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Strategic 4D trajectory planning is a promising technology for next-generation air traffic
management and systems. Some approaches attempt to satisfy the capacity constraint to reduce traffic
congestion, while others aim to reduce potential conflicts between trajectories. This paper investigates
two approaches to organizing the real traffic in the French airspace at the strategic level. The first
approach minimizes interaction between trajectories, while the second reduces traffic congestion so that
the controller maintains the traffic without much effort. The associated optimization problems are
formulated and resolved by an approximative approach based on simulated annealing. The departure time
perturbation was introduced to study the robustness of the two proposed methods. The evaluation of the
robustness is performed by Monte Carlo simulation. According to the results, the strategic deconfliction
method completely solved all interactions between trajectories, and the strategic decongestion method
reduced traffic congestion by 99.94%. Furthermore, the comparative study shows that the method
reducing congestion is more robust against the departure time perturbation than the method minimizing
interaction between trajectories. These findings encourage the appropriate use of proposed methods in
the strategic 4D trajectory planning framework.

Key Words : traffic deconfliction, traffic decongestion, 4D trajectories, strategic trajectory planning,
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1. Introduction
The current air traffic management (ATM) system

has been dealing with an ever-increasing demand for
air travel as a result of economic growth. Although
the COVID-19 epidemic has affected current traffic
demand since 2020, a recent study1) forecasted that
European traffic will recover to 2019 levels by the end
of 2023 and then climb by 6% in 2027. Moreover,
some political events may have tremendous impacts on
air traffic. Since February 2022, the airspace closure
due to the Russian invasion of Ukraine has caused a
wave of cancelled and uneconomic rerouted flights.2)

Traffic rerouting causes congestion in the adjacent
airspace. As capacity limits are reached faster than
usual, airspace congestion will expand rapidly, which
will result in extra pressure on the network, further
delays and cancellations.

This paper proposes two strategic planning
approaches to be applied at the strategic level,
i.e. several hours or days before real-time operations.
The first approach is the strategic deconfliction
approach, in which minimizing total interaction
between trajectories is the main objective. The
second approach is the decongestion approach which
satisfies the capacity constraint by mitigating the ATC
complexity to which the ATC workload is susceptible.
In addition to achieving their primary objectives,
these approaches aim to reduce the total departure
time shift, route deviation, and flight level shift. A
simulated annealing-based resolution algorithm is

developed to solve both strategic planning problems.
The main challenge of strategic planning is dealing

with a high level of uncertainty, particularly resulting
from uncertain departure times. The difficulty in
synchronizing the activities of different actors at
departure airports and the existence of external
constraints, e.g., weather conditions, usually produce
some uncertainties on the exact time in such a way
that the planned strategic 4D trajectories may not
be exact. Therefore, the robustness of trajectories
becomes important for dealing with disturbances. This
paper presents a comparative study concerning the
robustness of the two solutions obtained from the
proposed approaches. Monte Carlo simulations were
performed to evaluate the robustness against the
departure time perturbation.

The structure of this paper is as follows:
Section 2. provides related work on trajectory-based
deconfliction and traffic decongestion methodologies.
Section 3. presents the formulation of strategic
planning problems. Section 4. describes the proposed
resolution algorithm. We discuss the results in
section 5., and the paper is finally concluded in
section 6..
2. Related work

In this section, the existing strategies to address the
strategic trajectory planning problem in the literature
are given in the large scale application context. Such
strategies include trajectory deconfliction and traffic
decongestion methods.
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2.1. Traffic Deconfliction
Several studies focus on solving conflicts between

aircraft trajectories instead of satisfying the capacity
constraint. Numerous studies addressing traffic
deconfliction in a TBO environment have been
presented in the literature. Durand et al.3) propose
two trajectory maneuvers: modifying the heading and
the flight level. En-route conflicts between trajectories
are solved by the genetic algorithm (GA). Combining
ground holding and flight level allocation is given
in Ref. 4). Dougui et al.5) suggested a Light
Propagation Algorithm (LPA) based on various light
refractions. Certain potential conflicts are solved using
a Branch-and-Bound (B&B) algorithm. However, the
results in these studies present unsolved conflicts in the
large scale context.

Finally, conflict-free trajectories can be achieved
using a combination of hill climbing and the simulated
annealing algorithm to solve the strategic planning
problems at the continental scale.6,7) Trajectory
actions consist of changing the departure time, the
horizontal route, and the flight level to resolve the
total interaction between trajectories. This paper
proposes a strategic deconfliction approach based on
such actions. In addition to minimizing interaction
between trajectories, the approach aims to minimize
total departure time shift, route deviation, and flight
level shift.
2.2. Traffic Decongestion

Several research studies have been done to minimize
air traffic congestion. In order to adapt the demand
to the available capacity, similar to the traffic
deconfliction, the congestion is expected to be reduced
by moving departure times of flights, changing the
current flight routes, and selecting new flight levels.

Historically, traffic assignment methods have been
developed to reduce congestion in air traffic networks
by spreading the traffic demand in time and space.
The ground holding approach in Ref. 8) has been first
investigated to regulate traffic demand as a function of
the airspace capacity. Later, the rerouting option has
been investigated, at a macroscopic level, in Refs. 9,10).
However, all the previous studies aim to reduce the
number of aircraft within a period of time.

Several works have paid more attention to
consideration of ATC workload to reduce airspace
congestion. Previous studies in Refs. 11, 12) attempt
to reduce the airspace congestion in terms of workload
induced in a control sector. These studies present
a flow modelling of the traffic network and solve
the route-time allocation problem using the genetic
algorithm.

As the strong relationships between ATC complexity
and ATC workload were examined in Ref. 13), much
of the previous research on traffic planning to reduce
congestion with respect to traffic complexity has
been explored. In Ref. 14), the convergence metric
is used to evaluate the ATC complexity between

aircraft trajectories. Congestion reduction is made by
temporarily creating local route networks in a specific
area. Juntama et al.15) attempt to minimize air traffic
complexity using a distributed metaheuristic approach
at the strategic level. The traffic complexity between
trajectories is measured by the König metric. However,
these indicators are primarily based on geometrical
properties of traffic. Such indicators would fail when a
traffic situation has a more complex organization.

To overcome this issue, this paper proposes strategic
decongestion planning in which the evaluation of
airspace congestion is developed from the metric based
on linear dynamical systems. As introduced in Ref. 16),
the metric can quantify the disorder in various kinds
of traffic situations at a given time. Like the strategic
deconfliction planning, this planning applies the same
traffic structuring method: departure time adjustment,
route assignment, and flight level allocation. The
approximation approach based on simulated annealing
is developed from the previous work in Ref. 15) to
solve both problems. This approach is able to improve
the computation performance without sacrificing the
quality of the final solution.

One of the main challenges is considerable
uncertainty regarding traffic demand. Perturbation of
aircraft trajectories in the time dimension has been
presented to evaluate the robustness in Refs. 17–19).
In this paper, we investigate the robustness against
perturbed flight departure times between the strategic
deconfliction planning and the strategic decongestion
planning. The Monte Carlo method is used to simulate
the different sets of traffic from the solutions of both
plannings. As such traffic is randomly perturbed,
we measure its additional interactions to evaluate the
robustness.
3. Problem formulation

This section establishes the mathematical framework
of the proposed strategic planning methodology. First,
given data regarding this problem is present. Then,
the set of decision variables and their constraints are
given. Finally, two objective functions are described at
the end of the section.
3.1. Input data

Assume there is a set of flights, F on a given day.
For each flight i ∈ F , the following data is given as
follows:

• A set of initial 4D aircraft trajectories;
• γi: the trajectory of flight i;
• τ+i : the maximum allowed delay departure

time shift for flight i;
• τ−i : the maximum allowed advance

departure time shift for flight i;
• r+i : the maximum allowed alternative routes

for flight i;
• l+i : the maximum allowed positive flight

level shift for flight i;
• l−i : the maximum allowed negative flight

level shift for flight i;
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• Nh: the required horizontal seperation;
• Nv: the required vertical seperation.

3.2. Decision variables
The three following decision variables are used

to structure the aircraft trajectories: departure
time adjustment, route assignment, and flight level
allocation.

Departure time adjustment The departure time
of each flight can be rescheduled with a positive (delay)
or a negative (advance) time shift. Let τi be the time
shift assigned to flight i. Therefore, the new departure
time of flight i is therefore t′i = ti + τi where ti is the
original departure time of flight i indicated in the initial
flight plan.

Alternative en-route trajectory The horizontal
route of each flight can be changed with one of the
alternative routes predefined for each flight. These
alternative routes are all generated by a BADA-based
fast time simulator. The construction of these routes
relies on the deviation from their original routes. Let
ri ∈ N0 be the current route index of flight i. Figure 1
illustrates possible alternative horizontal profiles of
flight i.

Departure airport

Arrival airport

ri = 0

ri = 2

ri = 1

Fig. 1: Alternative horizontal profiles (the dashed line)
based on an original route (the solid line) of flight i.

Flight level allocation The final choice to structure
the traffic is to assign the new flight level with a flight
level shift li ∈ Z. An example of the vertical profile for
each flight is presented in Fig. 2. Hence, the new flight
level h′

i is h′
i = hi + li.

z

t

FL310

FL300

FL290

Fig. 2: Alternative vertical profiles (the dashed line) based
on an original flight level (the solid line) of flight i.

To simplify the proposed model, the decision vectors
of departure time shifts, route options, and flight level

shifts are respectively defined as follows:

τ = {τi : τi ∈ Z,∀i ∈ F}
r = {ri : ri ∈ N0,∀i ∈ F}
l = {li : li ∈ Z,∀i ∈ F}

Therefore, the decision variables of our problem are
represented with the following single vector:

u := (τ , r, l)

3.3. Constraints
The preceding decision variables of flight i shall

be compliant with the following constraints: the
maximum departure time shifts, the maximum index
of route options, and the maximum flight level shifts.
Such constraints are defined as follows:

τ−i ≤ τi ≤ τ+i , ∀i ∈ F (1)
0 ≤ ri ≤ r+i , ∀i ∈ F (2)
l−i ≤ li ≤ l+i , ∀i ∈ F (3)

3.4. Objective functions
This section presents the following objective

functions: the interaction between trajectories for
the strategic deconfliction method and air traffic
complexity based on linear dynamical systems for
quantifying levels of traffic congestion in the strategic
decongestion method.
Interaction between trajectories Regarding
strategic planning in a TBO environment, the
interaction between trajectories indicates when two or
more trajectories occupy the same space at the same
period of time. A more clarified definition of this
concept is given in Refs. 6, 7).

Considering a given set of discretized 4D trajectories,
where each trajectory γi represents a time sequence of
4D points, each 4D point, Pi,k = (xi,k, yi,k, zi,k, ti,k)
specifies that the aircraft must arrive at a given position
(xi,k, yi,k, zi,k) at time ti,k for k ∈ Ki, and Ki is the set
of sequence numbers obtained from the discretization
of the trajectory γi.

For any pair of points Pi,k and Pj,l at time ti,k
on the trajectories γi and γj , respectively, a potential
conflict of such trajectories can occur when the required
separation is violated as follows:

dh(Pi,k,Pj,l) < Nh (4)
dv(Pi,k,Pj,l) < Nv (5)

When preceding conditions are satisfied, the
definition that the point Pi,k is in conflict with the
point Pj,l at the same time is given by:

C(Pi,k,Pj,l) :=


1, if Point Pi,k is in conflict with Point Pj,l

under conditions (4) and (5),
0, otherwise.

(6)
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Considering at time ti,k of trajectory γi, let Φi,k be
the number of interactions at point Pi,k. It is defined as
the number of times that a new potential conflict (as
defined in Eq. (6)) could be detected involving Pi,k.
Hence, Φi,k is given by:

Φi,k(ui) =
∑
j∈J
j ̸=i

∑
l∈Kj

C(Pi,k,Pj,l) (7)

where Kj is a set of points along with each trajectory
j at time ti,k, and J denotes a set of neighboring
trajectories in the search space.

The number of interactions associated with the
trajectory γi, Φi is therefore defined as follows:

Φi(ui) =
∑
k∈Ki

Φi,k(ui) (8)

Finally, the number of interactions between all
trajectories over a full-time horizon is defined as

Φ(u) =
∑
i∈F

Φi(ui) =
∑
i∈F

∑
k∈Ki

Φi,k(ui) (9)

In addition, a practical methodology to evaluate
interaction between trajectories in a large-scale context
is presented in Section 3.5..

Air Traffic Complexity based on Linear
Dynamical System The metric is adapted to
evaluate traffic congestion over a full-time horizon
in this paper. Unlike straightforwardly counting the
number of aircraft, aircraft positions and speed vectors
are used to measure the ATC complexity associated
with a given traffic situation. As a result, the metric is
able to quantify congestion between trajectories in the
airspace. Some identical traffic situations were given
and tested with this metric in Ref. 16).

Given that a set of trajectories is discretized in time
into a 4D airspace, each trajectory γi represents a set
of observations in time series. Each observation at
time ti,k can be represented by the position and speed
vectors, xi,k and vi,k, respectively, in the following
matrix form:

Zi,k =
[
xi,k vi,k

]⊤ (10)

where xi,k =
[
xi,k yi,k zi,k

]⊤ and vi,k =[
vxi,k vyi,k vzi,k

]⊤. To compute the local
congestion of a given traffic situation, it is necessary
to formulate such a situation into a linear dynamical
system. The traffic situation involving the trajectory
i at time ti,k represents the current observation Zi,k

on the trajectory i, plus a set of observations lying on
trajectories of neighboring aircraft that is present in
the vicinity of the reference aircraft i at position xi,k.
Accordingly, the set of observations presented in the

neighborhood search space is defined by:

Ni,k = {Zj,k′ : V(i, k, j, k′) = 1, tj,k′ = ti,k,

k′ ∈ Kj , j ∈ F \ {i}}
(11)

where V(i, k, j, k′) indicates if aircraft j is in the
neighborhood search space at time ti,k. When such
observations are obtained, a linear dynamical system
can be formulated.

For the sake of simplicity, given that an observation
is represented by a position measurement, x and a
speed measurement, v. A linear dynamical system is
controlled by the following equation:

ẋ = A · x+ b (12)

where ẋ is the speed vector associated with each point
in the state space, x is the position vector, A and b
represents the static behavior of the system.

To determine an accurate dynamical system model
best fitted to observations in the state space, it is
necessary to find the matrix A and vector b, which
minimizes the error between speed observations and
estimated speed vectors. Such a minimization problem
can be formulated as follows:

A∗,b∗ = argmin
A,b

∑
n∈N

∥vn − (Axn + b)∥2 (13)

where N is the set of observations in the state space
(e.g., a given traffic situation). The calculation of the
matrix A∗ and vector b∗ is detailed in Ref. 16).

When the matrix Ai,k is derived for the traffic
situation of the aircraft i at time ti,k, extraction of
the eigenvalues from Ai,k is required for determining
the local congestion Ψi,k. Let λ

(1)
i,k , λ

(2)
i,k , and

λ
(3)
i,k be the three complex eigenvalues of Ai,k, the

evolution of the traffic situation is determined by such
eigenvalues. The eigenvalues with real positive values
correspond to a divergent situation where aircraft fly
in expansion mode. On the other hand, when the
real parts are negative, aircraft fly in a convergent
situation. Furthermore, when the real parts of such
eigenvalues are null, the associated traffic situation is
fully organized in parallel or rotation.

According to these properties, the local congestion
metric is developed based on the intensity of the
convergence tendency in the traffic situation. When
the traffic is well organized, the congestion becomes
null. It must be noticed that if the resulting behaviour
represents a divergent motion, such a motion would
be considered an organized pattern because it will
not affect the controller’s workload since the divergent
aircraft will not cause any potential conflict. Therefore,
the local congestion Ψi,k can be calculated by using the
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following equation:

Ψi,k =
∑

Re(λ(n)
i,k )<0

∣∣∣Re(λ(n)
i,k )

∣∣∣ , n ∈ {1, 2, 3} (14)

To compute the summation of the local congestion
along the trajectory γi, we can determine Ψi as follows:

Ψi =
∑
k∈Ki

Ψi,k (15)

Finally, the traffic congestion Ψ can be obtained by
accumulating congestion values for all trajectories in
the airspace, as expressed in the following equation:

Ψ =
∑
i∈F

Ψi =
∑
i∈F

∑
k∈Ki

Ψi,k (16)

Therefore, we proposes two optimization problems
to perform the comparative analysis of different
strategic 4D trajectory plannings. First, in this paper,
the objective of the strategic traffic deconfliction is
to minimize interaction between trajectories while
minimizing the total departure time shift, deviation
from the nominal routes and flight level shift. The
optimization problem can be formulated as follows:

min
u

J1(u) = Φ(u) + α1

∑
i∈F

τi + η1
∑
i∈F

li

+ β1

∑
i∈F

dA (γi(ri), γi(0))
2

s.t. τ−
i ≤ τi ≤ τ+

i , ∀i ∈ F
0 ≤ ri ≤ r+i , ∀i ∈ F
l−i ≤ li ≤ l+i , ∀i ∈ F

(17)

Second, the strategic traffic decongestion problem in
this paper aims to mitigate the congestion in air
traffic while minimizing the total departure time shift,
deviation from the nominal routes and flight level
shift. This problem can be expressed in the following
mathematical form:

min
u

J2(u) = Ψ(u) + α2

∑
i∈F

τi + η2
∑
i∈F

li

+ β2

∑
i∈F

dA (γi(ri), γi(0))
2

s.t. τ−
i ≤ τi ≤ τ+

i , ∀i ∈ F
0 ≤ ri ≤ r+i , ∀i ∈ F
l−i ≤ li ≤ l+i , ∀i ∈ F

(18)

where dA(γi(ri), γi(0))
2 denotes the area-based

distance between the nominal and alternative
trajectoriesof flight i that results from the distance
integration over time and the evaluation of a mean
error instead of the raw sum of squares.20)

3.5. Interaction Detection
To calculate the number of interactions between all

trajectories in the airspace, a grid-based computation

approach is implemented by using a hash table as
presented in Refs. 6, 7, 15).

Fig. 3: 4D (space-time) grid.

The airspace is discretized into a 4D grid (3D space
+ time), as shown in Fig. 3. The size of each cell in the
spatial dimension is defined by horizontal and vertical
separation requirements, Nh,Nv, and the time axis is
scaled based on a sampling time present in a set of
trajectories. All trajectories are stored in such a 4D
grid, whereby each aircraft plot is inserted into each
cell represented by an array of the hash table. This
table allows the algorithm to retrieve or manipulate
the associated plot from the 4D grid with the average
time complexity of O(n) = 1.

To calculate the number of interactions around a
reference plot Pi,k at time ti,k, we search for candidate
plots that belong to other aircraft in the same cell and
adjacent cells corresponding to the time ti,k. Then, we
calculate the horizontal and vertical distances between
the reference and each candidate plot. Finally, when
the candidate plot violates either one or both minimum
separations, the interaction is computed using Eq. (6).
Specifically, the interaction will be computed based on
the reduced lateral minimum separation in the TMA
zone. However, an interaction may not be able to
be detected during a given sampling time. To avoid
this issue, an interpolation technique can be used to
construct temporary plots with a sufficiently small
step. More details of this technique are presented
in Ref. 6).
3.6. Congestion Computation

Like the interaction detection scheme, we use a 4D
grid to store, retrieve and manipulate 4D trajectories
in which aircraft position and speed vectors are
represented in 4D cells.

Considering a traffic situation around the reference
aircraft i at position xi,k, the following observations
corresponding to the time ti,k are declared candidates
for neighborhood filtering: 1) the observation of the
reference aircraft; and 2) the observations situated in
the cells adjacent to the cell in which the observation
of the reference aircraft is located. The operation
of neighborhood filtering in x, y, and z dimensions
is detailed in Ref. 16). Accordingly, the candidates
validated by the neighbor filtering process shall be
taken into account in computing the local congestion
based on Eqs. (13) and (14).
4. Resolution Algorithm

Given that the state space of the optimization
problem can be represented as a set of individual
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decisions D in which each decision associated with
each flight can be changed in order to generate a
neighborhood solution. Figure 4 displays a vector of
decisions and their associated cost values obtained by
evaluation-based simulation. When a neighborhood
solution was generated, all decisions are required for
a simulation to determine a new objective value since
changing a decision may impact to other cost values.
Such a simulation may require excessive memory,
which leads to an exhaustive computation time.

d1 d2 d3 di dN

y1 y2 y3 yi yN

Fig. 4: Vector of decisions with their performance values

This paper proposes a selective simulated annealing
(SSA) algorithm to evaluate a current decision in
a given iteration instead of evaluating all decisions.
However, the SSA evaluates all decisions in a certain
iteration to ensure the coherence of the overall objective
value. Like the conventional SA, the algorithm takes
a new decision to generate a neighborhood solution
randomly, measures its quality, and moves to it with
respect to the temperature-dependent probabilities
of selecting better or worse solutions. The SSA
algorithm is adapted to our problem with the following
configurations.

Neighborhood function The neighborhood
function generates a candidate decision by the
following two steps:

1. A decision with a higher cost value is more likely
to be chosen for generating a candidate decision.
Therefore, the algorithm chooses a decision with
the following selective probability function:

Ps(yi) = a+ (1− a) ·
(

yi
ymax − yi

)b

(19)

where ymax is the highest cost value in a set of
all decisions at a given transition. The constants
a and b are the user-defined parameters of the
selective probability function where 0 ≤ a ≤ 1
and b > 0.

2. As illustrated in Fig. 5, the current decision di
represents the decision variables associated with
aircraft i. One or more decision variables are
randomly modified inside boundaries defined by
Eqs. (1), (2), and (3).

The probability of choosing how trajectory γi
is modified depends upon the ratio of the initial
temperature T0 and the current temperature T in a
given transition. The neighborhood function in this
paper is summarized in Algorithm 1.

τi ri li

d1 d2 d3 di dN

d1 d2 d3 d ′
i dN

τi r ′i li

Fig. 5: Neighborhood generation

Algorithm 1 Neighborhood function
Require: trajectory i, initial temperature T0, current

temperature T
1: procedure change_decision(T0,T )
2: Generate a random number, p := random(0, 1)
3: if p < T

T0
then

4: Choose randomly new ri or li or both.
5: else
6: Choose randomly new τi.

Initial temperature We perform the heating
process to determine the initial temperature T0 in
this work. The process involves applying a decision
change and its cost evaluation for each iteration.
The difference cost from changing decision is used
to accept or reject a new decision with the following
Metropolis-based criterion:

Pr{accept d′i} =

1, if y′i ̸= yi,

exp
(
y′i − yi

T

)
, otherwise. (20)

where T is the overall temperature. This temperature
increases until the initial acceptance rate goes beyond
a configurable threshold χ0.

Furthermore, we rely on a geometrical cooling
schedule for which the evolution of the temperature Tk

is given by the following function: Tk+1 := αTk. We use
the fixed number of iterations NI at each temperature
in order to ensure that an equilibrium state is reached
at each temperature step. Finally, the SSA algorithm
stops and returns the final solution when the final
temperature Tf reaches the value ϵs · T0 so that the
probability of acceptance is sufficiently small where
0 < ϵs ≤ 1.
5. Results

The proposed resolution algorithm and Monte Carlo
method are implemented in Java, and all experiments
are run on an Ubuntu system with Intel Xeon at
2.4 GHz with 32 GB of memory. It is tested with two
different strategic planning models. The experiment’s
air traffic data represents the en-route traffic in the
French airspace. It consists of 8,476 trajectories
represented by 21,371,854 sample 4D points, including
alternative trajectories. Table 1 provides the parameter
values that define the problem. The parameters
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used for the resolution algorithm have been conducted
by several empirical experiments and are separately
defined in Table 2.

Table 1: User-defined parameters corresponding to the
problem formulation.

Parameters Value

Sampling time step, ts 15 s
Maximum negative departure time shift, τ−

max 15 min
Maximum positive departure time shift, τ+

max 45 min
Maximum number of route options, r+max 2
Maximum negative flight level shift, l−max 2
Maximum positive flight level shift, l+max 2
Objective function coefficients for
the strategic deconfliction problem, (α1, β1, η1) (0.005, 1, 0.25)
Objective function coefficients for
the strategic decongestion problem, (α2, β2, η2) 0.01 · (α1, β1, η1)

Table 2: User-defined parameters corresponding to the
resolution algorithm.

Parameters Value

Number of iterations at each temperature step, NI 1000
Constants for the selective probability function, (a, b) (0.05, 3)
Initial acceptance rate, χ0 0.8
Geometric cooling rate, β 0.999
Final temperature, Tf 10−4 · T0

The strategic deconfliction problem is solved by
the SSA algorithm. The initial and final interaction
between trajectories, total delay time, route deviation
factor, and flight level shifts are reported in Table 3.
The resolution algorithm reaches an interaction-free
trajectory plan within 30 min from 89.88 min. The
SSA algorithm with the same configuration is used to
solve the strategic decongestion problem. The initial
and final congestion between trajectories, total delay
time, route deviation factor, and flight level shifts are
reported in Table 4. The proposed method for which
the total computation time is 85.8 min can reduce
the congestion between trajectories by 99.94%. The
strategic decongestion planning method generates more
of the average departure time shift and flight level shift
than the traffic deconfliction method. However, there
is not much difference in the average route deviation.

Table 3: Numerical results obtained by the strategic
deconfliction method.

Initial
Φ

Final
Φ

Solved
interactions

Avg.
time shift

(min)

Avg.
route

deviation

Avg.
flight level

shift

119354 0.0 100.00% 2.56 0.2867 1.24

Table 4: Numerical results obtained by the strategic
decongestion method.

Initial
Ψ

Final
Ψ

Solved
congestion

Avg.
time shift

(min)

Avg.
route

deviation

Avg.
flight level

shift

1918.2 1.18 99.94% 4.84 0.2871 1.46

Finally, we employ the Monte Carlo simulations to
evaluate the robustness of two strategic planning
methods with respect to the departure time
perturbation. This study uses optimal trajectory
plans from these planning methods. To produce the
departure time perturbation, the scheduled departure
times of flights are randomly adjusted by a normal
distribution so that the number of interactions between
trajectories potentially increases. In our assumption,
the departure time of each flight is varied by a normal
distribution with a mean departure delay of 5 min
over the time interval [−50, 60] min. The experiment
consists of ten Monte Carlo simulations with different
numbers of perturbed flights. Each simulation runs
10,000 replications to achieve the statistical analysis.

After simulation, we measure the additional numbers
of interactions from the two different sets of perturbed
traffic. Let ∆yn be the additional number of
interaction between trajectories for each plan n.
Figure 6 shows how many additional interactions
increased over the number of perturbed flights resulting
from 4D trajectory plans. Both plans show similar
profiles, with additional interactions increased over the
number of perturbed flights. The number of additional
interactions for the traffic based on the plan to reduce
the congestion is less than that for the traffic based on
the plan to minimize interaction between trajectories.
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Fig. 6: Number of additional interactions after the
departure time perturbation over the number of perturbed
flights.

Figure 7 compares the additional number of
interactions for both plannings when all flights are
perturbed. Although there are no statistically
significant variations in the standard deviation,
it is evident that the decongestion-based solution
outperforms the deconfliction-based solution, which
has fewer additional interactions.
6. Conclusions

In this paper, we present two approaches to address
a strategic 4D trajectory planning problem. The first
approach minimizes interaction between trajectories,
while the second approach minimizes congestion
between trajectories. Behind proposed optimization
models, both methods also aim at reducing total
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Fig. 7: Frequency distributions in terms of additional
number of interactions when all flights are perturbed.
The simulation results are obtained from the Monte Carlo
simulations based on the solutions of the deconfliction
planning and the decongestion planning.

departure time delay, route deviation, and flight level
shift. The selective simulated annealing algorithm
is proposed to solve the strategic planning problem
for the en-route traffic in the French airspace. The
results show that the resolution algorithm can solve
all interactions between trajectories for the strategic
deconfliction model. The same algorithm gives the
optimal trajectory plan with a 99.94% reduction of
airspace congestion for the strategic decongestion
model.

This paper also presents a comparative study
regarding the robustness of the proposed methods
against the departure time perturbation, whereby
their solutions are evaluated through Monte-Carlo
simulations. However, the perturbation of flight time
between two 4D points has not been taken into account
in this work. According to the results, the method to
minimize traffic congestion is more robust against the
disturbances than the method to minimize interaction
between trajectories. This comparative study can
support ATFM planners in using appropriate methods
in the strategic 4D trajectory planning framework to
deal with a high level of uncertainty.
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