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Thispaper proposes anewoptimization schemeusingneural networks for runwaybalancing tominimizedeparture

and arrival aircraft delay. The delay prediction for runway balancing optimization is obtained by a neural network,

onlywithout any additional simulations.Developing an accurate simulationmodel under an uncertain environment is

difficult, but the proposed neural network model can estimate the average delay without modeling uncertainty

explicitly. In this paper, the effectiveness of the proposed method is validated through numerical simulations. First,

simulations are used to generate the data,which are thenused to train the neural network.Next, the runwaybalancing

problem is solved via simulated annealing using the delay predicted by the neural network. The simulation result

shows that the proposed approach outperforms the simulation-based method under an uncertainty environment.

Therefore, the neural network is shown to accurately estimate the delay under the uncertainty environment, which

makes the proposed neural-network-based method applicable to objective function calculations for optimization.

I. Introduction

A IRPORT ground operations are a bottleneck of air traffic con-
trol. More efficient runway usage is necessary to maximize

capacity and optimize traffic handling [1]. Apart from new runway
constructions, there are twomain approaches to reduce aircraft delay:
takeoff/landing separation reduction and runway balancing. The
former is a straightforward idea to reduce the delay, with various
methods proposed such as optimal aircraft sequencing while consid-
ering the wake turbulence category, time-based separation applied
under strong headwinds, and development of new separation stan-
dards (RECAT: Wake Turbulence Re-Categorization) [2]. The latter
(runway balancing), on the other hand, aims at optimal runway
balancing of takeoff and landing aircraft to multiple runways. This
is a promising solution for major hub airports with multiple runways,
and so this research focuses on runway balancing.
There have beenmany studies to optimize the runway balancing of

departures and/or arrivals. To optimize the runway balancing, several
types of objective functions can be minimized, depending on the
problems such as aircraft delay [3–5], makespan [6], and the combi-
nation of makespan/aircraft delay as well as other factors such as
noise, fuel consumption, and congestion level [7–13]. The runway
balancing is a combinatorial optimization, where various optimiza-
tion methods can be applied such as mixed integer linear program-
ming [11], genetic algorithm [3,7], simulated annealing [4,10,12],
ant colony optimization [9], swarm intelligence algorithm [6], bat
algorithm [5], greedy method [8], and dynamic programming [13].
Furthermore, many researchers optimize the aircraft sequencing and
runway balancing simultaneously. Operational constraints, such as
conflict on air routes and taxiing, are also considered in some studies
[12]. Most researchers focus deterministic environment only, and
uncertainties are considered in relatively few past works. Such
uncertainties are always present in the real world, with takeoff time
uncertainties exceeding flight time, and thus arrival time uncertain-
ties, due to difficulties in the boarding process prediction times [14].

Therefore, uncertainty becomes critical when the runway handles
departure aircraft.
To tackle uncertainty, several approaches are considered. One is

robust optimization. The robust optimization assumes a certain time
window of uncertainty, and the best strategy is found for the worst-
case scenario. Runway sequencing has been optimized with robust
optimization, as shown in Ref. [15]. With this method, the optimi-
zation is translated into a deterministic optimization problem. How-
ever, the optimal parameters found for theworst-case scenario are not
necessarily optimal for various uncertain scenarios. Another method
considers the stochastic process internally, and the expected value is
optimized. The stochastic programming is a common method to
consider the uncertain environment, and there have beenmanyworks
on runway scheduling [16–18]. Because a large-scale problem is
sometimes difficult to solve directly, a simulation-based method is
often used. This approach requires a large number of simulation runs
varying the uncertainty parameters, followed by some statistic evalu-
ation of the obtained simulation results (sample average approxima-
tion [19]). This method is referred to as a simulation method here.
There are some studies using the simulation method for runway
balancing and sequencing [6,20]. This method can consider many
uncertain scenarios, but it is computationally expensive.
However, both methods discussed earlier in this paper share a

common issue: they require an accurate runway simulation model.
In particular, the following parameters influence the results greatly:
takeoff/landing separation, interaction of departure and landing, and
their uncertainty. The optimal runway balancing, for example, is
usually obtained by minimizing the objective function that is esti-
mated based on such simulation models. Intricate airport operations
make it difficult to develop an accurate simulation model. Inaccurate
simulation models decrease the fidelity of the solution. To tackle this
issue, the current authors proposed a new optimization approach
without using a simulation or parameter estimation of airport oper-
ations in their previous research [21]. The optimization requires an
objective function, but the authors proposed that such an objective
function can be obtained by a neural network (NN) trained with the
actual operational data directly. Because the NN training process
requires both inputs and outputs from actual data, the NN can learn
the actual operational environment directly. In addition, the actual
operation includes various types of uncertainties, which are difficult
to handle in the optimization. From aNNperspective, uncertainties in
the output resemble noisy output; so, with a sufficiently large dataset,
a good enough NNmodel can be built despite the existing uncertain-
ties. Therefore, with a large dataset, the appropriate input–output
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mapping can be obtained. As a result, the NN can estimate the output
of the expected value by considering uncertainty. By doing that, an
optimization problem considering uncertainty can be converted to a
simple deterministic problem, and the classical optimization method
can be used.
In their previous work, the current authors demonstrated the initial

potential of the proposed method [21]. This paper elaborates on the
method by considering a more realistic environment, and it focuses on
the detailed performance of the proposed method. A more realistic
airport simulationmodel [22] is implemented based on real operational
data, and the performance of the proposed method is first investigated
under a deterministic environment; then, the performance of the
proposed method is evaluated under an uncertainty environment.
The data size sufficient for NN training is also investigated.
The rest of the paper is organized as follows: The problem is

formulated in Sec. II, and the NN model is developed in Sec. III.
Section IV shows the simulation environment, followed by Sec. V,
which presents the simulation results. SectionVII concludes this paper.

II. Problem Formulation

A. Airport Operation and Simulation Method

The target airport with a runway balancing problem that is con-
sidered in this paper is Tokyo International Airport (Haneda Airport).
Figure 1 shows the airport layout and runway operations under north
wind. Runway A is used for arrival only, and it is independent of
traffic on other runways. On the other hand, runwayC is used for both
departure and arrival, i.e., a mixed-mode operation. Runway D is
used for departure only, but the arrival to runway C also affects the
departure from runway D. Runway B is not used under north wind
operation due to airspace limitation, and it is used under south wind
operation only. Under this condition, the runway balancing for
arrivals between runways A and C is considered.
In this paper, the aforementioned runway operation is described in

the following mathematical forms:

1. Inputs

The set of departure aircraft is defined as D; D � f1; : : : ; nDg.
The set of departure runways is defined as RD; RD � fcD; dg,

where cD is runway C used by departures and d is runway D.
The set of arrival aircraft is defined as A; A � f1; : : : ; nAg.
The set of arrival runways is defined asRA; RA � fa; cAg, where a

is runway A and cA is runway C used by arrivals.
PTOTi is the earliest possible takeoff time (PTOT) for aircraft

i, ∀ i ∈ D.

PLDTi is the earliest possible landing time (PLDT) for aircraft
i, ∀ i ∈ A.
rnomi is the nominal runway for departure and arrival;

rnomi ∈ RD ∀ i ∈ D and rnomi ∈ RA ∀ i ∈ A.
ri is the departure/arrival runway; ri � rnomi ∀ i ∈ D

and ri ∈ RA ∀ i ∈ A.

2. Decision Variables

The binary variable for arrival runway decision (δi ∀ i ∈ A) is set
as a decision variable:

δi �
�
1

0

ri ≠ rnomi

otherwise

3. Variables Given by the Airport Operation

The actual takeoff or landing time is defined as ti; ∀ i ∈ A ∪ D.

4. Constraints

For runway separation,

tj ≥ ti � Sij ∀ i ≠ j ∈ A ∪ D

where Sij is the minimum separation between aircraft i and j, where
aircraft i precedes aircraft j:

Sij

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

� −∞ if ti < tj

∼N�110 s; u� if ri � rj � a for i; j ∈ A���
∼N�240 s; u� if ri � rj � cA for i; j ∈ A���
∼N�65 s; u� if ri � cA; rj � cD for i ∈ A; j ∈ D���
∼N�85 s; u� if ri � cD; rj � cA for i ∈ D; j ∈ A���
∼N�100 s; u� if ri � rj � d for i; j ∈ D���
∼N�80 s; u� if ri � d; rj � cA for i ∈ D; j ∈ A���
� 5 s if ri � cA; rj � d for i ∈ A; j ∈ D���
� 0 otherwise

For the earliest landing time,

ti ≥ PLDT� wri;r
nom
i

∀ i ∈ A

where wr1;r2 indicates the additional flight time required when the

nominal runway is r1 and the landing runway is r2:

Fig. 1 Airport layout and runway (RWY) configuration under north wind at Tokyo International Airport.
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wr1;r2 �
�

0 if r1 � r2
120 s otherwise

For the earliest takeoff time,

ti ≥ PTOT ∀ i ∈ D

Arrivals are always given priority over departures.
The separation and mutual interference between runways Sij are

set according to previous research [22] using real operational data.
N�a; b� indicates the normal distribution with the average a and
standard deviation (SD)b, and u is set to 15 s [22].When Sij becomes

negative after the calculation of N�a; b�, it is set to zero. The model
can easily be adapted to consider any wake turbulence constraints. In
the real world, an aircraft does not necessarily take off or land, even
when the sufficient separation is established. These outliers are
modeled by the following calculation, with the probability of 1%
onlywhen the condition (�), which appears in the calculation ofSij, is
applied:

Sij �
�
Sij � 120 s 1% probability when ��� is applied
Sij otherwise

(1)

This means that 120 s of additional separation is required, which
models the outlier of the separation. Additionally, the characteristic
operation is found in arrival aircraft landing to runway C. The
standard 240 s separation is set to the landing aircraft to runway C
so that the takeoff is possible from runway C and runway D between
the two landings. This also means that arrival to runway C requires
long separation, regardless of departure aircraft presence. Therefore,
the separation is not constant but randomly distributed. Arrival is
always given priority over departure. Arrivals are always given prior-
ity over departures, i.e., aircraft cannot depart from runways C and D
unless sufficient separation with runway C arrivals is established.
Once the inputs and decision variables are determined, the ti of the
arrival aircraft are first calculated on the order of the PLDTs to satisfy
the constraints. After that, the ti of the departure aircraft are calcu-
lated in the order of the PTOTs to satisfy the constraints.
The objective function to be minimized is the total delay of all

aircraft. Here, the delay is defined as the difference of actual takeoff/
landing time and the estimated takeoff/landing time when no other
aircraft traffic exists. However, the landing runway reassignment
increases air traffic controller (ATC) workload, and so the number
of runway reassignments is also included in the objective function,
which is defined as the following form where α is the weight factor.
Here, the runway reassignment indicates the case where the nominal
and the actual runways are different:

J �
X
i∈D

�ti − ETOTi� �
X
i∈A

�ti − ELDTi � αδi� (2)

where ETOT denotes the estimated takeoff time, and ELDT denotes
the estimated landing time. If the PLDTs and PTOTs of all aircraft
are known in advance, it is easy to optimize the runway balancing,
which is not the case in the real world. Both include a considerable
uncertainty, but departure time uncertainties are larger due to delayed
pushback,which can be initiated only once all passengers are on board,
as discussed by other researchers [14]. The estimated times of the
PLDTsandPTOTsare denotedbyELDTandETOT, respectively.Note
that the PLDTand PTOTare unknown in the optimization process, and
only theELDTandETOTare available.Here, the followinguncertainty
value is assumed according to past research [23,24]:

ETOT − PTOT ∼
�
N�0; 300 s� if ΔT > 15 min

N�0; 120 s� otherwise
(3)

ELDT − PLDT ∼ N�0; 0.02ΔT� (4)

where ΔT is the time difference between the ELDT/ETOT and the
current time. This means that the uncertainty of the ELDT is linear to

the estimated flight time to the runway with the SD of 2% flight time.
The uncertainty of the ETOT is assumed to decrease 15 min before the
ETOT because, at this time, the largest contributor to the uncertainty
(i.e., the pushback time) is completed.
The decision variables are the landing runways of each arrival

aircraft only.However, last-minute changes to the landing runway are
not possible from both the ATC and pilot workload perspectives, and
so it is assumed that the runway decisionmust bemade 30min before
ELDT, i.e., the runway decision must be made under uncertainty.
Note that some constraints are given by random variables, but all

these random variables are determined in advance, and so the prob-
lem itself is deterministic. However, the random variables are
changed in each run, and so multiple runs of simulations are required
to evaluate the uncertainty effects.

B. Optimization Method

The optimized parameters are δi ∀ i ∈ A. This paper assumes that
each aircraft can land at the designated optimized runway; although,
in practice, the optimized runway assignment is not necessarily
realized due to the airspace or aircraft conflicts. However, not all δi
need to be optimized simultaneously because aircraft due to depart
further in the future have little impact on the runway decision of the
aircraft 30 min before the landing. As in other studies, this time, the
sliding windows approach is applied [12]. The sliding window
approach optimizes the aircraft with a certain time window of the
ELDTonly, and the target aircraft are changed as time proceeds. This
optimization process is done repeatedly, with the latest result being
used for decision making.
Assuming there are n aircraft to be optimized, the possible combi-

nations are 2n. If n is sufficiently small, the objective function for all
combinations is calculated, and the best one is chosen. However,
when n increases, it is infeasible to calculate all combinations. There-
fore, simulated annealing is applied to find the best solution. The
simulated annealing [25] is a metaheuristic optimization algorithm
that imitates the annealing process in metallurgy. The simulated
annealing is often used to solve combinatorial optimization prob-
lems. The general optimization process of the simulated annealing is
shown as follows:

Initialization i ≔ i0, T ≔ T0

While T > Tfinal, do

Generate solution j near solution i

if f�i� > f�j�, then i ≔ j

else i ≔ j with probability of exp

�
f�i� − f�j�

T

�

end if
Compute T

i becomes the final solution

where T denotes the temperature. T is large at the beginning, which
means that the worst solution is likely to be chosen to find the larger
solution space. As time proceeds, the solution improves until it
converges to the optimal solution.

III. NN Development for Objective Function
Calculation

A. Inputs and Outputs of the Network

In this research, the authors propose to calculate the objective
function by data-trained NN. Therefore, the NN inputs and outputs
should be decided. First, the inputs are considered. The possible
inputs are the ETOT/ELDT of each aircraft and its runway informa-
tion. This time, to represent both the ETOT/ELDT and runway
information, the number of aircraft on each runway at each time slot
is set as input. Figure 2 shows the representation of the inputs. There
are four different queues in this runway operation (runway A for
arrival, runway C for arrival, runway C for departure, and runway D
for departure). In each queue, the number of aircraft is set to each
time slot of the ETOT/ELDT. The size of the time slot is set to 120 s.
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The time slot starts with the current time and ends 1 h later. Because
the runway reassignment is considered within the sliding window
only, the aircraft out of the sliding window do not affect the decision
of the runway reassignment. In this example, a 1 h sliding window is
assumed, and 4 × 30 inputs are made. This input size (1 h sliding
window) is used for NN development.
As for the outputs, the objective function is the sum of the delay

and the number of runway reassignments. NN calculates the delay
only, and the number of runway reassignments is implicitly incorpo-
rated in the decision variable. This time, the following four output
values are set as NN outputs:

o1 �
X

j∈fAjrj�ag
�tj − ELDTj� (5)

o2 �
X

j∈fAjrj�cAg
�tj − ELDTj� (6)

o3 �
X

j∈fDjrj�cDg
�tj − ETOTj� (7)

o4 �
X

j∈fDjrj�dg
�tj − ETOTj� (8)

Each output is affected by different inputs (aircraft queues).
According to the authors’ preliminary calculations, a single network
with all necessary inputs and four outputs tends to cause overfitting.
For example, o1 is obviously affected by arrival on runway A only,
but other unnecessary inputs are also connected when applying a
single network. To avoid overfitting, more data are required, which is
not preferable for real-world implementation. Therefore, four sepa-
rate NNs are made in this paper. The sum of all four outputs corre-
sponds to the delay of all aircraft, which matches the objective
function given in Eq. (2) exactly, except for the number of runway
reassignments. Each network requires only the necessary inputs that
affect its output. Table 1 summarizes the used input in each network.

B. NN Structures

Next, NN structures are considered. There are various types of
possible networks, such as feedforward fully connected NNs
(FFNNs) and convolutional NNs (CNNs). To estimate aircraft delay,
the delays of nearby aircraft and the resulting queue length propaga-
tion should be considered. In the FFNN, all inputs are connected, but
not all connections are actually needed for delay estimation. Unnec-
essary connections often cause overfitting and result in failed training
of the network: an observation confirmed by trial and error. On the
other hand, the CNN connects the neighborhood inputs only, and a
smaller network can be created. A popular application of the CNN is
image processing [26]. There are also many applications of CNN

classification for time series data [27], which are similar to the inputs
in this research. Time series data are considered as one-dimensional
data, and the CNN is applied.
Figure 3 summarizes the NN structures used in this research. The

first and second layers use a convolutional layer, and the third and
fourth layers use a fully connected layer. Table 2 summarizes the
detailed parameters of the network [28]. Because network 3 and
network 4 have more inputs than network 1 and network 2, the NN
size is set larger in network 3 and network 4. However, the general
NN structures are set the same for all networks. This structure is
decided based on the trial and error. Although a better structure could
exist, the proposed structure demonstrates a sufficient performance,
as will be described in the following:

C. Training Data and NN Training

Datasets are required to train the NN. In reality, actual past opera-
tional data can be used. However, to evaluate the proposed method, a
simulation environment is required. Because it is difficult to develop
a high-fidelity simulation model based on the actual operational data,
in this paper, data are generated via simulations without explicit

Table 1 Inputs and outputs used in each network

Network name Inputs Outputs

Network 1 Arrival A (30 inputs) o1
Network 2 Arrival C (30 inputs) o2
Network 3 Arrival C, departure C (30 × 2 inputs) o3
Network 4 Arrival C, departure D (30 × 2 inputs) o4

Fig. 3 NN structures used in this research.

Fig. 2 Representation of NN inputs.

Table 2 The parameters in NN used in this researcha

Values

Layers Variables
Networks
1 and 2

Networks
3 and 4

First (convolution) Number of out channels 128 256
Strides 2 2
Kernel size 2 2

Second (convolution) Number of out channels 128 256
Strides 3 3
Kernel size 3 3

Third
(fully connected)

Number of hidden nodes 128 256

Fourth
(fully connected)

Number of hidden nodes 128 256

First–fourth Activation function ReLU [28] ReLU
Output Activation function Linear Linear

aReLU denotes rectified linear unit.
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modeling to confirm the effectiveness of the proposed method. The

data should include the characteristics of the operational environment

(i.e., cover various scenarios) and various patterns of runway balanc-

ing; otherwise, the data would be biased, and the appropriate NN

could not be made. Therefore, through a data generation process, the

NN is trained iteratively and its output is used for runway assignment

of each arrival aircraft in the simulation. This NN is not intended to be

used for the delay estimation explained in the previous subsection,

but it is used for data generation only. Therefore, the NN used for

delay estimation is trained with the generated data only. To simulate

various situations, α is uniformly set between 0 and 900 s, and the

runway assignment is randomly set with a probability of 0.05. In this

way, the training data cover various input/output relationships, butwe

also need to confirm that the actual data reflect various relationships

when actual data are used.

The simulation parameterswill be discussed later in Sec. IV.A. The

data are obtained every 1 min for 3 h, and so a single simulation can

generate 180 datasets. By running simulations about 17,000 times,

3 × 106 (3 million) datasets are created.

Once the training data are obtained, the NN is trained. The well-

known training algorithm, Adam [29], is applied here. During a

training process, the generalization capability is a big issue. Gener-

alization refers to the ability of the NN to produce reasonable outputs

for inputs that are not encountered during training. The NN tries to

minimize the loss function between model output and trained data

output. Because both input and output data usually include noise,

minimizing the error loses the generalization (called overfitting).

There are various ways to avoid overfitting, but one method is to

collect a sufficient number of datasets.

However, the possible number of datasets obtained is also limited

if this process uses real operational data. As for the airport operational

data, it is assumed that each day consists of 16 operational hours, with

data obtained every 1min. For one month, 60 × 16 × 30 � 28;800 is
a reasonable number of inputs. However,more datasets are necessary,

as about 30,000 datasets are not sufficient for most NN applications.

Consequently, a data augmentation technique is used. Data augmen-

tation is a technique to create data artificially based on existing data.

This technique is often used in the image processing field [30]. In this

field, the data augmentation is done in various ways such as rotating

the image, reflecting the image, and changing the scaling.

In this research, data augmentation is done with the following

process:
1) Copy the input/output from the original data.
2) Pick up one aircraft from the input data.
3) Move the aircraft to the next time slot.

This process is very easy, but it is plausible because the ETOT/

ELDT includes uncertainty; so, similar output is expected even if the

ETOT/ELDT is slightly changed. If each original dataset is aug-

mented, in each original dataset, and the number of data becomes

two times larger than the original number of datasets. Once the data

are ready, the data are split into 70% training data and 30% validation

data. The NN is trained with the training data, and the NN in which

the loss function between the model output and the validation data

output is minimum is used as the obtained NN for the stopping

criterion. To investigate the impact of the original data volume, three

cases are assumed in NN development, as shown in Table 3.

Case 1 uses only 30,000 original data, which are equivalent to one

month of data. Forty-nine times the augmentation is done, and a total

of 1.5 million data are used for NN training. Case 2 uses 300,000

original data, which are equivalent to one year of data. Case 3 uses 3

million original data, which cannot be obtained in the real world but

are assumed as a benchmark. This augmentation technique can also
be applied to the real-world data once the data are available.
Batch training is also applied (batch size is set to 2048). As for the

loss function, the mean squared error (MSE) is used. The weight
decay is also introduced to avoid the overfitting, where the decay
parameter is set to 0.00005.

IV. Simulation Environment

A. Simulation Parameters for Evaluation

The performance of the developed NN model is evaluated via
simulations. To conduct simulations, several simulation parameters
need to be set. First, the traffic volume is determined as shown in
Table 4.Because themaximum traffic is expected to be 40 aircraft/h for
both departures and arrivals at the considered airport, this traffic
volume is set as maximum, and the minimum is set to 75% of the
maximum traffic. In each simulation, the hourly traffic of both depar-
tures and arrivals is randomly set based on a uniform distribution.
Without the optimization of runway reassignment, there is an

optimal ratio of runway balance for both departures and arrivals.
The nominal ratio should not be significantly different from the
optimal ratio. Therefore, the nominal ratio of arrivals/departures is
also set in the scenario. As for the departure, 0.35 is the best ratio of
departure, and so it is randomly set between 0.25 and 0.45 in the
simulation. As for the arrival, 0.7 is the best ratio of arrival for runway
A, so it is randomly set between 0.6 and 0.8. These values are
obtained via numerical simulations by assuming the conditions
explained in Sec. II.A. This traffic volume is set for both the evalu-
ation process and the data generation process for NNdevelopment. In
evaluation, simulations were conducted 100 times, and the average is
investigated.
In the simulation, first, the PTOT/PLDT are randomly distributed

for 3 h; then, the simulation is conducted until all departure and
arrival aircraft take off or land. The optimization of runway assign-
ment of each arrival aircraft is conducted every 10 min, and the
runway decision is made 30 min before the ELDT. The time window
for the optimization is set for the next 45 min here, and so the landing
runway is optimized for arrival aircraft where the ELDT is between
t� 30 and t� 45 min. The runway that is actually assigned is the
one obtained in the latest optimization process.
Next, Table 5 shows the parameters of simulated annealing. As for

the number of iterations, a maximum of 24 aircraft landing runways
are optimized in the single optimization, whichmeans that all combi-
nations (224) cannot be calculated. Therefore, it is beneficial to use
simulated annealing for optimization. The solution hardly changes,
even if the number of iterations is set 10 times larger (2560); there-
fore, 256 iterations are used in this research. The authors also tried
other heuristics (tabu search), but the simulated annealing worked
better; so, the simulated annealing is chosen here. If the number of
possible combinations is less than 256, the objective functions of all
possible combinations are calculated and the best one is chosen,
which translates into a deterministic method.

Table 3 Several cases of data preparation

Parameters Case 1 Case 2 Case 3

Number of original data 30,000 300,000 3,000,000
Data augmentation 49 times 9 times None
Total number of data including
augmentation

1,500,000 3,000,000 3,000,000

Table 4 Traffic volumes in each calculation

Parameters Values

Total arrivals per hour 30–40
Total departures per hour 30–40
Nominal ratio of arrival to runway A 0.6–0.8
Nominal ratio of departure from runway C 0.25–0.45
Total number of aircraft 180–240

Table 5 Parameters of
simulated annealing

Parameters Values

Number of iterations 256
Initial temperature 15,000
Terminal temperature 7.5
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The computational time is also a key factor in the real-world
implementation. Compared to the simulation-based method, the
NN output is much slower, whichmeans that the number of iterations
in the optimization is also limited. In the authors’ environment (CPU
with core i9-9900K), it takes about 15 ms to produce a single NN
output; so, 256 iterations take about 4 s, which is sufficiently fast.

B. Simulation-Based Method to Calculate the Objective Function

To proceed with the optimization process, the objective function
must be calculated. In this research, the authors propose to calculate it
by a NN. However, the simulation method is also used here as a
benchmark. To calculate the objective function, the simulation
method developed in Sec. II.A is used but no uncertainty is consid-
ered, i.e., the simulation runs by assuming that

PLDTi � ELDTi ∀ i ∈ A;

PTOTi � ETOTi ∀ i ∈ D

and u � 0 s for given conditions. This simulation method does not
consider the uncertainty for runway balancing because the uncer-
tainty is unknown when assigning the runway to each arrival aircraft.
However, the simulation considers the uncertainty in the calculation
of actual delay for the evaluation purposes. This discrepancy can
cause inappropriate assignment of arrival runway for each aircraft. In
the following, the case where the objective function is calculated by
the simulationwithout considering uncertainty is denoted by the SIM
method. The proposed NN-based method is denoted by the NN
method.

C. Simulation Flow

This subsection discusses the simulation flow of the current
research. The baseline simulation is called the “evaluation simula-
tion,” as indicated in the following. After the initialization, calcula-
tions (updates) are conducted every 10 min. At each time step, the
ELDT is updated randomly; but, the ETOT is updated only once
when considering the actual data observation. The landing runway is
optimized as explained before by either the NN method or the SIM
method. The separation Sij is also updated when needed. First, the
landing time is determined because landing aircraft are given priority.
After that, the takeoff time is determined. This calculation is iterated
until the takeoff/landing times of all aircraft are determined.
The following is the evaluation simulation flow:

Initialization t ≔ t0; Sij;ETOTi;ELDTi

While t ≤ tend,

ELDTi is updated,

ETOTi is updated only if ΔT < 15 min,

Optimize δi by NN method or SIM method.

Sij is updated only if ri is changed after the last time step.

Find earliest ti ∀ i ∈ A�ti ≤ t� ordered by PLDTi.

Find earliest ti∀ i ∈ D�ti ≤ t� ordered by PTOTi.

t � t� 10 min.

The baseline simulation includes the optimization flow (optimize
δi), which is further explained here. Using the NN method, δi is
optimized by simulated annealing. The objective function in the
optimization is calculated by the NN, where the NN inputs come
from the ETOT/ELDT in the evaluation simulation. As for the SIM
method, δi is optimized by simulated annealing in the sameway as the
NN method. The objective function in the optimization is calculated
as shown in the following. This calculation is performed independ-
ently from the evaluation simulation. First, all data are copied from
the evaluation simulation. Second, ri is set based on decisionvariables.
Third, the future PLDT/PTOTare set to the ELDT/ETOTbecause only
the ELDT/ETOT data are available for optimization. The future Sij is
also recalculated by assuming no randomness because no information
about randomness is available. Finally, ti ∀ i ∈ A;D are determined;
and the objective function is calculated. The SIM method, in other

words, calculates ti by assuming the PLDT/PTOT are set to the
estimation and no randomness of separation is considered.
The following is the objective function calculation in the SIM

method:

Initialization: copy all data from evaluation simulation.
Set ri based on the decision variables.

PLDTi � ELDTi if ti � ∅∀ i ∈ A.

PTOTi � ETOTi if ti � ∅∀ i ∈ D.

Sij is recalculated by assuming u � 0 and Eq. (1) is not applied if ti � ∅ or

tj � ∅.

Find earliest ti ∀ i ∈ A ordered by PLDTi.

Find earliest ti ∀ i ∈ D ordered by PTOTi.

Calculate objective function using ti ∀ i ∈ D;A.

In the evaluation simulation, several parameters are initialized first.
Therefore, the NN method and the SIM method can be compared if
the same initial parameters are used in the evaluation simulation.

V. Simulation Results

This section shows the simulation results using the proposed NN
method and the SIM method. To evaluate the uncertainty environ-
ment, two conditions (i.e., deterministic environment and uncertainty
environment) are considered. The uncertainty environment handles
the uncertainty in the simulation in which the types of uncertainties
were explained in the previous section. On the other hand, the
deterministic environment does not consider uncertainties. The fol-
lowing conditions are considered: ETOT = PTOT, ELDT = PLDT,
and u � 0. If the uncertainty is not considered, the SIM method can
perfectly estimate the objective function. Therefore, the SIMmethod
can be used as a benchmark to evaluate the proposed NN-based
method. NNs are developed in each environment, and the result is
evaluated independently.

A. NN Estimation Performance

First, the NN prediction performance is evaluated and shown in
Table 6. Thirty-thousand datasets are used for the evaluation, which
are not used by either training or validation. Overall, the root-mean-
squared error (RMSE) values improve as the number of training
datasets increases (from case 1 to case 3). Under the deterministic
environment, the SIMmethod becomes a perfect estimator, and so the
RMSE is equal to zero. Under the uncertainty environment, the
RMSE by the SIM method is the best for networks 1 and 2, and
the RMSE is better than most NN cases for networks 3 and 4. If the
performance of the runway balancing optimization depended on
RMSE values only, the SIM method would work better under the
uncertainty environment too. This is illustrated by the result shown in
Table 6.

B. Performance Evaluation of Individual Aircraft

To illustrate the obtained results, a single scenario is used and the
delay of each aircraft is shown. Figure 4 shows the delay of each
aircraft for two cases (no optimization, and optimized by the pro-
posedNNmethod;α � 0; case 3) under the uncertainty environment.

Table 6 RMSE of each NN

Estimator Network 1 Network 2 Network 3 Network 4

Deterministic environment

NN case 1 563 610 759 1016
NN case 2 431 499 671 795
NN case 3 429 490 595 739
SIM 0 0 0 0

Uncertainty environment

NN case 1 859 831 1155 1822
NN case 2 776 632 1053 1638
NN case 3 759 605 919 1546
SIM 756 383 983 1670
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The aircraft are ordered by the takeoff or landing time in each
category. In this scenario, without optimization, the delay on the C
arrival as well as the C andD departures is large, whereas the delay of
the A arrival is small. Therefore, in general, the arrival traffic should
bemoved from runwayC to runwayA. In theNNoptimization result,
four aircraft are moved from runway A to runway C, 13 aircraft are
moved from C to A, and the delay of 84 s per aircraft is reduced.
Next, the delay reduction of each aircraft is investigated. The

proposed method minimizes the total delay, but some aircraft may
experience larger delays, which is not preferred in the real world. A
single case (optimized by the proposed NNmethod; α � 0; case 3) is
used, and 100 different scenarios are calculated. Figure 5 shows the
delay reduction vs delay before the optimization of each aircraft. The
negative delay reduction means the delay increase, which cannot be
avoided in the runway balancing problem. However, in general, the
delay increase is observed only when the original delay is relatively
small. Themaximum delay increase is 695 s, but the original delay of
this aircraft is only 35 s. Here, only a sample result is shown, but a
similar trend is observed for other cases too. The minimization of the
total delay does not penalize any specific aircraft, and it tends to
reduce the delay of each aircraft evenly.

C. Evaluation Under Deterministic Environment

This section considers the deterministic environment first. Under
the deterministic environment, the SIM method should outperform
the proposed method because the SIM method is a perfect estimator.
NN inputs are represented as shown in Fig. 2, but the detailed
ETOT/ELDT information is lost; i.e., ELDT � 0 s and ELDT �
115 s are recognized as the same input. The key point is how the
degraded NN method compares to the SIM method.
For both SIM and NN methods, the optimization is conducted in

each parameter of α. The following 10 values of α are use:

�0; 60 s; 120 s; 180 s; 240 s; 360 s; 480 s; 600 s; 900 s; 1200 s�

As for the NNmethods, the performance is expected to depend on the
number of training data as well. To compare results, a total of 100
simulations using each method, but all under the same initial condi-
tions, are conducted by setting completely the same initial conditions
(traffic volume, andELDTandETOTof each aircraft in each scenario).

Figure 6 shows the average delay between NN and SIM methods.
In the no-optimization case (all arrival aircraft land at original run-
way), a 159.1 s delay per aircraft is observed. Using the SIMmethod
with α � 0 s, this delay is reduced to 106.4 s, which corresponds to a
33.2% reduction. When α is set larger, the delay saving becomes
small as the number of runway swaps becomes small. As expected,
when using the NN method, the delay savings is not as much as the
SIM method. However, the average delay becomes 115.9 s by the
NNmethod’s case 3, which achieves a 27.2% reduction as compared
to the no-optimization case. As for NN cases 1 and 2, the result
gets slightly worse than NN case 3, but no significant difference is
observed.
The SIM method assumes a perfect simulation environment,

which is not realistic in the real world. Therefore, we consider the
simulation parameter estimation error, and the impact of the result is
investigated. Here, the separation is assumed to be 5% larger; i.e., Sij
is set 1.05 times larger. The result is also shown in Fig. 6 and denoted
as “sep change.” Because the separation includes a certain degree of
prediction errors in the SIM method with the separation error, the
performance gets worse. It is interesting that the result is similar to
the NN method’s case 1. Because the NN method uses the data only,
theNNmethod does not affect the selection of simulation parameters.
Although the performance degradation depends on the accuracy of
the simulation parameters in the SIM method, the proposed NN
method has the potential to outperform the SIM method even under
a deterministic environment if the simulation parameter includes
the error.

D. Evaluation Under Uncertainty Environment

In this section, the same analysis is conducted under the uncer-
tainty environment. The difference with the assumptions set in the
previous section is the inclusion of uncertainty in the ELDT/ETOT
and Sij. Figure 7 shows the calculation result under the uncertainty
environment. A 183.7 s average delay is observed for the nonoptim-
ization case. This value is greater than that under the deterministic
environment because of the uncertain separation. The SIM method
can achieve the minimum delay of 144.9 s, and it can achieve a 38.8 s
delay reduction via optimization by the SIM method. On the other

Fig. 4 Delay of each aircraft for the sample scenario.

Fig. 5 Original delay before optimization vs delay reduction.

Fig. 6 Average delay among NN and SIMmethods under deterministic
environment.
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hand, as for the NN method’s case 3, the minimum delay is 139.6 s,

and a 44.1 s delay reduction is achieved, which is 13.7% greater than

the SIMmethod. Case 3 uses 3million original data, and cases 1 and 2

(with less original data) show the smaller delay reduction. However,

even for case 1, the minimum delay is 143.7 s, which is slightly

smaller than the SIM method. Even with 30,000 original datasets

(equivalent to one month of data), the proposed method outperforms

the SIM method.

Like the deterministic environment, the case where 5% longer

separation (sep change) is assumed is also considered; and the result

is shown in Fig. 7. The result of the SIM (sep change) becomes worse

than the SIM method; the average delay per aircraft increases by

about 5 s. The advantage of the proposed NN method is further

boosted when the simulation environment includes the uncertainty

of parameters.

One may argue that the difference of the results shown in Fig. 7 is

not statistically significant, and so further investigation is performed.

Because the average delay differs significantly among 100 scenarios,

it is inappropriate to show the error bars in Fig. 7. Instead, the

performance improvement of the NN method from the SIM method

is discussed. Here, the following two methods are considered: the

SIM method uses the setting of α � 0, and the NN method uses the

setting of α � 0 and case 3. Figure 8 shows the delay of each method

for each scenario. The delays of the two methods obviously show a

similar trend because the best possible reduction of the delay depends

on the scenario. The delay of the NN method is, in general, smaller

than that of the SIM method, but this changes sometimes. This is

because an “accurate” estimation sometimes works worse due to the

uncertainty trend of each scenario. Therefore, the delay reduction of

the NN method relative to the SIM method is calculated; the average

is 5.37, and the SD is 10.32. The 95% confidence interval of the

average delay reduction is calculated by the following equation:

average	 1.96SD���
n

p (9)

Note that

1.96SD���
n

p � 2.10 s

So, the 95% confidence interval is calculated as [3.27, 7.47], which
means the average delay reduction of the NN method is statistically
significant. The confidence interval is calculated with any combina-
tion of the delay, but the value does not change significantly. There-
fore, it is concluded that about a 2 s delay difference in Fig. 7 is
statistically significant.
In Sec. V.B, theRMSEof the SIMmethod is, in general, better than

that of the NN methods, but the optimization result by the NN
methods tends to be better; so, this reason is considered here. Figure 9
shows the estimation result of four outputs (runwayA arrival, runway
C arrival, runway C departure, and runway D departure) for three NN
cases and the SIM method under the deterministic environment. In
this evaluation, about 30,000 data samples (which are used for neither
training nor for validation) are used. The bar charts indicate the
observed data ratios in each estimated delay range. In general, the
estimation accuracy deteriorates as the estimated delay increases,
which is easily understandable. Also, among the three NN cases,
case 3 shows the best performance and case 1 shows theworst. This is
also reasonable because of the original data volume used for NN
training.
As for arrival runway A, all NN cases and the SIM method show

similar results; so, no difference is found by using either of the
estimators. Although the NN potentially improves the estimation
accuracy under uncertainty, the NN input disregards the detailed
information of the traffic, which worsens the estimation accuracy.
Both effects seem to be similar for runway A, and the NN cases and
the SIMmethod show similar accuracy. On the other hand, for arrival
runwayC, the SIMmethod estimates the flight delaymost accurately.
Compared to runwayA, the landing separation is large (240 s) but the
uncertainty (SD � 15 s) is the same, and the estimation accuracy is
improved under uncertainty. The NN input information loss is the
same; so, in total, the NN estimates the delay less accurately than the
SIM method. Because arrival aircraft are always given priority, as
mentioned before, the departure traffic does not affect the arrival
traffic at all. In addition, the accuracy of the ELDT is better than that
of the ETOT, and so it is difficult for theNNmethod to outperform the
SIM method.
Departure traffic is affected by arrival traffic as well, and the

accuracy of the ETOT is worse than that of the ELDT; so, the
departure traffic is highly affected by the uncertainty.As for departure
runway C, the NN estimation outperforms the SIMmethod when the
estimated total delay is less than 40 min. However, the SIM method
estimates better when the estimated total delay is more than 40 min.

Fig. 7 Average delay among NN and SIM methods under uncertainty
environment.

Fig. 8 Total delay with SIM method and NN method in each scenario.
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This is due to the number of available data. About 70% of the training
data fall into the estimated delay being less than 40 min, and so the
estimation accuracy is good within this range. However, as the
estimated delay increases, the data available decrease, and the relative
accuracy worsens. As for departure runway D, the NN estimation is
much better than the SIM method when the estimated total delay is
less than 120 min, where many training data are available.
According to this data analysis, the NNmethod of estimation is not

better than the SIM method for arrival traffic because of the smaller
arrival traffic uncertainty. As for departure traffic, the NN method
estimation excels over the SIM method when sufficient data are
available for training. On the other hand, NN case 1 still outperforms
the SIM method for runway balancing optimization according to
Fig. 7, even though the delay estimation accuracy of the NN method

is sometimesworse than that of theSIMmethod.Thepossible reason is
that the NN estimation is better when sufficient training data are
available. This training data are obtainedbased on the daily simulation,
and so the optimization process encounters such data very frequently.
Even if the NN estimation accuracy is bad when the estimated delay is
large, the optimization process does not encounter such data so often,
and so it makes a relatively small impact on the optimization.
To combine the advantages of both methods, the departure traffic

delay should be estimated by the proposedNNmethod, and the delay
estimation of the arrival traffic is given by the SIM method, which
may maximize the benefit. Figure 10 shows the calculation results
when the delay of the departure traffic is estimated by the proposed
NN method (case 1) and that of the arrival traffic is estimated by the
SIM method. Although case 1 uses only 30,000 data (one month of
data), the optimization result becomes close to case 3. This will be the
best use of the proposed NN method when considering the optimi-
zation performance and data availability.

E. Summary of Results and Advantages of the Proposed Method

In summary, the proposed method can reduce the delay, especially
under the uncertainty environment. Using 300,000 datasets (corre-
sponding to one yearly dataset), the proposed method outperforms
the SIM method. When the SIM method is combined with the
proposedmethod, the proposedmethod outperforms the SIMmethod
with 30,000 datasets only (corresponding to one monthly dataset).
In addition, the proposed method does not require a simulation

model to optimize the runway balancing problem, and so the optimi-
zation can be simplified. The SIM method uses a simulation environ-
ment, and it is often difficult to develop an accurate simulation model.
When the SIM method is assumed to include the uncertainty of
separation, the benefit of the proposed method is further boosted.
This paper assumes the runway operation at Tokyo International

Airport only, but the key point is to develop delay prediction NN
models on each runway. Therefore, the proposed method will be
applicable as long as proper inputs are selected for NN development.
The proposedmethod is expected to be used for runway balancing at

the terminal airspace of the considered airport. All information needed
for optimization can be obtained at the current en route and terminal
ATC system in Japan. Only the minimum one-month operational data
are needed, and so even if the operational environment is changed, the
rapid implementation is possible to introduce the runway balancing
optimization scheme to the changed environment. Also, the opera-
tional environment may change with time, but a continuous update is
also possible by the proposed method. The proposed work will be
effective to optimize the runway balancing in real time.

VI. Conclusions

This paper proposed a new scheme to optimize a runway balancing
problem using a NN. The NN modeling approach does not require
any explicit operational models and simulations in theory, and it

Fig. 9 Delay accuracy by NN methods and SIM method under uncer-
tainty: runway A arrival, runway C arrival, runway C departure, and
runway D departure (from the top).

Fig. 10 Average delay under uncertainty environment when estimation
of departures is given by NN and estimation of arrivals is given by SIM
method.
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relies on actual operational data only. This means that simulation
parameters such as departure/arrival separations and their interactive
effect are not required because these characteristics are expected to
be modeled by the NN. This paper showed the effectiveness of the
proposed method via simulations. The uncertainty effect was mod-
eled appropriately by the NN, and the solution of runway balancing
was improved. However, because less training data are used, less
delay reduction was observed. According to the NN estimation
performance, departure delay was relatively better estimated by the
NN than arrival delay. When only the departure delay was estimated
by the NN and the arrival delay was estimated by the SIM method,
better performance was expected with less training data. This paper
suggests that the proposed NN approach could outperform the sim-
ulation-based method by estimating the objective function in the
runway balancing optimization process, and it shows a bigger impact
under a larger uncertainty environment.
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