
HAL Id: hal-03852053
https://enac.hal.science/hal-03852053

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting spatio-temporal partial separability of
large-scale airspaces

Julien Lavandier, Marcel Mongeau, Supatcha Chaimatanan, Daniel Delahaye

To cite this version:
Julien Lavandier, Marcel Mongeau, Supatcha Chaimatanan, Daniel Delahaye. Exploiting spatio-
temporal partial separability of large-scale airspaces. International Workshop on ATM/CNS (IWAC)
2022, Oct 2022, Tokyo, Japan. �hal-03852053�

https://enac.hal.science/hal-03852053
https://hal.archives-ouvertes.fr

Proc. of the IWAC2022
pp. XX–XX, Oct. 2022

Exploiting spatio-temporal partial separability of large-scale airspaces

Julien Lavandier1)†, Marcel Mongeau1)†, Supatcha Chaimatanan2)∗, and Daniel Delahaye1)†

1)ENAC, Université de Toulouse, France
2)Kasetsart University, Bangkok, Thailand

†email: firstname.name@enac.fr
∗email: supatcha.chai@ku.th

This paper addresses large-scale flight planning via a divide-and-conquer technique that exploits the
partial separability feature of the problem. 4D-interaction between flights is used to cluster the flights,
and these clusters are then exploited to improve the optimization process. Preliminary computational
experiments on the French airspace demonstrate the natural separability of air traffic and yield promising
computational improvement for flight planning thanks to the clustering.

Key Words : Large-scale flight planning, Alternative trajectory, Partial separability, Spatio-temporal

clustering.

1 Introduction

The number of aircraft flying in the European sky

grows steadily with an exception during the Covid

crisis. The International Air Transport Association

(IATA) forecasts growth of air passengers worldwide

up to more than 8 billions in 2040. The traffic is ex-

pected to recover its 2019 level of passengers in 2024.

Consequently, the number of aircraft flying in the same

airspace will also increase. If nothing is done, Air Traf-

fic Controllers’ (ATC) mental workload will increase,

even if the number of air sectors are augmented be-

cause they would have more transitions to manage.

This will have the effect of limiting the airspace net-

work capacity. Therefore, the snowball effect provokes

the congestion of airports and sectors. The mitiga-

tion of airspace congestion prevents delays. To that

end, Air Traffic Flow Management (ATFM) strate-

gies regulate the air traffic flow as efficiently as possi-

ble. It has to consider also the enhancement of safety,

the improvement of cost-effectiveness, and the reduc-

tion of aviation-related environmental impacts. For

these reasons, ATFM branches into two approaches.

The first method adapts the capacity to the demand.

High-density sectors are split into several sectors con-

trolled by different controllers, reducing thereby each

controller’s workload. Conflicts are then resolved more

quickly. However, controllers need sufficient time and

space windows to manage conflicts. Hence, the sec-

tors have to remain sufficiently large. This limitation

motivates the need for another approach. The second

approach adapts the demand to the existing capacity

by changing the aircraft speed, the time of departure,

or the aircraft route so as to regulate the air traffic

demand to match the current capacity.

Large-scale trajectory planning is a well-known prob-

lem that has been investigated for some time. It

consists in finding the most appropriate take-off time

slots and trajectory options for the flights in a large

airspace. The planning of all flights consists in choos-

ing the most appropriate trajectory option among some

given trajectory-change options including new sched-

uled times of departure and alternative trajectories.

Changing filed flight plans has however a cost in time

and/or in fuel increase. The objective of this paper

is to minimize the delay-related cost of changes while

reducing the complexity of the traffic. The complex-

ity metric used is the Linear Dynamical System metric

detailed in2) and defined for each 4D point of each tra-

jectory.

This paper details the work conducted around large-

scale trajectory planning using the natural spatio-

temporal partial separability of air traffic: not all

pairs of flights are potentially in interaction. Spatio-

temporal interactions provide a way to cluster the

flights. The trajectory planning problem can then be

solved using a divide-and-conquer approach exploiting

these clusters. This paper proposes a new approach to

solving the initial large problem by addressing smaller

partially independent subproblems.

The first section introduces a spatio-temporal “dis-

tance” between pairs of flights. The second section pro-

poses an algorithm to find clusters. The third section

presents our mathematical optimization model for the

trajectory-planning problem. The fourth section de-

1

Proc. of the IWAC2022

tails the algorithm used to solve the initial large prob-

lem and the reduced, clustered subproblems. Finally,

the fifth section presents encouraging preliminary com-

putational results obtained on the French airspace.

2 Spatio-temporal distance

The spatio-temporal “distance” between flights that

we propose is based on the 4D-intersection of the flight

envelopes. We call the envelope of a flight, the 4D poly-

tope of its flight plan including all the alternative 3D

trajectories taking into account all possible departure

“delays”, some uncertainty added under the form of

an interval in each of the three space dimensions and

the time dimension. The uncertainty of the space di-

mension is assumed constant and equals to vertical and

horizontal separation norms of five nautical miles and

one thousand feet. The uncertainty bounds of the time

dimension are assumed constant and are the lower and

upper bounds of the maximal delay of a flight. Com-

puting the intersection of two such 4D polytopes is a

difficult problem even though improvements are pre-

sented in7) for computing such an intersection. This

should be performed for all possible pairs of a large

number of flights, thus it involves redhibitory compu-

tational times. The metric we propose to evaluate the

interaction between flights is the hypervolume of such

intersections. The normalized metric is defined as the

ratio of the intersection hypervolume and the minimal

hypervolume between the two envelopes.

We further propose an approximation of this 4D in-

tersection. More precisely, it corresponds to a worst-

case scenario, as it relies on computing the 4D volume

of the actual 4D polytope intersection with constant

size in altitude and also in time.

This section introduces three different interaction

factors upon which our 4D-interaction factor will be

defined. All four interaction factors are dimensionless,

with values in the interval [0, 1]. A 4D-interaction fac-

tor of value one corresponds to a complete intersection

overlap of flights, whereas a null factor corresponds to

non-intersecting flight envelopes.

2.1 XY-interaction factor

The first interaction factor of two flights, f and g,

that we present is based on the classical 2D-polygon

intersection4) of the planar envelopes of f and g. The

planar envelope encompasses the possible trajectories

including uncertainty and lateral separations. Figure 1

represents the flights f and g, and their respective pla-

nar envelopes, noted Ωf and Ωg, defined by the Lam-

bert azimuthal equal-area projection of a flight enve-

lope. The polygon ABCD represents the intersection,

Ωf ∩ Ωg, of the two flight envelopes.

X

Y

γf0

γ f
1

γf2

Ω f

γ
g0

γ
g1

γ
g
2

Ω
g

A

B

C

D

Fig. 1. 2D-polygon intersection of the envelopes of flights f
and g.

We define the XY-interaction factor between flights

f and g, noted αfg, as:

αfg =
A (ABCD)

min (A (Ωf) ,A (Ωg))
,

with A (S) denoting the area of the 2D set S.

2.2 Z-interaction factor

Let
[
ZfP , Z

f

P

]
be the altitude interval of the envelope

of flight f at the 2D waypoint P on the planar envelope.

We define the Z-interaction factor, noted β̂fg, between

flights f and g through the altitude intervals at the

2D intersection points A, B, C, and D, illustrated on

Figure 2, as follows:

β̂fg = max
P∈Ωf∩Ωg

(βfg(P)) ,

where βfg(P), the Z-interaction factor of the 2D way-

point, P , is:

βfg(P) =

∣∣∣[ZfP , ZfP] ∩ [ZgP , ZgP]∣∣∣
min

(∣∣∣[ZfP , ZfP]∣∣∣ , ∣∣∣[ZgP , ZgP]∣∣∣) ,

where |[a, b]| denotes the length of the interval [a, b].

The Z-interaction factor is therefore defined through

the intersections of two intervals (see Figure 3).

2.3 T-interaction factor

The T-interaction factor of two flights is defined in

a manner analogous to the Z-interaction factor, with

the altitude component of the flight envelopes replaced

by its time component, as shown in Figure 4. More

precisely, we define the T-interaction factor, noted τ̂fg,

2

Proc. of the IWAC2022
pp. XX–XX, Oct. 2022

XY plane

Z

A B C D

Flightf

Altitude envelopef

Flightg

Altitude envelopeg

•
Zf

A

•
Zf

B •
Zf

C •
Zf

D

•
Z

f
A

•
Z

f
B •

Z
f
C •

Z
f
D

•
Z

g
A

•
Z

g
B

•
Z

g
C

•
Z

g
D

•
Zg

A

•
Zg

B

•
Zg

C

•
Zg

D

Fig. 2. Altitude intervals of flights f and g at the 2D inter-
section points A, B, C, and D.

Z[

Zf
P

]

Z
f
P

[

Zg
P

]

Z
g
P

Fig. 3. Interval intersection (thick green) of altitude inter-
vals of flights f (red) and g (blue) at the waypoint P .

between flights f and g as:

τ̂fg = max
P∈Ωf∩Ωg

(τfg(P)) ,

where τfg, the T-interaction factor of the 2D waypoint,

P , is:

τfg(P) =

∣∣∣[T fP , T fP] ∩ [T gP , T gP]∣∣∣
min

(∣∣∣[T fP , T fP]∣∣∣ , ∣∣∣[T gP , T gP]∣∣∣) .

Figures 4 and 5 illustrate the computation of the T-

interaction factor.

2.4 4D-interaction factor

Finally, the 4D-interaction factor between two

flights f and g, denoted ρfg, is defined as the prod-

uct of the three previous factors: ρfg = αfgβ̂fg τ̂fg.

3 Spatio-temporal clustering

We use the 4D-interaction factor we just defined as

a spatio-temporal “distance” to compute a clustering

of a large set of air traffic trajectories. The cluster-

ing method we implement is based on Kruskal’s algo-

rithm6) to find covering spanning trees. To summarize,

pairs of flights featuring a 4D-interaction factor greater

than some given threshold value, ε, (set by the user)

XY plane

T

A B C D

Flightf

Time envelopef

Flightg

Time envelopeg

•
T f

A

•
T f

B

•
T f

C
•
T f

D

•
T

f
A •

T
f
B

•
T

f
C
•
T

f
D

•
T

g
A

•
T

g
B

•
T

g
C

•
T

g
D

•
T g

A

•
T g

B

•
T g

C

•
T g

D

Fig. 4. Arrival time intervals of flights f and g at the 2D
intersection points A, B, C, and D.

T[

T f
P

]

T
f
P

[

T g
P

]

T
g
P

Fig. 5. Interval intersection (thick green) of arrival time
intervals of flights f (red) and g (blue) at the waypoint P .

gather into the same cluster. For example, each edge

on Figure 6 displays the 4D-interaction factor between

two flights, represented by vertices. Setting ε = 0.1,

the edges split into two types: the green edges, de-

noted E1, and the red edges, denoted E2. The cluster-

ing algorithm considers only the sorted edges E1 with

a 4D-interaction factor greater than ε. Kruskal’s algo-

rithm merges edges together if they do not constitute a

cycle in view of forming the spanning tree of the graph

(V,E1). The clustering algorithm searches the binding

cluster, B, that is the most linked to the other clusters

in the graph (V,E).

Here on Figure 6, the spanning trees of the green

subgraph, (V,E1), are {(b, d), (a, b)} and {(e, g), (e, f)}.
The sets {a, b, d}, {c}, and {e, f, g} are the resulting

clusters, illustrated by the blue circles. The cluster

most linked to the others in the graph, (V,E), is the

set {e, f, g}, represented by the circle B.

The value of ε influences the number and sizes of the

clusters found. If the threshold value is set to ε = 0.1,

clusters are found even though the flights (linked by red

dashed edges on Figure 6) actually have some non-null

intersection based on the 4D-interaction factor. On

the contrary, setting ε to 0.001 yields a single cluster

regrouping all vertices in this example.

3

Proc. of the IWAC2022

a

b

c

d e

f g

0.7

0
.5

0.
9

0.
7 0.9

0
.0
1

0.01

0.
01

0.01

0.01

0.01

B

C1

C2

Fig. 6. Graph of interaction (edges) between flights (ver-
tices) with the 4D-interaction factor as costs and the clus-
ters (blue circles) resulting from Kruskal’s algorithm.

This clustering is performed as a preprocessing step,

before defining the optimization problem of Section 4.

4 Mathematical optimization model

This section presents the ingredients of our mathe-

matical optimization model: the input data, the de-

cision variables, the objective function, and the con-

straints.

4.1 Input data

The following sets are defined:

� F : index set of flights,

� C: index set of independent clusters,

� Ci ⊂ F : index set of flights in cluster i ∈ C,
� B ⊂ F : index set of binding flights.

Hence, the set F is the disjoint union of the clusters

and the binding flights: F =

(⋃
i∈C
Ci
)
∪ B.

We further define the following data notation.

� For each flight f ∈ F :

– Γf : index set of alternative tra-

jectories scheduled for the same

departure time,

– γfk(δ): sequence of 4D points

(x, y, z, t+ δ) constituting trajec-

tory k ∈ Γf ,

– Ωf : planar envelope,

– δf : lower bound of departure

time shift,

– δf : upper bound of departure

time shift.

– hf (δ): cost of rescheduling the de-

parture time by a delay of δ min-

utes.

� Other data:

– κ(x, y, z, t): complexity at the

4D-point (x, y, z, t),

– h: constant time-slot discretiza-

tion step,

For ease of reading, Ja, bK defines the discretized in-

terval
{
a, a+ h, a+ 2h, ..., a+ b−a

h h
}

.

4.2 Decision variables

For each flight f ∈ F , let:

� δf : difference between the scheduled and re-

quested departure times in time slots (dis-

crete),

� xf ∈ Γf : assigned trajectory (discrete).

These two variables (δf , xf) together define a 4D tra-

jectory choice for flight f . Our vector of decision vari-

ables is denoted (δ, x), where δ is the vector whose f th

component is δf ∈ Jδf , δf K and x is the vector whose

f th component is xf ∈ Γf .

4.3 Objective function

Our problem is a bi-objective optimization problem.

The main objective is to reduce air traffic complexity.

The complexity evaluation, noted y, of a given air traf-

fic solution, (δ, x), is denoted C(δ, x) =
∑
f∈F

Cf (δ, x),

where Cf (δ, x) is the complexity of flight f , and is the

sum of the complexities of all 4D points that constitute

the trajectory, xf , assigned to flight f :

Cf (δ, x) =
∑

(x,y,z,t)∈γfxf

κ(x, y, z, t),

where, finally, the complexity of the 4D point, noted

κ(x, y, z, t), is computed as in2) using the Linear Dy-

namical System metric.

Beside the complexity criterion, one seeks a solu-

tion that minimizes the induced delays to suit best the

airlines’ requests. The evaluation of the mean delay,

noted H, is the mean of all absolute gaps between

the requested and the allocated times of departure:

H(δ) =
∑
f∈F Hf (δf), where Hf (δf) =

hf (δf)
|F| , and

hf is a cost function whose value is set by the airspace

user to represent the cost of time for the airspace user.

We shall address this bi-objective function, through

the weighted sum:

C (δ, x) + wH (δ) , (1)

where w is a weighting parameter whose value is set by

the user to balance the complexity and delay criteria.

4.4 Constraints

The time shift of the departure time must lie between

minimal and maximal acceptable bounds of time dis-

placement for each flight f ∈ F : δf ≤ δf ≤ δf .

4

Proc. of the IWAC2022
pp. XX–XX, Oct. 2022

The optimization problem therefore reads:
min
δ,x

C (δ, x) + wH (δ)

s.t. δf ≤ δf ≤ δf , f ∈ F
xf ∈ Γf , f ∈ F

5 Clustered Selective Simulated Annealing

The evaluation of the objective function (1) involves

a computationally expensive simulation, C(δ, x), and

a large number of decision variables: 2|F|, where for

instance the number of flights is around 8,000 for the

French airspace. Moreover, the objective function is

likely to have numerous local optima. Therefore, we

choose a stochastic algorithm to address this optimiza-

tion problem.

Simulated Annealing (SA) is one of the simplest

and best-known metaheuristic methods for addressing

black-box global optimization problems that involve a

large number of optimization variables. In real-life ap-

plications, simulated annealing is used massively. In

the early 1980s, three IBM researchers, Kirkpatrick,

Gelatt, and Vecchi5) introduced the concept of anneal-

ing in combinatorial optimization. These concepts,

based on a strong analogy with the physical annealing

of materials, are explained in.1)

The principle of simulated annealing can be summa-

rized in Algorithm 1, with the functions “evaluate set”,

“mutate” and “change decision” given by Algorithms 2

to 4, respectively and where U(S) denotes a uniform-

distribution drawing in the set S.

Algorithm 1 Simulated Annealing.

Require: T0 > 0, α < 1, α0 � 1, Tf > 0
Tf ← α0T0

T ← T0

EvaluateSet(F ,δ,x)
while T > Tf do

for all f ∈ F do
Mutate(cf ,δf ,xf ,T)

end for
EvaluateSet(F ,δ,x)
T ← αT

end while

Algorithm 2 Evaluate set.

function EvaluateSet(S,δ,x)
for all f ∈ S do

cf ← Cf (δ, x) + wHf (δf)
end for

end function

Algorithm 3 Mutate function.

function Mutate(cf ,δf ,xf ,T)
coldf ← cf
δoldf ← δf
xoldf ← xf
ChangeDecision(f)
cf ← Cf (δ, x) + wHf (δf)
if coldf < cf then

if U ([0, 1]) > exp

(
coldf −cf

T

)
then

δf ← δoldf
xf ← xoldf
cf ← coldf

end if
end if

end function

Algorithm 4 Change decision function.

function ChangeDecision(f)
δf ← U

(
Jδf , δf K

)
xf ← U (Γf)

end function

When a decision is modified in the simulation envi-

ronment, one must compute the effect on the objective

function (1). Several situations may happen depend-

ing on the structure of the objective function. The

most favorable case is when it is possible to compute

efficiently the impact of a single decision change on the

objective function. This is the case for separable objec-

tive functions. In our case, the computed clusters help

to evaluate efficiently the objective function within an

SA algorithm.

In order to avoid the computation of every term

of the objective function (1), we propose an alter-

native approximation of the objective function, re-

sulting in our “Clustered Selective Simulated Anneal-

ing” (CSSA). The approximation starts to evaluate ev-

ery term of the objective function and associates a cost,

noted cf , to each flight f , defined as:

cf = Cf (δ, x) + wHf (δf) .

A variable is said mutable when the value drawn from

the uniform distribution U([0, 1]) is less than the muta-

bility function: Ψ

(
cf

max
g∈F

(cg)

)
, where Ψ is an increasing

fonction taking value in [0, 1]. Then, the mutable vari-

ables in the set of binding flights, B, change value at

each temperature iteration. The worst cluster is de-

fined as: î = arg max
i∈C

(
max
f∈Ci

(cf)

)
. The algorithm iter-

5

Proc. of the IWAC2022

ates through the flights in the worst cluster Cî at each

binding variable mutation. The objective function is

evaluated for the term corresponding to the flights in

the worst cluster. This is summarized in Algorithm 5.

Algorithm 5 Clustered Selective Simulated Anneal-
ing.

Require: T0 > 0, α < 1, α0 � 1, Tf > 0
Tf ← α0T0

T ← T0

EvaluateSet(F ,δ,x)
while T > Tf do

ĉ← max
f∈F

(cf)

for all f ∈ B do
if U ([0, 1]) < Ψ

(cf
ĉ

)
then

Mutate(cf ,δf ,xf ,T)

î← arg max
i∈C

(
max
f∈Ci

(cf)

)
for all g ∈ Cî do

if U ([0, 1]) < Ψ
(cg
ĉ

)
then

Mutate(cg,δg,xg,T)
end if

end for
EvaluateSet(Cî,δ,x)

end if
end for
T ← αT

end while

6 Computational results

We consider a study case composed of more than

8,000 flights over the France airspace during one day,

that takes into account only the flights above FL100

(the lower airspace should be planned according to

AMAN/DMAN solutions). A sample of 1,000 of these

flights are considered in our preliminary tests. The tra-

jectories used to evaluate the complexity are simulated

based on real flight plans. The tests are performed

using a laptop configured with an i5 10th generation

and 8GB of memory. The 4D-interaction factor de-

fined in Section 2.4 is computed and stored under the

form of a matrix. The black (respectively white) pixels

in Figure 7 represent the non-null (respectively null)

4D-interaction factors. The matrix computation takes

about 10 minutes of CPU time. Then, this matrix is

clustered as explained in Section 3. Figure 8 represents

the same matrix but after a permutation of the indices

of the flights so as to visualize better the clusters.

In order to assess the quality of the clustering, a

classical clustering measure, called silhouette,8) is used.

The intra-dissimilarity of flight f , noted a(f), is the

mean distance between flight f ∈ Ci and all other flights

Fig. 7. Interaction matrix for France airspace with flights
ordered by time of departure.

Fig. 8. Interaction matrix with flights reordered to empha-
size the clusters.

in the same cluster: a(f) = 1
|Ci|−1

∑
g∈Ci,g 6=f

(1 − ρfg).

The inter-dissimilarity of flight f , noted b(f), is the

minimum of the mean distances between the flight f ∈
Ci and all the points of another cluster Cj : b(f) =

min
j∈C,i6=j

1
|Cj |

∑
g∈Cj

(1− ρfg). The silhouette score of flight

f , denoted s(f), is calculated, as follows:

s(f) =
b(f)− a(f)

max (a(f), b(f))
.

The clustering shown in Figure 8 has a silhouette

score of 0.03, which confirms that the clusters are rela-

tively independent, enough to be beneficial in a divide-

6

Proc. of the IWAC2022
pp. XX–XX, Oct. 2022

and-conquer approach of this large-scale airspace prob-

lem. The computation time to compute the 4D-

interaction factor matrix depends on the number of

flights, as shown on Figure 9.

500 1000 1500 2000 8000

500

1,000

1,500

2,000

2,500

1 10
150

350

2,640

Number of flights

C
om

p
u

ta
ti

on
ti

m
e

(m
in

)

4D-interaction

Fig. 9. 4D-interaction factor matrix computation with re-
spect to the number of flights.

The Clustered Selective Simulated Annealing find a

planning based on these clusters. The cost function, hf ,

that we use is the piecewise linear function displayed

on Figure 10, is a special case of the step linear delay

functions explained in.3) We use this function only for

simplification purposes (any given more realistic curve

would not impact the computational times presented).

The mutability function, Ψ, is chosen as shown on Fig-

ure 11. The annealing parameters, T0, Tf , and α, are

set to the respective values: 100, 0.001, and 0.995.

−15 15 30 45

50

100

150

δf delta departure time (min)

C
os
t

Fig. 10. Cost function of rescheduling the departure time,
linked to δf .

Setting the weighting parameter to w = 0 means

that the algorithm minimizes only the complexity of

the traffic. The algorithm can find the optimal value

zero for small instances of up to 2000 flights. An ob-

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

cf
ĉ

Ψ

Fig. 11 Mutability function, Ψ, for modifying a flight.

jective of zero means the traffic does not have any sit-

uations of converging flights. It is globally optimal

because the complexity function is bounded below by

zero. CSSA converges to an optimal value of zero in 25

seconds, whereas SA requires 10 seconds to converge to

the same value. With an instance involving a sample

of 2,000 flights, CSSA converges to the optimal value

of zero in 80 seconds, against 860 seconds for SA.

500 1000 1500 2000

200

400

600

800

1,000

1,200

5 10

600

860

10 25 40
80

800

1,000

1,100

1,220

330

500
540

600

Number of flights

C
om

p
u

ta
ti

o
n

ti
m

e
(s

)

SA(w = 0) CSSA(w = 0)

SA(w = 1) CSSA(w = 1)

Fig. 12 CPU-time comparison.

In Figure 12, the algorithms (SA and CSSA) con-

verge to the optimal value zero, and the computation

times are compared. When using another weighting pa-

rameter value, w = 1, the metaheuristic algorithms do

not converge any longer to the same value. Metaheuris-

tic algorithms do not guarantee the optimality of the

solution found. One deserves that CSSA converges to a

better solution in about half the CPU-time, as detailed

in Table 1, and for the large instances the comparison

is even more favorable to CSSA. The reason for this is

7

Proc. of the IWAC2022

w = 1 500 1000 1500 2000
C (δ, x) H (δ) C (δ, x) H (δ) C (δ, x) H (δ) C (δ, x) H (δ)

SA 0.02 0.3 0.16 1.15 0.53 2.19 0.81 2.88
CSSA 0.0 0.33 0.002 0.546 0.005 0.736 0.005 1.777

Table 1 Objective-function values

that the algorithm explores the state space in a differ-

ent manner, and the clustering strategy renders more

efficient the search for a good combination of values for

the decision variables.

7 Conclusion

The spatio-temporal “distance” we introduced in this

paper is effective for generating spatio-temporal clus-

ters. Separating the air traffic into smaller, partially in-

dependent subsets allows one to solve large-scale trajec-

tory planning problems. Our preliminary results show

that this distance indeed efficiently separates the traf-

fic into sufficiently independent smaller subsets. To the

best of our knowledge, this work is the first attempt to

generate spatio-temporal clusters for air traffic plan-

ning.

Future work will attempt at exploiting the separa-

ble structure of the 4D-interaction factor, for instance

using GPU. Another track of research is to exploit bet-

ter the cluster structure in the optimization algorithm.

This could allow one to address larger airspace planning

problems such as those involving the whole European

airspace.

Acknowledgments

The present paper has been developed under the umbrella

of START project. This project has received funding from

the SESAR Joint Undertaking (JU) under grant agreement

No 893204. The JU receives support from the European

Union’s Horizon 2020 research and innovation programme

and the SESAR JU members other than the Union.

Acronyms

AMAN Arrival MANager

ATC Air Traffic Controllers

ATFM Air Traffic Flow Management

CSSA Clustered Selective Simulated Annealing

DMAN Departure MANager

IATA International Air Transport Association

SA Simulated Annealing

References

1) D. Delahaye, S. Chaimatanan, and M. Mongeau. Simu-

lated annealing: From basics to applications. In M. Gen-

dreau and J.-Y. Potvin, editors, Handbook of Meta-

heuristics, volume 272 of International Series in Op-

erations Research & Management Science, pages 1–35.

Springer, 2019.

2) D. Delahaye, A. Garćıa, J. Lavandier, S. Chaimatanan,

and M. Soler. Air traffic complexity map based on linear

dynamical systems. Aerospace, 9(5), 2022.

3) J. Evler, M. Schultz, H. Fricke, and A. Cook. Stochastic

Delay Cost Functions to Estimate Delay Propagation

Under Uncertainty. IEEE Access, 10:21424–21442, 2022.

4) J. E. Goodman and J. O’Rourke, editors. Handbook

of Discrete and Computational Geometry. CRC Press,

USA, 1997.

5) S. Kirkpatrick, C. D. Gelatt, and M. P. Vec-

chi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

6) J. B. Kruskal. On the shortest spanning subtree of a

graph and the traveling salesman problem. Proceedings

of the American Mathematical Society, 7(1):48–50, 1956.

7) H. Liu, R. Thompson, P. van Oosterom, and M. Meijers.

Executing convex polytope queries on nD point clouds.

International Journal of Applied Earth Observation and

Geoinformation, 105:102625, 2021.

8) P. J. Rousseeuw. Silhouettes: A graphical aid to the

interpretation and validation of cluster analysis. Journal

of Computational and Applied Mathematics, 20:53–65,

1987.

8

	Introduction
	Spatio-temporal distance
	XY-interaction factor
	Z-interaction factor
	T-interaction factor
	4D-interaction factor

	Spatio-temporal clustering
	Mathematical optimization model
	Input data
	Decision variables
	Objective function
	Constraints

	Clustered Selective Simulated Annealing
	Computational results
	Conclusion

