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Abstract: To date, the statistical analysis of aircraft trajectories has been under-exploited in the 1

Airspace Traffic Management (ATM) literature. One reason is the need for advanced methods to 2

tackle the high sampling irregularity and temporal correlation that both characterize a trajectory. 3

Differential geometry provides a relevant framework to study trajectories. Modeling trajectories as 4

parametrized curves, shape analysis allows to answer operational questions. This work presents a 5

geodesic distance that rigorously defines and quantifies shape differences between aircraft trajectories. 6

The key idea is to compare how the shape of a given trajectory changes from one popular data set 7

(the Eurocontrol R&D data archive) to another one (OpenSky Network ADS-B data). Distances as 8

well as geodesic paths are computed for a sample of flights departing from Toulouse-Blagnac (LFBO) 9

and landing at Paris-Orly (LFPO) in 2019. Its use for clustering purposes is illustrated and discussed. 10

Keywords: air traffic management; trajectory; geometry; clustering; elastic distance 11

1. Introduction 12

Geometry is widely used in aviation from the designing of airfoil to the one of proce- 13

dures. For its part, statistics has been playing a key role for traffic forecast and predictive 14

maintenance. Yet, contrary to geometry, the statistical analysis of aircraft trajectories has 15

been under-exploited in the Airspace Traffic Management (ATM) literature. One possible 16

reason is the irrelevance of usual statistical frameworks to model a trajectory. Indeed, tech- 17

niques from multivariate statistics suffer from the very high correlation in time that exists 18

between two consecutive points of a trajectory. More worryingly, when observation times 19

are more numerous than the number of trajectories, the so-called curse of dimensionality 20

occurs. The usual time series approach is not ideal either as trajectories can be seen as 21

multidimensional time series with both irregular sampling and different durations. 22

The current institutional context evolves towards a greater availability of trajectory 23

data. On the one hand, Eurocontrol has given access to a R&D data archive containing 24

more than 17 million flights as of April 2022. On the other hand, the non-profit OpenSky 25

Network has grown to 5,000 registered receivers all around the world, providing a large 26

historical database of ADS-B data that is accessible to researchers [1]. 27

Interestingly, past OpenSky Network symposia have demonstrated how statistics 28

could provide some solutions to complex problems such as trajectory generation [2] or 29

pattern identification [3], encouraging the development of new statistical methods to model 30

trajectories. 31

An adapted statistical framework to study trajectories is the one of Functional Data 32

Analysis (FDA), popularised by [4] and [5]. The promotion of FDA to study aircraft 33

trajectories was early made by [6] and has been successfully used for Functional Principal 34

Component Analysis (FPCA) carried out by [7] and applied to the detection of atypical 35

energy behaviours by [8]. 36

Recently, FDA has progressively made the most of differential geometry to study 37

any kind of trajectories. As an example, [9] analyzed bird and hurricane trajectories 38

on Riemannian manifolds. Incorporating geometry in statistics is particularly relevant 39

for at least two reasons. First, parametric curves come as naturally good descriptors of 40
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motion. It makes geometry a perfect framework to describe a dynamic system evolving 41

over time. Second, geometry allows to carefully study the shape of a trajectory under 42

arbitrary temporal evolution, taking into account translation, scale and rotational effects. 43

This work introduces a number a geometrical methods to quantify how the shape of a 44

given trajectory changes from the R&D archive version to the ADS-B one. Additional to 45

providing a proper shape-based distance between the two versions, we compute the optimal 46

deformation required to go from the R&D archive version to the ADS-B one. In other words, 47

a geodesic path allows to visualize all the bending and stretching transformations that are 48

necessary to go from one version to the other. 49

Far from being purely theoretical, the presented geometric framework has many 50

operational applications. In this work, the geodesic distance enables to both vizualise and 51

quantify where and how much the flown trajectory has diverted from the flight plan. The 52

geodesic distance is also used to solve a clustering problem based on shape. 53

This paper first introduces the geometric framework of shape analysis, departing from 54

the early work of Kendall and co-authors to more recent methods. Second, the geodesic 55

distance is defined. Third, a sample of flights is used to illustrate how the R&D archive 56

version of a trajectory (Eurocontrol) changes from its ADS-B version (OpenSky Network). 57

2. What is the shape of a trajectory? 58

Whatever the data provider (Eurocontrol or OpenSky Network), a raw trajectory i,
denoted traji, is a set of mi pairs:

traji =
{(

yi,j, ti,j
)
, j = {1, ..., mi}

}
mi being the number of observation times associated to flight i, yi,j being a three-dimensional 59

vector (longitude, latitude, altitude), ti,j being a timestamp. In what follows, the compo- 60

nents of yi,j are respectively denoted yi,j,x, yi,j,y, yi,j,z. How to define the shape of such 61

object? What do we mean by shape in the first place? 62

One of the earliest works in statistical analysis and modeling of shapes of objects came 63

from Kendall and colleagues [10], [11]. The adopted definition of a shape is still commonly 64

used in geometry and statistics. As defined by [12], shape is all the geometrical information 65

that remains when location, scale and rotational effects are removed from an object. Two 66

objects have the same shape if they can be translated, rescaled and rotated to each other so 67

that they match exactly. 68

Whatever the nature of objects under study (images, sounds, curves, surfaces), shape 69

was originally described by locating a finite number of points on each object. These so- 70

called landmarks are points of correspondence and can be assigned by an expert (scientific 71

landmark) or suggested by a property of the object such as a point of high curvature 72

(mathematical landmark). The positions of these landmarks are points in Rn. It is often 73

assumed that the number of landmarks k is greater or equal than the dimension n. The 74

configuration is the set of landmarks on a particular object. The configuration matrix 75

X is the n × k matrix of Cartesian coordinates of the k landmarks in n dimensions. The 76

configuration space is the space of all landmark coordinates, usually the space of real n × k 77

matrices with possibly some special cases removed, such as coincident points. This space is 78

denoted Ln,k. Within a same shape class, many configurations are possible. Indeed, two 79

objects have the same shape if their configurations are equivalent. These variations are 80

formulated as actions of certain groups. In shape analysis, usual variations are all actions 81

of Lie groups, that is to say mathematical objects that are both a group and a differential 82

manifold. Lie groups of interest are the translation group Rn, the scaling group R× and 83

the rotation group SO(n). The three variations are combine together considering a product 84

group denoted Rn ⋊ (R× × SO(n)) where ⋊ is the semi-direct product. 85

The action of Rn ⋊ (R× × SO(n)) on Ln,k is (v, a, O) ∗ X = aOX + v1′k, where 1k is a 86

column vector of length k containing all ones so that v1′k is an n × k matrix with identical 87

columns. More specifically, landmark space analysis relies on the study of spaces of 88

equivalence classes that are called quotient spaces in differential geometry. The quotient 89
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space of interest is Ln,k/Rn ⋊ (R× × SO(n)) and is termed landmark shape space. In 90

quotient space live orbits. In differential geometry, for any element p of a manifold M, the 91

orbit of p under the action of a group G is defined as the set G · p = {g · p : g ∈ G} and is 92

written [p]. The orbit of a point in a manifold refers to all possible points one can reach in 93

the manifold using the action the group on that point. 94

Landmark shape analysis has led to many practical applications. In biology, it has been 95

used to quantify the effects of selection for body weight on the shape of mouse vertebrae 96

[13], and to highlight sexual dimorphism in hominoids using craniofacial shape differences 97

[14]. In chemistry, [15] and [16] have analyzed a dataset of steroids to evidence how the 98

shape ("steric") properties of the molecules are related to an activity class. 99

Despite these successful applications, the use of landmarks is not straightforward to 100

study aircraft trajectories for at least three reasons. 101

1. The choice of landmark is very subjective. How many landmarks are relevant to 102

summarize the shape of an aircraft trajectory? Should this number depend on the 103

origin-destination we consider? Would landmarks based on flight phases be enough 104

to capture the shape of a trajectory? 105

2. Scientific landmarks are not available in raw data. Both Eurocontrol and OpenSky 106

Network data sources do not include expert knowledge. 107

3. Mathematical landmarks are likely to be imprecise for Eurocontrol data. Indeed, 108

recovering flight phases thanks to existing algorithms ([17] or [18]) will perform 109

differently depending on the number of observation points. 110

These limits are not new. They were exemplified in medical imaging problems for 111

which landmarks are not obvious to find (think of soft tissues where boundaries have no 112

sharp edges). To account for these problems but in the same spirit as Kendall’s formulation, 113

[19] was one of the first to propose a convenient shape representation of curves in Rn. This 114

is the framework we consider in the sequel. 115

3. Trajectories as parameterized curves in R3
116

As said, raw data are stored in a usual matrix format. A few preliminary remarks 117

should be made. First, the duration changes from one flight to another. As a consequence, 118

the number of observation points in not the same from a trajectory to another. Second, for a 119

given trajectory, observation times are not equally spaced. Third, between two trajectories, 120

the spacing is irregular but is never the same. For a given trajectory, observation points are 121

the same for all components of yi,j. 122

Given that most methods in time series and multivariate statistics are inappropriate 123

in this context, a relevant statistical framework is to study trajectories from a Functional 124

Data Analysis (FDA) perspective. The main assumption in FDA is the existence of an 125

underlying function that has given birth to a set of values the statistician observes on the 126

aforementioned irregular grid. When the number of observation times is high enough, each 127

underlying function is retrieved thanks to interpolation or smoothing. It is then effortless 128

to resample trajectories on a regular grid. 129

In FDA, a trajectory is viewed as the realisation of a functional random vector. A 130

functional random vector of dimension p is denoted X ≡
(
X1, X2, ..., Xp)′. Note that 131

∀k ∈ {1, ..., p}, Xk ≡ (Xk
t )t∈[0,1]. More precisely, each component Xk is a functional random 132

variable taking its values in an infinite dimensional vector space, often chosen to be 133

L2([0, 1],R) associated to the scalar product ⟨ f , g⟩L2 =
∫ 1

0 f (t)g(t)dt for f , g ∈ L2([0, 1],R). 134

As the three dimensions of a trajectory (longitude, latitude, altitude), are the one of an 135

underlying coordinate system, once reconstructed, a trajectory can be viewed as an open 136

parameterised curve β of R3. 137

As each trajectory has a different duration, a scaling is made so that each curve βi goes 138

from [0, 1] to R3. 139
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3.1. Interpolation: from raw data to curves 140

Going from raw data to smooth curves calls for a smoothing or interpolation step. 141

Smoothing refers to the case in which observations are assumed to be noisy whereas 142

interpolation hypotheses that observations are recorded with negligible errors. Many 143

smoothing and interpolation methods are available to reconstruct individual trajectories. A 144

review of four popular non-parametric techniques is given by [20]. Whatever the method, 145

the construction of functional observations using the discrete data takes place separately 146

for each dimension of a flight: the longitude, the latitude, the altitude. 147

Linear interpolation is chosen in this work because Eurocontrol R&D data are based 148

on updated filled flight plans, that is to say a series of straight lines. 149

3.2. The Square-Root Velocity Function (SRVF) captures shape 150

Once trajectories are interpolated, their shape can be studied. To this end, the Square-
Root Velocity framework has been developed in [19]. The main assumption is that curves
are differentiable with a first derivative in L2([0, 1],Rn). In this framework, the shape of a
curve is no more captured by landmarks but by the Square-Root Velocity Function (SRVF).
Let F : Rn → Rn be a mapping given by:

F(v) =

{ v√
|v|

if |v| ̸= 0

0 if |v| = 0

where |.| denotes the usual Euclidean norm of Rn. The SRVF of β is defined to be q(t) ≡ 151

F(β̇(t)) where β̇ is the time derivative of β. The curve β can be reconstructed from q up to 152

a translation. Luckily, the SRVF naturally removes translation effects as it is based on the 153

curve derivative. 154

Scale effects are easy to remove as all curves can be rescaled to be of unit length in a 155

pre-processing step. 156

The space of interest is then

C ≡
{

q ∈ L2([0, 1],Rn),
∫
[0,1]

|q(t)|2dt = 1
}

.

It is the set of all Square-Root Velocity Functions with unit L2-norm. As recalled in [21], 157

this corresponds to a sphere in L2([0, 1],Rn). A lot is known about the geometry of such a 158

sphere, including geodesics. Shape analysis of curves under this representation (without 159

additional constraints) is relatively simple. Yet, we still need to take care of different 160

re-parameterizations of curves as well as the effect of rotations. 161

3.3. How to deal with rotation and re-parametrization? 162

The action of the rotation group SO(n) is usual and similar in landmark-based shape 163

analysis: SO(n)× C → C , (O, q(t)) = Oq(t). 164

Yet, parameterization effects are specific to the Square-Root Velocity (SRV) framework 165

because there is no parametrization in the landmark-based approach. Note that it is natural 166

that shape should be invariant by re-parametrization: two curves may have the same shape 167

but be traveled along at different speeds. 168

In the SRV framework, a re-parameterization is an element of Γ[0,1], the set of all 169

orientation-perserving diffeomorphisms of [0, 1]. Orientation-perserving means that the 170

transformed passage of time is still coherent (time is not moving back, 0 maps to 0 and 1 171

maps to 1). Working with diffeomorphisms allows to actually re-parameterize curves. For 172

a γ ∈ Γ[0,1], the composition β ◦ γ denotes its re-parameterization. It can be shown that the 173

associated group action is Γ[0,1] × C → C , (q, γ) = (q ◦ γ)
√

γ̇. 174

The quotient space of interest is S ≡ C /(Γ[0,1] × SO(n)). Crucially, [19] have shown 175

that if the Riemannian metric is well-chosen to be an elastic Riemannian metric, the rotation 176

group SO(n) and the re-parameterization group Γ[0,1] both act by isometries. This property 177
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is key to define distances between orbits, that is to say distances between elements of the 178

quotient space. S is called the shape space and is a metric space with the distance inherited 179

from C . It is a collection of orbits (individual shapes): S ≡ {[q] : q ∈ C }. 180

3.4. Distance between two shapes, geodesic path 181

The distance between two orbits [q1] and [q2] is given by:

dS ([q1], [q2]) = inf
(γ×O)∈Γ[0,1]×SO(n)

dC (q1,
√

γ̇O(q2 ◦ γ))

with dC (a1, a2) = cos−1
(∫ 1

0 ⟨a1(t), a2(t)⟩dt
)

, where ⟨., .⟩ is the usual inner product between 182

vectors in Rn. 183

The actual geodesic between [q1] and [q2] in S is given by [α(τ)], where α(τ) is the 184

geodesic in C between q1 and
√

γ̇∗O∗(q2 ◦ γ∗). Computing α(τ) is very easy because C is a 185

sphere. O∗ and γ∗ minimize the right side of the above distance. This is a joint optimization 186

problem with a well-known solution as pinpointed in [21]. 187

4. Application 188

4.1. Data 189

4.1.1. R&D Eurocontrol 190

Eurocontrol is an international organisation working to achieve safe and seamless air 191

traffic management across Europe. Since 2020, Eurocontrol has given access to a R&D data 192

archive containing more than 17 million flights as of April 2022. The data are collected 193

from all commercial flights operating in and over Europe. To be more specific, Eurocontrol 194

receives flight plans for all Instrument Flight Rules (IFR) flights. These flight plans are 195

activated and updated based on live data from air navigation service providers. Data are 196

available for 4 months each year: March, June, September and December. Only two data 197

subsets are used in this work: flight metadata and actual flight points. We are interested in 198

studying the 15,628 flights that have been departing from Toulouse-Blagnac (LFBO) and 199

landing at Paris-Orly (LFPO) from 2015 to March 2020. 200

In the R&D data archive, all flights are identified by a unique code coming from the 201

PRISME Data Warehouse (DWH). The registration number is also available. There are 386 202

unique registration numbers for the 15,628 flights. 203

The actual off-block time as well as the actual arrival time are respectively correspond- 204

ing to the first and the last point of a trajectory. 205

4.1.2. Retrieving ADS-B flights thanks to OpenSky Network 206

To query a flight in OpenSky Network database (Impala Shell), one should use an 207

ICAO24 identifer and a date. The ICAO24 code is a 24-bit unique number that is assigned 208

to each vehicle or object that can transmit ADS-B messages. The correspondence between 209

the registration number and the ICAO24 code is made thanks to the aircraft database of 210

OpenSky Network. Among 15,628 flights, only 999 cannot be matched. 211

To find a flight in the OpenSky Network flight table, the query is made using the 212

actual off-block time and the actual arrival time additional to a time buffer. A query outputs 213

several candidate flights. 214

The proportion of flights for which there is at least one candidate goes from 0% in 2015 215

(it was expected as ADS-B data were not collected by OpenSky Network in 2015) to 85% in 216

2018. For each Eurocontrol flight, the ADS-B flight that is most likely (same ICAO code and 217

closest off-block time) is kept. At this step, 6,053 flights are remaining. State vectors are 218

then queried with a time buffer. Thus, 6,031 flights are remaining. 219

A great challenge when matching ADS-B data and Eurocontrol data is the problem 220

of the beginning/end of a flight. The two first points of any flight in the R&D archive are 221

located at the same geographical coordinates (the ones of the departure airport), with zero 222

altitude. The time between the first two points is most likely the actual taxi-out time, that 223
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is to say the period between the actual off-block time and the actual take off time. As the 224

taxi-out time is not visible with ADS-B data, the first point of any flight from the R&D 225

archive was removed. Duration is computed as being the time difference between the first 226

point and the last point of the flight. 227

ADS-B data can be very noisy. Some basic filters are used to withdraw outliers. For 228

instance, ADS-B flights with less that 20 points are withdrawn. ADS-B flights for which 229

there is at least one time gap between two points that exceeds 20 minutes are withdrawn. 230

5,226 flights are remaining after the cleaning step. 231

In the spirit of the ADS-B cleaning step, Eurocontrol flights with less than 10 points 232

are removed from the analysis as well as flights having at least a time gap between two 233

consecutive points that is above 20 minutes. 5,180 trajectories are remaining after this step. 234

4.2. Interpolation 235

In total, there are 5,180 flights for which we have both a clean ADS-B version and 236

a clean corresponding Eurocontrol version. For example in 2019, there are 1,746 valid 237

trajectories. 238

Interpolation is done year by year. For both Eurocontrol and ADS-B data, the linear 239

interpolation resamples all trajectories on a regular grid ranging from 0 to 1 with an 240

incrementation of 0.02. 241

Figure 1. Linear interpolation of Eurocontrol trajectories [top] and ADS-B versions [bottom] for the
flights departing from Toulouse-Blagnac (LFBO) and landing at Paris-Orly (LFPO) in 2019.

Contrary to the altitude profile of Eurocontrol trajectories, the take-off and landing of 242

ADS-B trajectories are not always associated to a null altitude. This phenomenon and the 243

small difference between the two color scales come from the aforementioned problem of 244

finding the true beginning/end of an ADS-B flight. 245

Figure 2. Zoom on Paris-Orly (LFPO) where runway displaced thresholds (DTHR) are indicated by
red dots. Linear interpolation of ADS-B trajectories [left] and Eurocontrol versions [right] for the
flights departing from Toulouse-Blagnac (LFBO) and landing at Paris-Orly (LFPO) in 2019.

As expected, Figure 2 shows a striking difference between the shape of trajectories 246

from their ADS-B version to their Eurocontrol ones. 247
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4.3. How to compute the geodesic path in practice? 248

Most geometric concepts developed by [19] and [22] have been implemented in R, in 249

the fdasrvf package maintained by J. Derek Tucker. The computation of the geodesic path 250

is illustrated for a given flight that is shown on Figure 3. 251

Figure 3. Linear interpolation of a given flight between Toulouse-Blagnac (LFBO) and Paris-Orly
(LFPO) in 2019. Both its ADS-B and Eurocontrol versions are represented.

Once re-parametrization, location, scale and rotational effects have been taken into 252

account, it is clear most bending and/or stretching is needed to match the ends of the 253

highest flight level. Figure 4 shows that to optimally go from the Eurocontrol version to the 254

ADS-B one, altitude must be slowly increased. A rise in latitude is needed in the middle of 255

the flight which can be seen from Figure 3. 256

Figure 4. One possible representation of the shortest path from the Eurocontrol version to the ADS-B
version in the quotient space S thanks to the computation of α̂(τ) for 10 values of τ.

4.4. Geodesic distance 257

Figure 5. Histogram of the geodesic distances between Eurocontrol and ADS-B versions of the flights
departing from Toulouse-Blagnac (LFBO) and landing at Paris-Orly (LFPO) in 2019.
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The histogram in Figure 5 clearly shows two groups of flights. When the geodesic 258

distance is null, no bending/stretching is needed to match trajectories once location, scale, 259

rotational and re-parametrization effects are taken into account. In this case, Eurocontrol 260

and OpenSky versions are carrying the same shape information. Yet, it is not the case when 261

the geodesic distance is not null. In most cases, one should benefit from OpenSky Network 262

ADS-B data, as there are more detailed. 263

4.5. Hierarchical clustering 264

The geodesic distance may be used for the clustering and classification of trajectory 265

shapes. [21] and [19] successfully cluster shapes of helices in R3 by matching and deforming 266

one into another, the underlying motivation being the analysis of protein structures. In a 267

similar spirit, a clustering of ADS-B trajectories based on their shape can be performed. In 268

this section, a random sample of 100 trajectories departing from Toulouse-Blagnac (LFBO) 269

and landing at Paris-Orly (LFPO) in 2019 is drawn. A hierarchical clustering is implemented. 270

The geodesic distance matrix is computed and the Ward’s method is chosen to perform 271

the clustering. When the quotient space we consider is taken to be S (translation, scale, 272

rotational and re-parametrization effects are removed), shape clusters are mostly based on 273

the arrival direction at Paris-Orly airport (LFPO) as one may note from Figure 6. 274

Figure 6. Two clusters of trajectories (orange and blue), based on the geodesic distance. The sample
is of size 100 and is randomly drawn from flights going from Toulouse-Blagnac (LFBO) to Paris-Orly
(LFPO) in 2019.

5. Discussion 275

The growing availability of ADS-B data is likely to have a huge impact in statistical 276

studies. As compared to the Eurocontrol R&D data archive that is based on updated filled 277

flight plans, ADS-B data allow for a reliable study of trajectory shapes. Tools from differ- 278

ential geometry, namely the geodesic distance, help to quantify and clarify the empirical 279

assessment that flown trajectory are far from the flight plan. This distance can be used in 280

clustering problems. 281

This paper focused on a sample of flights that is not representative of all flights in 282

Europe. Future works may quantify the benefits of ADS-B data for each flight phase and 283

for a larger scope. The parsimonious sampling of Eurocontrol R&D data is likely to be 284

satisfactory for shape analysis focusing on the en-route phase. 285

In this work, the ADS-B cleaning process is basic and should be refined in future 286

works. Matching Eurocontrol flights with their ADS-B versions is far from being trivial and 287

require an in-depth study. 288

Depending on operational needs, the quotient space defining what is meant by shape 289

should be modified. An interesting extension could be to investigate for the relevant 290

geometrical framework needed to model go-around patterns. 291
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