dep.delay 350 7 0.8 0.70 0.01
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3.2.3. Random Forests

In [32], an ensemble learning algorithm of different decision trees called random
forest is proposed. Random forest includes random and forest. Forest represents the idea
of integrated learning, which includes multiple estimators for learning and prediction
without interference. Random represents the construction of sub-data sets by sampling
randomly with a back from the original data set, and the amount of data in the sub-data set
should be the same as that in the original data set. Every estimator in the forest is divided
into a corresponding sub-data set to construct a sub-decision tree and make judgments
independently. When new data need to be predicted through random forest, voting is
adopted to obtain the final output. For example, if there are three sub-decision trees in
the random forest, two of them predict the result as 0.3, and the third one predicts the
result as 0.6. Then, the final result of the random forest is (0.6 + 0.3 + 0.3)/3 = 0.4. That is,
random forest outputs the mean of all the decision trees’ outputs. Every estimator does
not use all features in learning but randomly selects a few features before learning. The
hyperparameter setting of random forest for distribution delay prediction is shown in
Table 6.

Table 6. The hyperparameter setting of random forest.

Random Forest N_Estimators Min Samples Split Min Samples Leaf Max Depth Max Features

Arr.delay 350 8 9 12 0.75
Dep.delay 350 13 5 13 0.75

3.3. Performance Evaluation Metrics

To compare the performance of distribution prediction, MSE cannot be used to eval-
uate the performance of the algorithms. Here, we propose three metrics to evaluate the
prediction results, the prediction accuracy under given confidence level, the regional area under
given interval level and Wasserstein distance.

The prediction accuracy under given confidence level is defined as follows. The algorithm
predicts the mean and standard deviation of the delay distribution of a flight, and it
generates the corresponding normal distribution curve. If the mean value of the actual
delay distribution falls within this confidence interval under this confidence level, the
prediction is said to be a correct prediction. Figure 7 shows a correct prediction for a flight
at the 70% confidence level.

Figure 7. An example of correct prediction at 70% confidence level.

The regional area under given interval level is defined as follows. The algorithm predicts
the mean and standard deviation of the delay distribution of a single flight, and it generates
the corresponding normal distribution curve. The mean value of the actual delay distribu-
tion corresponds to two points on the x-axis at given interval level. A larger regional area
indicates a more accurate prediction. Figure 8 shows an example of a delay distribution
with a mean value of 30 min and a delay interval level of 20 min.
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Figure 8. An example of prediction for 20 min interval level.

The Wasserstein distance is used to measure the difference between the actual delay
distribution and the predicted delay distribution. The smaller the value, the more accurate
the prediction. Figure 9 shows an example of the Wasserstein distance between two
distributions. Wasserstein distance, also known as bulldozer distance, is simply the cost of
pushing one distribution into another [33]. This paper does not use the Kullback–Leibler
(KL) divergence to measure the distance between the predicted distribution and the actual
distribution, because every flight in the schedule follows a different normal distribution,
and the KL divergence is not comparable. Then, the function for calculating the Wasserstein
distance is given as follows.

W(P, Q) = inf fγ∈Π(P,Q)E(x,y)∼γ[‖x− y‖] (4)

where P, Q are the two distributions to calculate the Wasserstein distance. x is the starting
point, and y is the target point to be pushed to. r is the cost of the operation, while Π(P, Q)
is the distribution of all possible joint distributions P, Q . The total cost is obtained using
the Expectation Maximum (EM) method to find the minimum value.

Figure 9. An example of Wasserstein distance between two distributions.

To evaluate the overall performance of the algorithm, three metrics are proposed
correspondingly. The prediction accuracy rate under given confidence level is defined as the
percentage of flights in the strategic flight schedule that are correctly predicted at this confi-
dence level. The average regional area under given interval level is defined as the average of the
regional area at this interval level in the strategic flight schedule. The Wasserstein distance’s
kernel density curve is plotted to demonstrate the performance of Wasserstein distance.

4. Results
4.1. The Prediction of Individual Flight Delays

Figures 10–12 shows the performance of different algorithms using three evaluation
metrics in predicting arrival delays (left) and departure delays (right). Overall, the per-
formance of predicting departure delay distribution is significantly better than that of
predicting arrival delays. This may be because departures have higher average delays and
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delay rates as shown in Figures 2 and 3. The accuracy of prediction of departure delay
at a 0.65 confidence level and arrival delay at a 0.50 confidence level can be over 0.80.
At the interval level of 55 min, the regional area of the arrival delay reaches 0.7, and the
regional area of the departure delay reaches 0.9. The MLP algorithm, which uses MSE as
a loss function, shows the worst performance in all three evaluation metrics. The MLP
algorithm using a quantile loss function, LightGBM, and random forest algorithms show
little difference. In the prediction of departure delay distributions, the MLP (quantile)
algorithm shows the best performance. In the Wasserstein distance’s kernel density curve,
it has the thinnest distribution, indicating that the predicted delay distribution and the
actual delay distribution have high similarity.

(a) (b)

Figure 10. The performance under different confidence levels (Arrival (a), Departure (b)).

(a) (b)

Figure 11. The performance under different interval levels (Arrival (a), Departure (b)).

(a) (b)

Figure 12. The performance of Wasserstein distance (Arrival (a), Departure (b)).

4.2. The Prediction of Flight Delays of a Flight Schedule

In this section, we evaluate the predicting performance from an entire flight schedule
perspective. After obtaining all distributions of individual flight delays, we can have the



Sustainability 2022, 14, 15180 12 of 14

delay distribution of an entire strategic flight schedule. Figure 13 plots the Cumulative
Distribution Function (CDF) of flight delays of an entire schedule from actual (original),
actual (fitted), and predicted data. We can see that the predicted distributions, actual
(fitted), and the actual (original) distributions are generally consistent, indicating that our
approach can generally capture the main characteristics of flight delays. However, the
predicted delays are more concentrated than the actual (fitted) delays. The cumulative
value of predicted delays grows slower than the actual ones in the beginning, but it reaches
1.0 faster.

Figure 13. CDF curve of strategic flight schedules among actual (original), actual (fitted) and prediction.

The Probability Density Function (PDF) and CDF of the mean of flight delays are
drawn in Figure 14. The results suggest that it is much more difficult to predict single flight
delays than to predict the distributions of delays. In particular, due to the difference in
the arrival and departure delays of the strategic flight schedule, the PDF presents bimodal
distributions for both predicted and actual data. In general, the prediction algorithm has a
good performance for flights whose delays are between 10 and 30 min.

(a) (b)

Figure 14. (a,b) PDF and CDF curve of the mean of every flight between actual and prediction.

5. Conclusions and Discussion

In this paper, we proposed machine learning algorithms to predict the distributions
of flights in a strategic schedule. We tested various distribution functions to model flight
delays, including Beta distribution, Erlang distribution, and Normal distribution. The
results suggest that Normal distribution is better able to capture the stochastic nature of
flight delay. Three machine learning algorithms, LightGBM, MLP, and RF, have been em-
ployed to predict the distribution of flight delays. To measure prediction performance, three
metrics are defined. We tested our algorithms with real flight data at Guangzhou Baiyun
International Airport. The prediction accuracy of departure delay at a 0.65 confidence
level and the arrival delay at the 0.50 confidence level can reach 0.80. Our work provides
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an alternative tool for airports and airlines managers for estimating flight delays at the
strategic phase.

There are several limitations of the work. First, since there are many factors that
affect flight delay, we could fit the delay distribution for every single flight with multiple
normal distributions. Second, we do not predict cancellations due to the limitation of data.
Given the low probability of flight cancellation, it would be much more challenging to
predict correctly. Last, the prediction performance may be enhanced if a sophisticated
model is constructed or if a more precise loss function is developed for each machine
learning algorithm.
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