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Extended aircraft arrival management under uncertainty has been previously studied in the
literature using two-stage stochastic optimization in the case of a single initial approach fix
(IAF) and a single runway. In this paper, we propose an extension taking into account: (i)
multiple IAFs feeding the landing runway, (ii) aircraft having different initial flight status (at-
departure-gate or airborne) when making first-stage decisions, and (iii) a time-deviation cost
function to minimize that is based on reference values depending on aircraft type and flight
phase. Two problem variants are modeled according to the degree of freedom on IAF assignment
to aircraft. In the first variant, IAFs are to be assigned to aircraft, as a first-stage decision. In the
second variant, IAF assignment is fixed and considered as a problem input. Numerical results
on realistic instances from Paris Charles-de-Gaulle airport confirm the benefit of taking into
account uncertainty through two-stage stochastic programming, and through re-assignment of
IAFs.

. Introduction

AMAN (for Arrival MANager) is a crucial decision-support system for European air traffic controllers (ATCOs) to sequence and
chedule, safely and efficiently, aircraft arrivals on busy airports (Hasevoets and Conroy, 2010). AMAN’s current operational horizon
s around 100–200 nautical miles (NM) from the destination airport, i.e., 30–45 min before landing. In the near future, AMAN
s foreseen to be upgraded in order to capture aircraft at a distance up to 500 NM, i.e., 2–3 h before landing (Tielrooij et al.,
015). Extending AMAN’s horizon is expected to allow ATCOs to start sequencing and scheduling earlier, when aircraft are still
n their cruise phase or at their departure gate, which promotes more eco-efficient aircraft trajectories and hopefully improves
irport capacity and reduces delays. However, at this extended horizon, uncertainty is significant when predicting landing times
nd expected times to start the approach phase (which corresponds to the flight phase where aircraft are around 40 NM far from the
anding runway, at an altitude of 3000 ft, and getting ready for landing).

The classical problem of sequencing and scheduling aircraft landings in a relatively short operational horizon has been widely
tudied in the literature, from the 1970’s (Dear, 1976; Psaraftis, 1978). Most of the literature focuses on the deterministic case,
here all data is assumed to be known with certainty (Balakrishnan and Chandran, 2010; Beasley et al., 2000). For recent surveys,

he reader is redirected to Bennell et al. (2011), Ikli et al. (2021). A recent review on stochastic modeling applications in air traffic

∗ Corresponding author.
E-mail address: ahmed.khassiba@enac.fr (A. Khassiba).

1 Research & Development Engineer, Ph.D.



e

o
r
t

t
t
t
s
d
t
t
a
t
t
t
t

r
t
w
d
a
n
u
m
q
t
p
t

Fig. 1. Simplified scheme of IAFs surrounding CDG’s runways (not to scale).

management can be found in Shone et al. (2021). Different optimization paradigms, such as two-stage stochastic programming (Birge
and Louveaux, 2011), have been successfully applied to air traffic flow management problems (Corolli et al., 2015), and specifically
to the aircraft scheduling problem, under uncertain arrival times, with short operational horizon (Liu et al., 2018; Sölveling and
Clarke, 2014; Sölveling et al., 2011). Extensions to various types of disturbances and uncertainties have also been addressed in a
number of papers related to aircraft scheduling in the terminal maneuvring area (TMA) (Huo et al., 2021; Samà et al., 2014; Scala
t al., 2021).

The problem of extended aircraft arrival management under uncertainty has been introduced by Khassiba et al. (2019) as the
ptimization problem consisting in pre-scheduling aircraft arrivals, 2–3 h before their planned landing times, on a reference air-traffic
oute point in the terminal area, called the initial approach fix (IAF), so as to prepare for more efficient inbound air traffic handling,
hrough the terminal area up until landing. The operational setup in Khassiba et al. (2019) involves a set of aircraft arrivals, planning

to fly over the same IAF and to land on the same runway. In Khassiba et al. (2020), the authors formulate this problem using a
wo-stage stochastic mixed-integer programming model with chance constraints. Their first-stage optimization problem determines
arget times over the IAF together with the target sequence in which aircraft should arrive at the IAF, that they refer to as the
arget IAF sequence. Their first-stage objective is to minimize the ‘‘landing sequence length’’, expressed as the sum of final-approach
eparations between all pairs of successive aircraft in the landing sequence. Since, for each pair, the final approach separation
epends on the aircraft wake-turbulence categories, different landing sequences yield different utilization times of the runway. For
hat reason, minimizing the landing sequence length is used in Khassiba et al. (2020) as a surrogate for maximizing the runway
hroughput. While target IAF times are determined in the first stage (together with the target IAF sequence), actual times over the IAF
re assumed to deviate randomly from these target times following known probability distributions. In the second stage, actual IAF
imes are assumed to be revealed, hence landing times are determined in view of minimizing a time-deviation cost function. Remark
hat the target landing sequence is assumed to be the same as the target IAF sequence. Compared to their deterministic counterparts,
he stochastic solutions obtained in Khassiba et al. (2019, 2020) are shown to be more robust to the uncertainty occurring within
he 2–3 h before landing.

In this paper, we propose an extension of the two-stage stochastic optimization approach of Khassiba et al. (2020) to a more
ealistic operational context. First, we consider that there are multiple IAFs feeding the same runway. Second, additionally to wake-
urbulence categories, we take into account the aircraft types and the flight status (e.g., still at departure gate or already airborne)
hen making first-stage decisions. Third, we optimize a single criterion: the total delay cost, based on delay-cost reference values,
etailed by aircraft type and flight phase, reported in the literature. The following remarks motivate these choices. First, in major
irports, there are usually several IAFs that feed the landing runway(s). For example, in Paris Charles-de-Gaulle airport (CDG), the
orthern landing runway 27R is mainly fed by two IAFs, named MOPAR and LORNI, while the southern landing runway 26L is
sually fed by two other IAFs, named OKIPA and BALOX (see Fig. 1). Second, the integration of several aircraft features when
aking first-stage decisions, is likely to lead to a finer definition of the problem and to a better assessment of the arrival schedule

uality. For example, an aircraft that is still at the departure gate when making first-stage decisions can be delayed on ground. In
erms of fuel consumption, ground delay with engines turned off is much more efficient than delay during en-route and approach
hases. Hence, flights that have not taken off yet, at the moment of making first-stage decisions, have a cost-efficient delay option
hat airborne flights do not have. Third, in the widely-used delay-cost reference-values report (Cook and Tanner, 2015), the delay

cost is reported as a function of the length of the delay for fifteen commercial aircraft types and four flight phases. Using these
reference values, piecewise-linear convex increasing delay cost functions can be obtained. This opens the opportunity to optimize a
single consistent criterion, the total delay cost, that takes into account several realistic features of the considered flights. Also, the
interpretation of the objective function value and of the value of the stochastic solution is more straightforward than for the studied
criteria in Khassiba et al. (2019, 2020) .

We address the above-mentioned points as follows. As regards IAFs, we consider several IAFs feeding a single landing runway.
Usually, IAFs are pre-assigned to aircraft arrivals according to their geographical origin and to their aircraft propulsion type (e.g.,
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see Meyn and Erzberger (2005, Figure 1)). Hence, in our study, we assume that every flight is planned to fly over a given IAF, known
in advance, referred to as the initial IAF. From an operational viewpoint, changing the IAF of a flight usually follows a change of
landing runway for this flight, since each runway is fed by a specific subset of IAFs. For instance, consider an aircraft arriving at
CDG from the north-west, planning to land on runway 27R, and to cross IAF MOPAR beforehand. If this aircraft is re-scheduled to
land on the southern runway 26L (regardless the operational reason), then its IAF is likely to be updated to the south-western IAF,
BALOX. An aircraft can also be asked to change its IAF in case of adverse weather affecting approach procedures from its initial
IAF. Finally, an aircraft can be assigned to a different IAF in order to distribute better aircraft arrival flows and to avoid holding
delays. Such an operational procedure is called fix balancing (Kistan et al., 2017). In this study, we propose two problem variants
corresponding to this multi-IAF setup. In the first variant, the decision maker has to assign an IAF to each aircraft in the first stage,
possibly different from its initial IAF. In the second variant, IAF assignment is considered as an input, i.e., each aircraft must fly
over its initial IAF. The second-stage problem is the same for both variants, and seeks to schedule aircraft, assumed to be close to
the considered IAFs, in order to land on the (unique) runway. Moreover, we consider that at the time of the first-stage decisions
(typically 2-3 h before planned landing), each aircraft can be in one of the two status: either on-ground or airborne. On-ground
aircraft are at their departure gate with engines turned off. Airborne aircraft have already taken off, and are assumed to be in their
cruise phase at the time of first-stage decisions. In the first stage, on-ground and airborne aircraft are to be given target IAF times, as
in Khassiba et al. (2019, 2020). In this paper, an additional first-stage decision is to be made for each on-ground aircraft: determining

target take-off time. We assume that target take-off times can be met with certainty. Our objective function is the expectation of
he total time-deviation cost, to be minimized, where the time-deviation cost depends on both the aircraft type (A320, B763, etc.)
nd the flight phase (at-departure-gate, en-route, or approach). Reference values of delay and advance cost, for each aircraft type
t each flight phase, are based on Cook and Tanner (2015).

The remainder of the paper is organized as follows. In Section 2, the problem statement is given. Section 3 presents the two-stage
tochastic programming model of the first variant (IAF assignment as a first-stage decision). Section 4 derives the mathematical
odel of the second variant (IAF assignment as a problem input). A preliminary computational study is reported in Section 6.
oncluding remarks and perspectives are given in Section 7.

. Problem statement

We consider 𝑛 aircraft planning to land on the same runway, while there are 𝑚 < 𝑛 available IAFs over which any aircraft can
ly before landing. Initially, each aircraft is assigned to one IAF, called its initial IAF, and assumed to be the IAF closest to each
ircraft’s planned route. We assume that these aircraft are considered at the same instant, 2–3 h before their planned landing times.
t this time horizon, the considered aircraft are partitioned into two subsets, depending on their flight status. There are 𝑛𝐺 aircraft

hat are still in their departure gate with engines turned off, called on-ground aircraft; and 𝑛𝐴 aircraft that have already taken off,
alled airborne aircraft, and assumed to be in their cruise phase. We seek to schedule the 𝑛 aircraft on the 𝑚 available IAFs, so as to
ptimize the expectation of the delay-cost function, assuming that actual arrival times to IAFs cannot be predicted with certainty. In
his context, scheduling consists of the following decisions. Each aircraft has to be assigned to exactly one IAF (possibly different
rom its initial IAF, for the more general problem variant) while all aircraft will land on the same (unique) runway. For each
n-ground aircraft, a target take-off time is to be determined. Pilots and air traffic controllers are assumed to be able to meet these
arget times with high accuracy. In other words, we consider that target take-off times are not affected by uncertainty. Moreover,
or each aircraft, regardless its flight status, a target IAF time is to be computed. Finally, the order in which aircraft should arrive
o their assigned IAF, forming what we shall call target IAF sequences, has to be determined, as well as a target landing sequence. An
perational setup with 𝑚 = 2 IAFs and a single landing runway is illustrated in Fig. 2.

Let  = {1, 2,… , 𝑛} denote the set of aircraft indices. Let 𝐺, the set of on-ground aircraft indices, and 𝐴, the set of airborne
ircraft indices, be such that:

 = 𝐺 ∪𝐴 and 𝐺 ∩𝐴 = ∅ (1)

Let  = {1, 2,… , 𝑚} denote the set of IAF indices. Each aircraft 𝑎 ∈  has a planned landing time 𝑃𝐿
𝑎 known in advance, where ‘‘𝐿’’

tands for landing. Let 𝑖∗𝑎 ∈  denote the index of the initial IAF for aircraft 𝑎 ∈ . To simplify the notation, and as long as there is
o ambiguity, we shall drop the aircraft subscript 𝑎 from the IAF index, keeping solely the star superscript (∗) to refer to the initial
AF for the considered aircraft. For each IAF 𝑖 ∈  and each aircraft 𝑎 ∈ , we are provided with an unimpeded flight time 𝑉 𝑖

𝑎 : it is
he time required for aircraft 𝑎 to fly from IAF 𝑖 to touch down on the landing runway, as if it were alone in the terminal area. In
he following, we present the input data notation for each aircraft according to its flight status: airborne or on-ground.

irborne aircraft. For each airborne aircraft 𝑎 ∈ 𝐴, we can compute a planned IAF time at its initial IAF 𝑖∗ ∈ , denoted 𝑃 𝑖∗
𝑎 , through

irect reverse planning as follows:

𝑃 𝑖∗
𝑎 = 𝑃𝐿

𝑎 − 𝑉 𝑖∗
𝑎 (2)

ince the initial IAF for a given aircraft is assumed to be the IAF closest to its planned route, deciding to reroute an aircraft 𝑎 ∈ 𝐴

rom its initial IAF 𝑖∗ ∈  to a different IAF 𝑗 ∈ ∖ {𝑖∗} incur a positive rerouting delay noted 𝑟𝑖∗𝑗 > 0. We set 𝑟𝑖𝑖 = 0. Hence, for an
ircraft 𝑎 ∈ 𝐴, the planned IAF time at any IAF 𝑗 ∈ , denoted 𝑃 𝑗

𝑎 , can be expressed as:
𝑗 𝑖∗ 𝑖∗𝑗
𝑃𝑎 = 𝑃𝑎 + 𝑟 (3)
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Fig. 2. Operational environment with two IAFs (not to scale).

n-ground aircraft. For each on-ground aircraft 𝑎 ∈ 𝐺, we are provided with a planned take-off time, 𝑃 TOT
𝑎 , and an unimpeded

light time from the origin airport of 𝑎 to its initial IAF 𝑖∗ ∈ , that we denote 𝑉 𝑂
𝑎 . While an aircraft is still at its departure gate,

ts take-off time can be delayed up to a given amount of time, denoted 𝑑
𝐺

> 0. The target take-off time for an on-ground aircraft
𝑎 ∈ 𝐺 must lie within the time window

[

𝑃 TOT
𝑎 , 𝑃 TOT

𝑎 + 𝑑
𝐺]

. In practice, a departure slot (or Calculated Take-Off Time — CTOT) is
defined as an interval including the departure time and a tolerance of 15-minute length. We assume that the target take-off time
in this study can be chosen within an interval of a similar length. For the sake of simplification, we assume that there are no local
(origin airport) constraints on the departure time of on-ground aircraft.

Note that, as soon as the target take-off time of an on-ground aircraft 𝑎 ∈ 𝐺 is decided, we can compute the unconstrained IAF
time, 𝑈𝑂→𝑖∗

𝑎 , at which 𝑎 would reach its initial IAF 𝑖∗ ∈ , as the sum of the target take-off time, and 𝑉 𝑂
𝑎 the unimpeded flight time

from the origin airport to the initial IAF. The unconstrained time at which 𝑎 reaches any other IAF 𝑗 ∈ ∖ {𝑖∗}, denoted 𝑈𝑂→𝑗
𝑎 , is

obtained by adding the rerouting delay, 𝑟𝑖∗𝑗 > 0, to 𝑈𝑂→𝑖∗
𝑎 .

During the en-route flight phase, with 2–3 h look-ahead time, it is possible to expedite or delay an aircraft 𝑎 ∈  by a given
amount of time, mainly through speed change. Let us denote 𝑑𝑅𝑎 and 𝑑

𝑅
𝑎 , respectively, the maximal possible time saving, and the

aximal possible delay for aircraft 𝑎 during its en-route phase. This allows us to compute an earliest, and a latest IAF time at each
AF 𝑖 ∈  (either its initial IAF, or any other one), denoted 𝐸𝑖

𝑎, and 𝐿𝑖
𝑎 respectively, as follows:

𝐸𝑖
𝑎 = 𝑃 𝑖

𝑎 − 𝑑𝑅𝑎 (4)

𝐿𝑖
𝑎 = 𝑃 𝑖

𝑎 + 𝑑
𝑅
𝑎 (5)

Note that for an airborne aircraft 𝑎 ∈ 𝐴, the values of 𝐸𝑖
𝑎 and 𝐿𝑖

𝑎 are computed directly from known input data, while for an
on-ground aircraft 𝑎′ ∈ 𝐺, 𝐸𝑖

𝑎′ and 𝐿𝑖
𝑎′ depend on the decision variable: the target take-off time.

For an aircraft 𝑎 ∈  and its assigned IAF 𝑖 ∈ , let
[

𝐸𝑖
𝑎, 𝐿

𝑖
𝑎
]

denote the IAF time window, in which the target IAF time for 𝑎 must
lie (regardless its initial flight status). Hence, each aircraft has 𝑚 IAF time windows, one for each possible IAF. After assigning each
aircraft to one IAF, a target IAF sequence is to be found for each IAF. For any pair of successive aircraft assigned to the same IAF,

minimal distance separation must be satisfied. In practice, this IAF distance separation is independent of the aircraft pair and is
dentical for all IAFs. For modeling and optimization purposes, we convert this minimal distance separation into a minimal time
eparation, that we denote 𝑆. Assuming a typical aircraft speed of 250 kts, and a minimal distance separation at IAF of 5 NM, 𝑆

can be set to 72 s (Khassiba et al., 2019). Finally, a target landing sequence is to be found as the merging of the different target IAF
sequences.

When flying from 2–3 h to 30–45 min before landing, aircraft are subject to unpredicted phenomena (e.g., bad weather, en-route
control actions, etc) affecting their ability to reach their IAF at the prescribed target time, with high accuracy. We assume that
their actual IAF times deviate from their target times by random amounts of time (advance or delay) according to known probability
distributions. In a realistic setting, uncertainty on IAF times decreases continuously over time, as aircraft get closer to IAFs. Consider
an ‘‘early’’ aircraft very close to the terminal area, and assume that its actual IAF time is known (or, at least, can be predicted) with
certainty. At the same time, other aircraft can still be very far from IAFs, and their actual times are still highly uncertain. However,
such far aircraft do not have any impact on the scheduling of the ‘‘early’’ aircraft. In the current problem statement, we disregard
such situations by assuming a set of aircraft in the first stage having their IAF times relatively close to each other. Hence, when the

‘‘earliest’’ aircraft becomes very close to its IAF, the ‘‘latest’’ aircraft is less than 30-min far from its IAF.
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Table 1
Final-approach separations (in seconds) according to wake-turbulence categories from the
International Civil Aviation Organization (ICAO) (Frankovich, 2012).

Following aircraft

H M L

Leading aircraft
H 96 157 207
M 60 69 123
L 60 69 82

When all considered aircraft are within this short time horizon (corresponding to 30–45 min from landing), ground-based
rajectory prediction from AMAN is assumed very accurate, and all actual IAF times can be assumed to be known with certainty. In
his short time horizon corresponding to AMAN’s operational horizon, approach ATCOs have to schedule aircraft from the 𝑚 different

IAFs to land on the same runway. This corresponds to a second decision stage where a target landing time is to be determined for
each aircraft, while the target landing sequence has already been determined at the larger time horizon of 2–3 h.

In the case of congestion in the terminal area, ATCOs may resort to holding stacks near IAFs, in order to further delay some
ircraft, before landing. Holding stacks are air-route deviation structures allowing controllers to delay aircraft by keeping them
lying circularly in confined areas, usually neighboring IAFs. However, the delay that can be absorbed by holding stacks and other
ontrol techniques (such as path stretching) in the terminal area is bounded above by a given amount of time, noted 𝑑

𝑇
𝑎 for aircraft

∈ . Also, there is room for expediting an aircraft 𝑎 ∈  (e.g., through path shortening) within the terminal area, which may save
ome amount of time, not exceeding a given limit, denoted 𝑑𝑇𝑎 , with respect to the unimpeded flight time, 𝑉 𝑖

𝑎 . Given these maximal
possible time saving and delay in the terminal area, a minimal and a maximal flight times, denoted 𝑉 𝑖

𝑎 and 𝑉
𝑖
𝑎 respectively, can be

defined for every aircraft 𝑎 ∈  and every IAF 𝑖 ∈ , as follows:

𝑉 𝑖
𝑎 = 𝑉 𝑖

𝑎 − 𝑑𝑇𝑎 (6)

𝑉
𝑖
𝑎 = 𝑉 𝑖

𝑎 + 𝑑
𝑇
𝑎 (7)

Moreover, for any pair of aircraft landing successively, a minimal distance separation must be satisfied during the final-approach
phase. Final-approach separations depend on the wake-turbulence categories of the pair of considered aircraft, as defined by the
International Civil Aviation Organization (ICAO): Heavy (H), Medium (M), and Light (L). For modeling and optimization purposes,
we convert these minimal distance separations into minimal time separations (see Table 1 for numerical values), that we denote 𝑆𝑎𝑏,
for an ordered pair of aircraft (𝑎, 𝑏) ∈  ×, such that 𝑎 ≠ 𝑏.

In the following, we formulate the extended aircraft arrival management problem with multiple IAFs, using the framework of
two-stage stochastic programming. The first-stage time frame starts from 2–3 h before landing, when on-ground aircraft are to be
scheduled for take-off and all aircraft are to be scheduled on the available IAFs. The second-stage time frame starts from 30–45 min
before landing, when all aircraft are close to their IAF. The objective function to minimize is the total time-deviation cost over
all aircraft and through the different flight phases. Reference values of delay cost in air transportation are specified in Cook and
Tanner (2015), by aircraft type and flight phase. Advance cost can be estimated based on observations in Lee (2008). Our problem
tatement covers three flight phases for on-ground aircraft (at-departure-gate, en-route, and approach) and two flight phases for
irborne aircraft (en-route and approach). The at-departure-gate delay involves no uncertainty, since on-ground aircraft are assumed
o take off exactly at their target times. Hence, at-departure-gate delay cost is to be minimized in the first stage. For en-route and
pproach delay costs, they are to be minimized in the second stage, since they depend on the random actual IAF times.

We derive two variants from the extended aircraft arrival management problem with multiple IAFs, introduced above. Both
ariants follow the same two-stage partition, but they differ in terms of first-stage decisions. The first variant includes IAF assignment
o aircraft as an additional first-stage decision, while in the second variant, IAF assignment is given and fixed: each aircraft will
ead to its initial IAF. The two-stage stochastic programming model of each variant is detailed in the next two sections.

. First-variant model: IAF assignment as a (first-stage) decision

The general statement of the problem of extended aircraft arrival management problem with multiple IAFs, presented in
ection 2, assumes that although each aircraft has an initial IAF, any aircraft can still be rerouted to a different IAF. We propose to
ormulate this general case, under uncertainty on IAF times, with a two-stage stochastic programming model, inspired by the model
roposed in Khassiba et al. (2020). All notations are summarized in Table 2. The main components of the mathematical model of
ach stage (decision variables, operational constraints, and objective function) are described in the next two subsections. The full
wo-stage stochastic programming model is summarized in Section 3.3.

.1. First-stage problem

In the first stage, we determine a target take-off time for each on-ground aircraft 𝑎 ∈ 𝐺. We assign each aircraft 𝑎 ∈ 
on-ground or airborne) to one IAF 𝑖 ∈ , and we determine a target IAF time for each aircraft. Also, we find a target sequence on
ach IAF. We assume that the target landing sequence is also determined in the first stage, and must be coherent with the merging



Table 2
Notation summary.

Notation Description

Sets:
 Index set of aircraft
𝐺 Index set of on-ground aircraft
𝐴 Index set of airborne aircraft
 Index set of IAFs
𝑖∗ Index set of aircraft whose initial IAF is 𝑖∗ ∈ 
𝑖∗ ,𝐺 Index set of on-ground aircraft whose initial IAF is 𝑖∗ ∈ 
𝑖∗ ,𝐴 Index set of airborne aircraft whose initial IAF is 𝑖∗ ∈ 

Parameters:
𝑃 𝐿
𝑎 Planned landing time of aircraft 𝑎 ∈ 

𝑃 𝑖∗
𝑎 Planned IAF time of aircraft 𝑎 ∈ 𝐴 at its initial IAF 𝑖∗

𝑃 𝑗
𝑎 Planned IAF time of aircraft 𝑎 at an IAF 𝑗

𝑃 TOT
𝑎 Planned take-off time of aircraft 𝑎 ∈ 𝐺

𝑈𝑂→𝑖∗
𝑎 Unconstrained IAF time at which 𝑎 ∈ 𝐺 would reach its initial IAF 𝑖∗

𝑈𝑂→𝑗
𝑎 Unconstrained IAF time at which 𝑎 ∈ 𝐺 would reach IAF 𝑗

𝐸𝑖
𝑎 Earliest time for aircraft 𝑎 to reach IAF 𝑖

𝐿𝑖
𝑎 Latest time for aircraft 𝑎 to reach IAF 𝑖

𝑟𝑖𝑗 Delay due to rerouting from IAF 𝑖 to IAF 𝑗

𝑉 𝑂
𝑎 Unimpeded flight time from the origin airport of aircraft 𝑎 ∈ 𝐺

𝑉 𝑖
𝑎 Unimpeded time for aircraft 𝑎 to fly from IAF 𝑖 to the landing runway

to its initial IAF 𝑖∗

𝑉 𝑖
𝑎 Minimal time for aircraft 𝑎 to fly from IAF 𝑖 to the landing runway

𝑉
𝑖
𝑎 Maximal time for aircraft 𝑎 to fly from IAF 𝑖 to the landing runway

𝑑
𝐺

Maximum delay on-ground
𝑑𝑅
𝑎 Maximal possible time saving for aircraft 𝑎 during en-route phase

𝑑
𝑅
𝑎 Maximal possible delay for aircraft 𝑎 during en-route phase

𝑑𝑇
𝑎 Maximal possible time saving for aircraft 𝑎 during approach phase

𝑑
𝑇
𝑎 Maximal possible delay for aircraft 𝑎 during approach phase

𝑆 Minimal time separation between two consecutive aircraft at IAF
𝑆𝑎𝑏 Minimal final-approach time separation between leading aircraft 𝑎

and following aircraft 𝑏

𝝎𝒂 Random variable of IAF time deviation of aircraft 𝑎

𝜔𝑎 Realization of the random variable, IAF time deviation of aircraft 𝑎

𝑀𝑎𝑏 big-M constant enabling/disabling the separation constraint at IAFs
between aircraft 𝑎 and 𝑏

𝑀𝐿
𝑎𝑏 big-M constant enabling/disabling the separation constraint at the runway

between aircraft 𝑎 and 𝑏

Cost functions:
𝑓G
𝑎 Cost function of the time deviation at gate of aircraft 𝑎 ∈ 𝐺

𝑓R
𝑎 Cost function of the time deviation en route of aircraft 𝑎

𝑓T
𝑎 Cost function of the time deviation in approach of aircraft 𝑎

Decision variables:
∙ First stage:
𝑥𝑎 Target IAF time of aircraft 𝑎 ∈ 
𝑡𝑎 Target take-off time of aircraft 𝑎 ∈ 𝐺

𝛿𝑎𝑏 Sequencing variable of aircraft pair (𝑎, 𝑏) ∈  ×
𝜁𝑎,𝑖 Assignment variable of aircraft 𝑎 to IAF 𝑖

𝜙𝑎𝑏 Binary variable of aircraft pair (𝑎, 𝑏) ∈  ×,
equals 1 when both aircraft are assigned to the same IAF

∙ Second stage:
𝑦𝑎 Target landing time of aircraft 𝑎 ∈ 

of target sequences from all IAFs. In other words, aircraft assigned to the same IAF are not allowed to overtake each other while

flying from the IAF to the runway. For instance, two aircraft 𝑎 and 𝑏 scheduled to cross the IAF 𝑖 successively, such that 𝑎 is before
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𝑏, must land in the same relative order. However, a third aircraft 𝑐 scheduled to cross IAF 𝑗 ≠ 𝑖 can land in any position relatively
o 𝑎 and 𝑏 (i.e., 𝑐 can land before 𝑎 and 𝑏, or between 𝑎 and 𝑏, or after 𝑎 and 𝑏).

Let 𝜁𝑎𝑖 be a binary decision variable that assigns aircraft 𝑎 ∈  to IAF 𝑖 ∈ :

𝜁𝑎𝑖 =
{

1 if aircraft 𝑎 is assigned to IAF 𝑖
0 otherwise

To determine the target landing sequence of aircraft, we introduce a binary decision variable 𝛿𝑎𝑏 for each ordered pair of aircraft
𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏:

𝛿𝑎𝑏 =
{

1 if aircraft 𝑎 𝐥𝐚𝐧𝐝𝐬 𝐛𝐞𝐟𝐨𝐫𝐞 aircraft 𝑏
0 otherwise

ote that, for a pair of aircraft (𝑎, 𝑏) assigned to a same IAF, when the landing binary variable 𝛿𝑎𝑏 is equal to 1, then 𝑎 should cross
the IAF before 𝑏, so that the sequencing variable 𝛿𝑎𝑏 coherently expresses the relative order between 𝑎 and 𝑏 on the shared IAF, as
equired. In the case where 𝑎 and 𝑏 are not assigned to the same IAF, then 𝛿𝑎𝑏 is only meaningful for the landing sequence (of interest

in the second-stage problem). In comparison with the models proposed in Khassiba et al. (2019, 2020), where the sequencing binary
variables mean direct precedence between a pair of aircraft like in the classical model for the Traveling Salesman Problem (TSP), here
we define the sequencing variables as in scheduling theory, where direct precedence is not required. For instance, if 𝛿𝑎𝑏 = 1, then
aircraft 𝑏 must land after 𝑎, but not necessarily directly after 𝑎, i.e., there might be a certain number of aircraft landing after 𝑎 and
before 𝑏. This holds true, regardless of whether the aircraft are assigned to the same IAF or not. This definition of the sequencing
variables 𝛿𝑎𝑏 allows us to guarantee that the target landing sequence is a coherent merging of the target sequences from all IAFs.

For the sake of simplification, let us assume a fixed rerouting delay from any IAF 𝑖 ∈  to any IAF 𝑗 ∈ , with the following
eneral notation:

𝑟𝑖𝑗 =
{

𝑟 > 0 if 𝑖 ≠ 𝑗
0 otherwise. (8)

rom an operational perspective, a fixed rerouting delay may be justified for example in the case of two IAFs, where the delay can
e assumed proportional to the distance between the two IAFs.

Let 𝑡𝑎 and 𝑥𝑎 be two continuous decision variables denoting respectively the target take-off time for on-ground aircraft 𝑎 ∈ 𝐺,
nd the target IAF time for aircraft 𝑎 ∈  (on-ground or airborne). In the following, we detail these target time decision variables
ccording to the flight status: on-ground or airborne.

n-ground aircraft. Let 𝑎 ∈ 𝐺 be an on-ground aircraft. The target take-off time, 𝑡𝑎, of aircraft 𝑎 must lie within an appropriate
ime window:

𝑡𝑎 ∈
[

𝑃 TOT
𝑎 , 𝑃 TOT

𝑎 + 𝑑
𝐺]

(9)

Given the target take-off time, 𝑡𝑎, and an unimpeded flight time, 𝑉 𝑂
𝑎 , from the origin airport of aircraft 𝑎 to its initial IAF 𝑖∗, we

efine the unconstrained IAF time, denoted 𝑈𝑂→𝑖
𝑎 , for on-ground aircraft 𝑎 to reach an assigned IAF 𝑖 ∈  (possibly the same as the

initial IAF 𝑖∗) as follows:

𝑈𝑂→𝑖
𝑎 = 𝑡𝑎 + 𝑟𝑖

∗𝑖 + 𝑉 𝑂
𝑎 (10)

The unconstrained IAF time for an on-ground aircraft 𝑎 represents the time at which 𝑎 will reach the assigned IAF given that it took
off at its target time, and assuming that no disturbances occur in the airspace during the flight. It can also be seen as an update of
the predicted time to start the approach phase knowing the take-off time.

Finally, if the on-ground aircraft 𝑎 is assigned to IAF 𝑖 ∈ , then its target IAF time, 𝑥𝑎, must lie within an appropriate time
window:

𝑥𝑎 ∈
[

𝑈𝑂→𝑖
𝑎 − 𝑑𝑅𝑎 , 𝑈𝑂→𝑖

𝑎 + 𝑑
𝑅
𝑎

]

(11)

Airborne aircraft. Let 𝑎 ∈ 𝐴 be an airborne aircraft. The planned IAF time of aircraft 𝑎 to reach IAF 𝑖 ∈  (possibly the same as its
initial IAF 𝑖∗), 𝑃 𝑖

𝑎, is given by Eq. (3), where 𝑃 𝑖∗
𝑎 is an input data.

If the airborne aircraft 𝑎 is assigned to IAF 𝑖 ∈ , then its target IAF time, 𝑥𝑎, must lie within an appropriate time window:

𝑥𝑎 ∈
[

𝑃 𝑖
𝑎 − 𝑑𝑅𝑎 , 𝑃 𝑖

𝑎 + 𝑑
𝑅
𝑎

]

(12)

For safety reasons, target IAF times of a pair of successive aircraft crossing the same IAF must be separated by the minimal IAF
ime separation, 𝑆. More precisely, for all pairs of aircraft (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏, we require that:

𝑥𝑏 ≥ 𝑥𝑎 + 𝑆 if aircraft 𝑎 and 𝑏 are assigned to the same IAF, and 𝑎 is followed by 𝑏. (13)

In order to capture the fact that two aircraft are assigned to the same IAF, we introduce an auxiliary binary decision variables
𝑎𝑏, for each pair of aircraft (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏:

𝜙𝑎𝑏 =
{

1 if aircraft 𝑎 and 𝑏 are both assigned to the same IAF
0 otherwise

Note that these binary variables are inspired by the multiple-runway formulation of the aircraft landing problem proposed

n Beasley et al. (2000, Section 4).
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Fig. 3. Convex piecewise linear (at-gate) delay cost function with 2 breakpoints 𝐵1
𝑎 , and 𝐵2

𝑎 .

irst-stage objective function. In the first stage, we minimize the cost of delay incurred by on-ground aircraft at departure gate. For
n on-ground aircraft 𝑎 ∈ 𝐺, the at-gate delay can be expressed as

(

𝑡𝑎 − 𝑃 TOT
𝑎

)

, and according to (9), it is bounded as follows:
(

𝑡𝑎 − 𝑃 TOT
𝑎

)

∈
[

0 , 𝑑
𝐺]

(14)

The cost of the delay at gate of an on-ground aircraft 𝑎 can be computed through a delay-cost function, denoted 𝑓G
𝑎 . We assume

this delay cost function to be convex and piecewise linear, as sketched in Fig. 3, where the coordinates of the different breakpoints
can be based, for instance, on reference delay-cost values reported in Cook and Tanner (2015). Hence, the total delay cost at gate
for all on-ground aircraft can be expressed as follows:

∑

𝑎∈𝐺

𝑓G
𝑎
(

𝑡𝑎 − 𝑃 TOT
𝑎

)

(15)

We assume that the actual IAF time of a given aircraft 𝑎 ∈  will deviate, with respect to its target IAF time, 𝑥𝑎, by a random
amount of time, denoted 𝝎𝒂, according to a known probability distribution. Hence, the actual IAF time of an aircraft 𝑎 ∈  is
(

𝑥𝑎 + 𝜔𝑎
)

, where 𝜔𝑎 is a possible realization of the random variable 𝝎𝒂. In the second stage, all random variables are assumed to
be revealed, giving rise to a second-stage optimization problem, that we formulate in the next subsection.

3.2. Second-stage problem

In the second stage, we seek to determine a target landing time for each aircraft, given that the target landing sequence is already
found in the first stage. Consider an aircraft 𝑎 ∈ . Let 𝑦𝑎 denote the target landing time for aircraft 𝑎, which plays the role of the
second-stage decision variable for aircraft 𝑎. Given that the actual time of aircraft 𝑎 to cross its assigned IAF 𝑖 ∈  is

(

𝑥𝑎 + 𝜔𝑎
)

, and
that minimal and maximal flight times from IAF 𝑖 to touch down are 𝑉 𝑖

𝑎 and 𝑉
𝑖
𝑎 respectively, then we can compute the landing time

window that the target landing time 𝑦𝑎 must satisfy:

𝑦𝑎 ∈
[

𝐸𝐿
𝑎
(

𝜔𝑎, 𝑖
)

, 𝐿𝐿
𝑎
(

𝜔𝑎, 𝑖
)]

(16)
where:

𝐸𝐿
𝑎
(

𝜔𝑎, 𝑖
)

=
(

𝑥𝑎 + 𝜔𝑎
)

+ 𝑉 𝑖
𝑎 (17)

𝐿𝐿
𝑎
(

𝜔𝑎, 𝑖
)

=
(

𝑥𝑎 + 𝜔𝑎
)

+ 𝑉
𝑖
𝑎 (18)

Note that 𝐸𝐿
𝑎
(

𝜔𝑎, 𝑖
)

and 𝐿𝐿
𝑎
(

𝜔𝑎, 𝑖
)

are realizations of the random variables 𝑬𝑳
𝒂
(

𝝎𝒂, 𝑖
)

and 𝑳𝑳
𝒂
(

𝝎𝒂, 𝑖
)

that depend on the random
time deviation, 𝝎𝒂. Hence, landing time windows are only known with certainty at the second stage. Also, according to the value
of the decision variable 𝑥𝑎 and the realization 𝜔𝑎, one expects that 𝑃𝐿

𝑎 ∈
[

𝐸𝐿
𝑎
(

𝜔𝑎, 𝑖
)

, 𝐿𝐿
𝑎
(

𝜔𝑎, 𝑖
)]

, may or may not hold. Typically,
n case of a long delay in the en-route phase, the planned landing time 𝑃𝐿

𝑎 may become infeasible for some realizations of 𝝎𝒂, i.e.,
𝐿
𝑎 < 𝐸𝐿

𝑎
(

𝜔𝑎, 𝑖
)

< 𝐿𝐿
𝑎
(

𝜔𝑎, 𝑖
)

.
Operational constraints related to final-approach separations that must be satisfied between any pair of successively landing

ircraft (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏, can be expressed as follows:
𝑦𝑏 ≥ 𝑦𝑎 + 𝑆𝑎𝑏 if aircraft 𝑎 lands before 𝑏, (19)
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where 𝑆𝑎𝑏 is the minimum final-approach separation between the leading aircraft 𝑎 ∈  and the following aircraft 𝑏 ∈ . Values of
𝑆𝑎𝑏 are given in Table 1, according to each aircraft’s wake-turbulence category.

Second-stage objective function. In the second stage, we minimize the cost of time deviation (delay and advance) incurred during
the en-route and approach phases for all aircraft. The actual IAF time of an airborne aircraft 𝑎 ∈ 𝐴 assigned to an IAF 𝑖 ∈  may
deviate from the planned IAF time of 𝑎 at its initial IAF 𝑖∗, 𝑃 𝑖∗

𝑎 , within the following interval:

𝑥𝑎 + 𝜔𝑎 − 𝑃 𝑖∗
𝑎 ∈

[

𝜔𝑎 + 𝑟𝑖
∗𝑖 − 𝑑𝑅𝑎 , 𝜔𝑎 + 𝑟𝑖

∗𝑖 + 𝑑
𝑅
𝑎

]

(20)

Remark that the lower bound
(

𝜔𝑎 + 𝑟𝑖∗𝑖 − 𝑑𝑅𝑎
)

may be non-positive even if 𝑑𝑅𝑎 = 0, due to a large negative 𝜔𝑎 < 0. That is to say
that, because of uncertainty, an aircraft can be in advance compared with its initial IAF planned time (𝑥𝑎 + 𝜔𝑎 < 𝑃 𝑖∗

𝑎 ), even if we
do not allow expediting aircraft in the en-route phase.

The expressions of delay and of time advance during the en-route phase for an airborne aircraft 𝑎 ∈ 𝐴 read respectively:

max
(

0 , 𝑥𝑎 + 𝜔𝑎 − 𝑃 𝑖∗
𝑎

)

and − min
(

0 , 𝑥𝑎 + 𝜔𝑎 − 𝑃 𝑖∗
𝑎

)

(21)

The actual IAF time of an on-ground aircraft 𝑎 ∈ 𝐺 assigned to an IAF 𝑖 ∈  may deviate from its unconstrained IAF time at its
initial IAF 𝑖∗, 𝑈𝑂→𝑖∗

𝑎 , within the following interval:

𝑥𝑎 + 𝜔𝑎 − 𝑈𝑂→𝑖∗
𝑎 = 𝑥𝑎 + 𝜔𝑎 −

(

𝑡𝑎 + 𝑉 𝑂
𝑎
)

∈
[

𝜔𝑎 + 𝑟𝑖
∗𝑖 − 𝑑𝑅𝑎 , 𝜔𝑎 + 𝑟𝑖

∗𝑖 + 𝑑
𝑅
𝑎

]

(22)

remark similar to that on the interval (20) applies for on-ground aircraft. For an on-ground aircraft 𝑎 ∈ 𝐺, delay and of time
dvance during the en-route phase can be expressed similarly to those in (21). Let us define the unconstrained landing time, denoted
𝑖
𝑎, of aircraft 𝑎 from IAF 𝑖 as the landing time of that aircraft assuming it starts its approach phase from IAF 𝑖, and that there is no
ther aircraft in the terminal area:

𝑈 𝑖
𝑎 = 𝑥𝑎 + 𝜔𝑎 + 𝑉 𝑖

𝑎 (23)

The target landing time 𝑦𝑎 of an aircraft 𝑎 assigned to IAF 𝑖 may deviate from its unconstrained landing time 𝑈 𝑖
𝑎 within the

ollowing interval:

𝑦𝑎 − 𝑈 𝑖
𝑎 ∈

[

−𝑑𝑇𝑎 , 𝑑
𝑇
𝑎

]

(24)

Consider an aircraft 𝑎 ∈  (either initially on-ground or airborne at the moment when making first-stage decisions) coming from
IAF 𝑖. Delay and advance times during the approach phase of aircraft 𝑎 ∈  from IAF 𝑖 can be expressed similarly to those in (21).

Let 𝑓R
𝑎 and 𝑓T

𝑎 denote the cost functions of time deviation incurred during the en-route and the approach phases for an aircraft 𝑎
respectively. These cost functions are assumed to be convex and piecewise linear. Fig. 4 depicts 𝑓R

𝑎 for an airborne aircraft 𝑎 ∈ 𝐴.
The total cost during the en-route and the approach phases for all aircraft can be expressed as follows:

∑

𝑎∈𝐺

𝑓R
𝑎
(

𝑥𝑎 + 𝜔𝑎 −
(

𝑡𝑎 + 𝑉 𝑂
𝑎
))

+
∑

𝑎∈𝐴

𝑓R
𝑎

(

𝑥𝑎 + 𝜔𝑎 − 𝑃 𝑖∗
𝑎

)

+ (25)

∑

𝑎∈
𝑓T
𝑎
(

𝑦𝑎 −
(

𝑥𝑎 + 𝜔𝑎 + 𝑉 𝑖
𝑎
))

In the next subsection, we present the full two-stage stochastic programming model of the first variant.

3.3. Full two-stage stochastic model for the first variant

Let us introduce the following additional notations:

• 𝑖∗ : index set of aircraft whose initial IAF is 𝑖∗ ∈ 
• 𝑖∗ ,𝐺: index set of on-ground aircraft whose initial IAF is 𝑖∗ ∈ 
• 𝑖∗ ,𝐴: index set of airborne aircraft whose initial IAF is 𝑖∗ ∈ 

We have the following relationships:

• For every 𝑖 ∈ : 𝑖 = 𝑖,𝐺 ∪𝑖,𝐴, and 𝑖,𝐺 ∩𝑖,𝐴 = ∅
• For every pair (𝑖, 𝑗) ∈  × , such that 𝑖 ≠ 𝑗:

∙ 𝐺 =
⋃

𝑖∈
𝑖,𝐺, and 𝑖,𝐺 ⋂

𝑗,𝐺 = ∅

∙ 𝐴 =
⋃

𝑖∈
𝑖,𝐴, and 𝑖,𝐴 ⋂

𝑗,𝐴 = ∅

The two-stage stochastic programming model of the extended aircraft arrival management problem under uncertainty with
multiple IAFs, and where IAF assignment is considered as a first-stage decision, reads:

min
𝛿,𝑡,𝑥

∑

𝑓G
𝑎
(

𝑡𝑎 − 𝑃 TOT
𝑎

)

+ E𝝎[𝑄(𝜁, 𝛿, 𝑡, 𝑥, 𝜔)] (26)

𝜁, 𝜙 𝑎∈𝐺



Fig. 4. Convex piecewise-linear (en-route) cost function with 4 breakpoints 𝑃 𝑖∗
𝑎 , 𝐵𝑅,1

𝑎 , 𝐵𝑅,2
𝑎 , and 𝐵𝑅,3

𝑎 .

s.t.
∑

𝑖∈
𝜁𝑎𝑖 = 1 𝑎 ∈  (27)

𝜙𝑎𝑏 = 𝜙𝑏𝑎 (𝑎, 𝑏) ∈  ×, 𝑎 < 𝑏 (28)

𝜙𝑎𝑏 ≥ 𝜁𝑎𝑖 + 𝜁𝑏𝑖 − 1 𝑖 ∈  , (𝑎, 𝑏) ∈  ×, 𝑎 < 𝑏 (29)

𝛿𝑎𝑏 + 𝛿𝑏𝑎 = 1 (𝑎, 𝑏) ∈  ×, 𝑎 < 𝑏 (30)

𝑥𝑏 ≥ 𝑥𝑎 + 𝑆 −𝑀𝑎𝑏(2 − 𝜙𝑎𝑏 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏 (31)

− 𝑑𝑅𝑎 ≤ 𝑥𝑎 − 𝑡𝑎 − 𝑉 𝑂
𝑎 −

∑

𝑗∈
𝑟𝑖

∗𝑗𝜁𝑎𝑗 ≤ 𝑑
𝑅
𝑎 𝑖∗ ∈  , 𝑎 ∈ 𝑖∗ ,𝐺 (32)

− 𝑑𝑅𝑎 ≤ 𝑥𝑎 − 𝑃 𝑖∗
𝑎 −

∑

𝑗∈
𝑟𝑖

∗𝑗𝜁𝑎𝑗 ≤ 𝑑
𝑅
𝑎 𝑖∗ ∈  , 𝑎 ∈ 𝑖∗ ,𝐴 (33)

0 ≤ 𝑡𝑎 − 𝑃 TOT
𝑎 ≤ 𝑑

𝐺
𝑎 𝑎 ∈ 𝐺 (34)

𝜁𝑎𝑖 ∈ {0, 1} 𝑖 ∈ , 𝑎 ∈  (35)

𝜙𝑎𝑏 ∈ {0, 1} (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏 (36)

𝛿𝑎𝑏 ∈ {0, 1} (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏 (37)
where:

𝑄(𝜁, 𝛿, 𝑡, 𝑥, 𝜔) = min
𝑦

∑

𝑎∈𝐺

𝑓R
𝑎
(

𝑥𝑎 + 𝜔𝑎 −
(

𝑡𝑎 + 𝑉 𝑂
𝑎
))

+

∑

𝑎∈𝐴

𝑓R
𝑎

(

𝑥𝑎 + 𝜔𝑎 − 𝑃 𝑖∗
𝑎

)

+

∑

𝑎∈
𝑓T
𝑎

(

𝑦𝑎 −

(

𝑥𝑎 + 𝜔𝑎 +
∑

𝑖∈
𝑉 𝑖
𝑎 𝜁𝑎𝑖

))

(38)

s.t. 𝑦𝑏 ≥ 𝑦𝑎 + 𝑆𝑎𝑏 −𝑀𝐿
𝑎𝑏(1 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏 (39)

∑

𝑖∈
𝑉𝑎

𝑖𝜁𝑎𝑖 ≤ 𝑦𝑎 − (𝑥𝑎 + 𝜔𝑎) ≤
∑

𝑖∈
𝑉𝑎

𝑖
𝜁𝑎𝑖 𝑎 ∈  (40)

where 𝑀𝑎𝑏 and 𝑀𝐿
𝑎𝑏 are sufficiently large (so-called big-M) constants defined for all (𝑎, 𝑏) ∈ ×, 𝑎 ≠ 𝑏, helping to enable/disable

separation constraints at IAFs and at the runway, respectively. The objective function (26) involves minimizing the sum of the total
at-gate delay cost and the expectation of the second-stage objective function. Constraints (27) ensure that each aircraft is assigned to
exactly one IAF. Constraints (28) express the symmetry of the auxiliary variables 𝜙𝑎𝑏’s. Constraints (29) ensure the logical coherence
of the decision variables 𝜙𝑎𝑏’s and the IAF assignment variables 𝜁𝑎𝑖’s. Constraints (30) express the logical order between any pair
of aircraft. Constraints (31) ensure separation between target IAF times of any pair of successive aircraft assigned to the same IAF.
The big-M constant 𝑀𝑎𝑏 can be set to:

best best (41)
𝑀𝑎𝑏 = 𝐿𝑎 − 𝐸𝑏 + 𝑆
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Table 3
Expressions of the constants 𝐸best

𝑏 and 𝐿best
𝑎 that occur in the definition of the big-M constant 𝑀𝑎𝑏 according to

flight status (case where IAF assignment is a first-stage decision).
Flight status On-ground Airborne

(in 𝐺) (in 𝐴)

𝐸best
𝑏 𝑃 TOT

𝑏 + 𝑉 𝑂
𝑏 − 𝑑𝑅

𝑏 𝐸𝑗∗
𝑏 , where 𝑗∗ is the initial IAF of 𝑏

𝐿best
𝑎 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑟 + 𝑑
𝑅
𝑎 𝐿𝑘

𝑎 , where 𝑘 ∈ ∖{𝑖∗} is an IAF different
from the initial IAF 𝑖∗ of 𝑎

Table 4
Expressions of the constants 𝐸𝐿,best

𝑏 and 𝐿𝐿,best
𝑎 that occur in the definition of the big-M constant 𝑀𝐿

𝑎𝑏 according
to flight status (case where IAF assignment is a first-stage decision).

Flight status On-ground Airborne
(in 𝐺) (in 𝐴)

𝐸𝐿,best
𝑏 𝑃 TOT

𝑏 + 𝑉 𝑂
𝑏 − 𝑑𝑅

𝑏 + 𝜔𝑏 + min
𝑘∈

{

𝑉𝑏
𝑘 + 𝑟𝑗∗𝑘

}

𝑃 𝑗∗
𝑏 − 𝑑𝑅

𝑏 + 𝜔𝑏 + min
𝑘∈

{

𝑉𝑏
𝑘 + 𝑟𝑗∗𝑘

}

where 𝑗∗ ∈  is the initial IAF of aircraft 𝑏

𝐿𝐿,best
𝑎 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑑
𝑅
𝑎 + 𝜔𝑎 + max

𝑘∈

{

𝑉𝑎
𝑘
+ 𝑟𝑖∗𝑘

}

𝑃 𝑖∗
𝑎 + 𝑑

𝑅
𝑎 + 𝜔𝑎 + max

𝑘∈

{

𝑉𝑎
𝑘
+ 𝑟𝑖∗𝑘

}

where 𝑖∗ ∈  is the initial IAF of aircraft 𝑎

where:

• 𝐿best
𝑎 is the ‘‘best’’ possible upper bound for 𝑥𝑎, i.e., the smallest upper bound for 𝑥𝑎, and

• 𝐸best
𝑏 is the ‘‘best’’ possible lower bound to 𝑥𝑏, i.e., the largest lower bound for 𝑥𝑏,

while the IAFs assigned to aircraft 𝑎 and 𝑏 are still unknown. Expression (41) is based on the fact that 𝑀𝑎𝑏 should be an upper
bound for

(

𝑥𝑎 − 𝑥𝑏 + 𝑆
)

. Explicit expressions of 𝐿best
𝑎 and 𝐸best

𝑏 are given in Table 3 according to the flight status (proofs are given
in Appendix A).

Note that for a given aircraft 𝑎 ∈  (on-ground or airborne), 𝐸best
𝑎 and 𝐿best

𝑎 can also be used to bound the target IAF time 𝑥𝑎.
Constraints (32) enforce the target IAF time of an on-ground aircraft, with an initial IAF 𝑖∗ ∈ , to lie within an appropriate

time window that depends on the target take-off time and the assigned IAF. Constraints (33) enforce the target IAF time of an
airborne aircraft, with an initial IAF 𝑖∗ ∈ , to lie within an appropriate time window that depends on the planned IAF time and
the assigned IAF. Constraints (34) ensure that the target take-off time of an on-ground aircraft is chosen in the appropriate time
window. Constraints (35), (36), and (37) stipulate the binary nature of decision variables 𝜁𝑎𝑖’s, 𝜙𝑎𝑏’s and 𝛿𝑎𝑏’s.

The optimal value of the second-stage problem is noted 𝑄(𝜁, 𝛿, 𝑡, 𝑥, 𝜔). The objective function in (38) is the total time-deviation
(delay and advance) cost (to be minimized) during the en-route and the approach phases. Constraints (39) ensure final-approach
separation between any pair of landing aircraft, where the big-M constant 𝑀𝐿

𝑎𝑏 can be set to:

𝑀𝐿
𝑎𝑏 = 𝐿𝐿,best

𝑎 − 𝐸𝐿,best
𝑏 + 𝑆𝑎𝑏 (42)

where:

• 𝐿𝐿,best
𝑎 is the ‘‘best’’ possible upper bound for 𝑦𝑎, i.e., the smallest upper bound to 𝑦𝑎, and

• 𝐸𝐿,best
𝑏 is the ‘‘best’’ possible lower bound for 𝑦𝑏, i.e., the largest lower bound to 𝑦𝑏,

while the IAFs assigned to aircraft 𝑎 and 𝑏 are still unknown. Expression (42) is based on the fact that 𝑀𝐿
𝑎𝑏 should be an upper

bound for
(

𝑦𝑎 − 𝑦𝑏 + 𝑆𝑎𝑏
)

. Explicit expressions of 𝐿𝐿,best
𝑎 and 𝐸𝐿,best

𝑏 are given in Table 4 according to the flight status (proofs are
given in Appendix A).

Note that for a given aircraft 𝑎 ∈  (on-ground or airborne), 𝐸𝐿,best
𝑎 and 𝐿𝐿,best

𝑎 can also be used to bound the target landing
time 𝑦𝑎.

Constraints (40) enforce the flight time, for a given aircraft, between its assigned IAF and the runway, to lie within an appropriate
light time window.

. Second-variant model: IAF assignment as a problem input

In the previous section, we presented a two-stage stochastic programming model for the general case of the extended aircraft
rrival management problem, where IAF assignment is considered as a first-stage decision. From an operational viewpoint, as
resented in the problem statement (Section 2), IAF changes are usually issued after a modification of the landing runway, or due to

nexpected adverse weather in the neighborhood of some IAFs. Also, IAF assignment may be updated to balance aircraft flows among



Table 5
Expressions of the constants 𝐸best

𝑏 and 𝐿best
𝑎 that occur in the expression of the big-M constant 𝑀𝐿

𝑎𝑏 according to
flight status (case where IAF assignment is fixed).

Flight status On-ground Airborne
(in 𝐺) (in 𝐴)

𝐸best
𝑏 𝑃 TOT

𝑏 + 𝑉 𝑂
𝑏 − 𝑑𝑅

𝑏 𝐸𝑗∗
𝑏 (input data)

𝐿best
𝑎 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑑
𝑅
𝑎 𝐿𝑖∗

𝑎 (input data)

IAFs, thereby avoiding long delays at approach. Given that we consider a single runway, and assuming normal weather conditions
and relatively-balanced aircraft flows on the IAFs, it is, then, interesting to consider also the realistic case where IAF assignment
is given and fixed. Consequently, in this section, we consider the problem variant where initial IAFs pre-assigned to aircraft, 2–3 h
before landing, cannot be changed. In this variant, the two-stage stochastic programming model, presented in Section 3, simplifies
as follows:

min
𝛿, 𝑡, 𝑥

∑

𝑎∈𝐺

𝑓G
𝑎
(

𝑡𝑎 − 𝑃 TOT
𝑎

)

+ E𝝎[𝑄(𝛿, 𝑡, 𝑥, 𝜔)] (43)

s.t. 𝛿𝑎𝑏 + 𝛿𝑏𝑎 = 1 (𝑎, 𝑏) ∈  ×, 𝑎 < 𝑏 (44)

𝑥𝑏 ≥ 𝑥𝑎 + 𝑆 −𝑀𝑎𝑏(1 − 𝛿𝑎𝑏) 𝑖∗ ∈  , (𝑎, 𝑏) ∈ 𝑖∗ ×𝑖∗ , 𝑎 ≠ 𝑏 (45)

− 𝑑𝑅𝑎 ≤ 𝑥𝑎 −
(

𝑡𝑎 + 𝑉 𝑂
𝑎
)

≤ 𝑑
𝑅
𝑎 𝑖∗ ∈  , 𝑎 ∈ 𝑖∗ ,𝐺 (46)

− 𝑑𝑅𝑎 ≤ 𝑥𝑎 − 𝑃 𝑖∗
𝑎 ≤ 𝑑

𝑅
𝑎 𝑖∗ ∈  , 𝑎 ∈ 𝑖∗ ,𝐴 (47)

0 ≤ 𝑡𝑎 − 𝑃 TOT
𝑎 ≤ 𝑑

𝐺
𝑎 𝑎 ∈ 𝐺 (48)

𝛿𝑎𝑏 ∈ {0, 1} (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏 (49)
where:

𝑄(𝛿, 𝑡, 𝑥, 𝜔) = min
𝑦

∑

𝑎∈𝐺

𝑓R
𝑎
(

𝑥𝑎 + 𝜔𝑎 −
(

𝑡𝑎 + 𝑉 𝑂
𝑎
))

+

∑

𝑎∈𝐴

𝑓R
𝑎

(

𝑥𝑎 + 𝜔𝑎 − 𝑃 𝑖∗
𝑎

)

+

∑

𝑎∈
𝑓T
𝑎

(

𝑦𝑎 −
(

𝑥𝑎 + 𝜔𝑎 + 𝑉 𝑖∗
𝑎

))

(50)

s.t. 𝑦𝑏 ≥ 𝑦𝑎 + 𝑆𝑎𝑏 −𝑀𝐿
𝑎𝑏(1 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈  ×, 𝑎 ≠ 𝑏 (51)

𝑉𝑎
𝑖∗ ≤ 𝑦𝑎 − (𝑥𝑎 + 𝜔𝑎) ≤ 𝑉𝑎

𝑖∗
𝑖∗ ∈  , 𝑎 ∈ 𝑖∗ (52)

The main simplifications are as follows. When IAF assignment is fixed, there is no more need for the IAF assignment decision
variables 𝜁𝑎𝑖’s, nor for the decision variables 𝜙𝑎𝑏’s, identifying whether two aircraft are assigned to the same IAF or not. Also,
with respect to the first-variant model, IAF separation constraints (31), IAF time-window constraints (32) and (33), and runway
time-window constraints (40) are updated into constraints (45), (46), (47), and (52) respectively. In the following, we comment in
detail the model of this second variant.

Note that first-stage decision variables are now limited to 𝛿𝑎𝑏’s, 𝑡𝑎’s, and 𝑥𝑎’s. The objective function (43) and constraints (44)
are similar to their counterparts of the first variant, (26) and (30) respectively. The IAF separation constraints (45) are expressed
only for pairs of aircraft crossing the same IAF, i.e., pairs of aircraft from the same subset 𝑖∗ , for 𝑖∗ ∈ . For a pair (𝑎, 𝑏) ∈  ×,
𝑎 ≠ 𝑏, the big-M constants 𝑀𝑎𝑏’s in constraints (45) can be set as in Eq. (41), while 𝐸best

𝑏 and 𝐿best
𝑎 are defined as follows:

• 𝐿best
𝑎 is the ‘‘best’’, i.e., the smallest, upper bound for 𝑥𝑎.

• 𝐸best
𝑏 is the ‘‘best’’, i.e., the largest, lower bound for 𝑥𝑏.

Explicit expressions of 𝐿best
𝑎 and 𝐸best

𝑏 are given in Table 5 according to the flight status (proofs are given in Appendix A).
For each aircraft, the IAF is known in advance, hence the IAF time window is known without ambiguity. Then, IAF time-window

constraints (46) and (47) are formulated straightforwardly. Time-window constraints on target take-off times (48) are identical to
their counterparts (34) in the first-variant model. Constraints (49), similarly to (37) in the first-variant model, stipulate the binary
nature of the sequencing variables 𝛿𝑎𝑏’s.

For the second-stage problem, 𝑄(𝛿, 𝑡, 𝑥, 𝜔) stands for its optimal value. In the objective function (50), the expression of the
unconstrained flight time from the IAF to the runway involved in the approach delay cost function simplifies, compared to (38),
since IAFs are known in advance. Runway-separation constraints (51) are similar to their counterparts (39) of the first-variant model,
while the big-M constant 𝑀𝐿

𝑎𝑏 can be set to:

𝑀𝐿 =
(

𝐿best + 𝜔 + 𝑉
𝑖∗)

−
(

𝐸best + 𝜔 + 𝑉 𝑗∗
)

+ 𝑆 , (53)
𝑎𝑏 𝑎 𝑎 𝑎 𝑏 𝑏 𝑏 𝑎𝑏
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where explicit expressions for 𝐸best
𝑏 and 𝐿best

𝑎 are given in Table 5, and 𝑖∗ and 𝑗∗ are the initial IAFs of aircraft 𝑎 and 𝑏 respectively.
The expression (53) can be obtained as follows. The big-M constant 𝑀𝐿

𝑎𝑏 is required to be an upper bound for
(

𝑦𝑎 − 𝑦𝑏 + 𝑆𝑎𝑏
)

. We
have: 𝑦𝑎 ≤ 𝑥𝑎 + 𝜔𝑎 + 𝑉

𝑖∗

𝑎 ≤ 𝐿best
𝑎 + 𝜔𝑎 + 𝑉

𝑖∗

𝑎 . A similar reasoning can be made to upper bound
(

−𝑦𝑏
)

.
Finally, landing time-window constraints (52) simplify (compared to their counterparts (40), of the first-variant model) using

the fact that the minimal and the maximal flight times for each aircraft, from the pre-assigned IAF to the runway, are known in
advance.

5. Notes on the proposed models and on the solution method

In two-stage stochastic programming, the first-stage solution directly impacts the definition of the second-stage problem, and
thus its feasibility region. When for each feasible first-stage solution, there is, at least, one feasible second-stage solution, for
almost any realization of the uncertainty; the two-stage stochastic programming model is said to have a relatively complete recourse.
Formal definitions of different recourse types can be found, for example, in Birge and Louveaux (2011, Chapter 3). This property is
convenient because it guarantees that the first-stage solution can be safely implemented, for almost any realization of the uncertainty.

In this section, we show that the recourse in our problem is not relatively complete. Despite the loss of this property in theory,
realistic problem parameters, as those used in our numerical study, guarantee the feasibility of the second-stage problem, as shown in
Section 5.1. The two-stage stochastic programming models presented in Sections 3 and 4 involve convex piecewise-linear functions,
that we linearize by introducing extra continuous variables using the standard incremental cost technique (Keha et al., 2004). The
expectancy operator, appearing in the objective functions, can be handled through Sample Average Approximation (SAA) as presented
in Section 5.2.

5.1. Recourse type

In our context, the relatively-complete recourse property can be interpreted as follows: for any schedule at the IAFs and any
landing sequence, feasible for the first-stage problem, we are able to find feasible landing times, for (almost) any IAF time deviations
(i.e., for almost any realization of the random variables) by solving the corresponding second-stage problem. The presence of time-
window constraints for landing (in the second-stage problem) may prevent satisfying the landing sequence (determined in the first
stage) once uncertainty is revealed. For instance, consider aircraft 𝑎 and 𝑏 assigned to the same IAF, such that aircraft 𝑎 is scheduled
to reach the IAF before aircraft 𝑏, i.e., 𝑥𝑏 ≥ 𝑥𝑎+𝑆. According to the definition of the sequencing variables, aircraft 𝑎 should also land
efore aircraft 𝑏. Consider the IAF time deviations 𝜔𝑎 and 𝜔𝑏, such that: 𝑥𝑏 +𝜔𝑏 < 𝑥𝑎 +𝜔𝑎. In this uncertainty scenario, the relative
rder of aircraft 𝑎 and 𝑏 is inverted when reaching their IAF. If the landing time windows are very tight, it will not be possible to
ecover the target relative order of aircraft 𝑎 and 𝑏 for landing. Hence, the second-stage problem becomes infeasible, for the target
anding sequencing computed beforehand in the first stage. Consequently, the two-stage stochastic programming models, proposed
n this paper, do not have a relatively complete recourse. A similar example is given in Khassiba et al. (2020), where the proposed
odel has the same type of recourse. However, in practice, when landing time windows are large ‘‘enough’’, one can find target

anding times that satisfy any landing sequence determined in the first stage, for (almost) any IAF time deviations. In our numerical
xperiments, presented in Section 6, infeasible second-stage problems, for fixed first-stage solutions, were not observed.

.2. Sample average approximation

We assume that deviations of IAF times, 𝝎𝒂, 𝑎 ∈ , are independent and identically distributed, each according to a normal
istribution with mean zero, and standard deviation 𝜎. Due to this continuous distribution, and to the fact that 𝑄 (𝛿, 𝑡, 𝑥, 𝜔) is
he optimal value of a linear program, a closed-form expression for E𝝎 [𝑄 (𝛿, 𝑡, 𝑥, 𝜔)] is often difficult, and even impossible, to
ind in the general case (Shapiro et al., 2021, Chapter 5). The expectancy operator in the objective function can be handled
y the method of Sample Average Approximation (SAA) (Fu et al., 2015), that constructs an approximate problem using a finite
et of 𝑛 second-stage scenarios. One scenario corresponds to one possible realization of the random vector 𝝎, i.e., one possible
ime deviation in the en-route phase for each aircraft. To construct an approximate problem, we start by generating (sampling)
 independent scenarios using Monte-Carlo method. Then, we formulate 𝑛 second-stage problems, each corresponding to one
cenario. We approximate the expectation of the second-stage optimal value, E𝝎 [𝑄 (𝛿, 𝑡, 𝑥, 𝜔)], by a sample average over the 𝑛
ampled scenarios: 1

𝑛

∑𝑛
𝑠=1 𝑄 (𝛿, 𝑡, 𝑥, 𝜔𝑠), where 𝜔𝑠 =

(

𝜔𝑠
1, 𝜔

𝑠
2,… , 𝜔𝑠

𝑛
)

corresponds to the realization of the random vector 𝝎 in
scenario 𝑠. The first-stage problem, together with the 𝑛 copies of the second-stage problem, unified under one linear objective
unction give rise to a (possibly large) single-stage mixed-integer linear program, that can be solved by a commercial MILP solver.

e call the solution of the approximate problem, noted
(

𝛿𝑆𝑃 , 𝑡𝑆𝑃 , 𝑥𝑆𝑃
)

, the stochastic solution.
On the other hand, we formulate the so-called expected value problem, that corresponds to a specific approximate deterministic

problem which has only one scenario in the second stage: the mean scenario. The mean scenario corresponds to no deviations in IAF
time for all aircraft, i.e., every aircraft arrives at its assigned IAF, exactly on its target time. We call the solution of the expected
alue problem, noted

(

𝛿𝐸𝑉 , 𝑡𝐸𝑉 , 𝑥𝐸𝑉
)

, the deterministic solution.
In order to compare the quality of both solutions (the stochastic and the deterministic solutions), we sample 𝑛𝑣

(

≫ 𝑛
)

additional
nd independent scenarios that we use as a reference scenario tree, as named in Kaut and Wallace (2007). We then formulate the
alidation problem: an approximate problem whose scenario set corresponds to the sampled reference scenario tree. We evaluate
oth solutions on this reference tree, and we call the obtained objective-function values, the validation scores. Let 𝑣 denote the
𝑆𝑃
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Table 6
Instance statistics.

Instance Id 10_559_618 10_607_623 10_619_634 10_624_640 10_634_659

# Aircraft (𝑛) 10 10 10 10 10
First Planned Landing 6:10:46 6:14:46 6:20:30 6:23:18 6:28:06
Last Planned Landing 6:21:16 6:23:28 6:29:00 6:31:22 6:40:35
Time span 10 min 30 s 8 min 42 s 8 min 30 s 8 min 4 s 12 min 29 s

# Airborne (𝑛𝐴) 6 4 3 5 7
# On-ground (𝑛𝐺) 4 6 7 5 3

# Medium (M) 4 6 7 7 7
# Heavy (H) 6 4 3 3 3

# assigned to IAF 1 6 5 5 4 3
# assigned to IAF 2 4 5 5 6 7

validation score of the stochastic solution, and 𝑣𝐸𝑉 the validation score of the deterministic solution. Note that 𝑣𝑆𝑃 expresses the
xpected cost of time deviation (delay and advance), if the stochastic solution is implemented, while 𝑣𝐸𝑉 expresses the expected
ost, if the deterministic solution is implemented.

The difference between the two validation scores, 𝑣𝑆𝑃 and 𝑣𝐸𝑉 , is called the value of the stochastic solution, denoted VSS and
xpressed as follows:

VSS = 𝑣𝑆𝑃 − 𝑣𝐸𝑉 (54)

The relative VSS is computed as the ratio:

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 VSS (%) =
𝑣𝑆𝑃 − 𝑣𝐸𝑉

𝑣𝐸𝑉
(55)

The value of the stochastic solution quantifies the benefit from taking into account the probability distribution of IAF deviation
imes, through two-stage stochastic programming. More specifically, VSS measures, hopefully, the expected cost saving, when the
olution applied to the extended aircraft arrival problem is the one provided by our two-stage stochastic models, and not by its
ncertainty-unaware counterpart.

. Computational study

Sections 3 and 4 presented two-stage stochastic programming models for two variants of the extended aircraft arrival manage-
ent problem with multiple IAFs. The first variant, presented in Section 3, corresponds to the general case where IAF assignment

s a first-stage decision, while the second variant, formulated in Section 4, deals with a realistic special case where IAF assignment
s fixed in advance.

In this section, we report a computational study conducted on five instances, each of which involves 10 aircraft and two IAFs.
our levels of uncertainty are tested. Instances and test data are described in Section 6.1. The two problem variants, referred to as

‘IAF (assignment) as a decision’’, and ‘‘IAF as an input’’ are studied. In this computational study, we consider that no time advance
s possible when aircraft are still at gate and when they are in the approach phase. Preliminary experiments, reported in Section 6.2,
how that time advance in the en-route phase can significantly decrease the delay cost compared to the case where no advance is
ossible. As a consequence, this computational study focuses solely on the case where time advance is allowed in the en-route phase.
ummary results are reported in Section 6.3. The value of the stochastic solution is studied in Section 6.4. The effect of flexible
AF assignment is analyzed in Section 6.5. Finally, a more detailed analysis on the instance featuring the highest VSS is given in
ection 6.6.

All results are obtained with a Python 2.7 code and IBM ILOG CPLEX 12.7.1 run on a Linux platform with eight 2.66 GHz Xeon
rocessors and 32 GB of RAM.

.1. Instances and test data

We use realistic data from Paris CDG airport consisting of 30 aircraft planning to land on the northern runway 27R, and to cross
he IAFs, between 5:59 AM and 6:59 AM, on May 5th, 2015. In order to experiment on a highly congested situation, this schedule
s compressed by a factor of two, so that the time span becomes 30 min. Initially, 14 aircraft were assigned to MOPAR, 14 other
ircraft to LORNI, and two aircraft to OKIPA. We updated the IAF of the last two aircraft to IAF LORNI (the closest IAF to OKIPA),
n order to build an instance with only 𝑚 = 2 IAFs, and involving a more balanced number of aircraft on the IAFs.

We divide the 30-aircraft instance into five instances of 𝑛 = 10 aircraft each. The first instance considers the first 10 aircraft. The
econd instance moves forward with 5 aircraft, and considers the next 10 aircraft, starting from the 6th aircraft to the 15th aircraft.
ikewise, we build three more instances moving forward with 5 aircraft each time. Some statistics about these five instances are
iven in Table 6, and more details are given in Table B.1 in Appendix B.
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Fig. 6. Decrease in the delay cost when one minute of en-route time advance is allowed, 𝑑𝑅
𝑎 = 60 sec, in both problem variants: IAF as an input (a) and IAF

as decision (b).

Number of scenarios. For all instances, and all uncertainty levels, the number of scenarios for optimization is set to 𝑛 = 100, and
for validation, to 𝑛𝑣 = 1000.

6.2. Benefit from en-route time advance

As presented in Section 6.1, this computational study focuses on the case where up to one minute of time advance in the en-route
phase is allowed (𝑑𝑅𝑎 = 60 sec). This main case is called ‘‘with advance’’ case. Only in this subsection, we also study the case where
an aircraft cannot be assigned an IAF target time earlier than its planned or unconstrained IAF time (for an airborne or at-gate
aircraft, respectively), i.e., 𝑑𝑅𝑎 = 0; we refer to this case as the ‘‘no advance’’ case.

Figs. 6(a) and 6(b) depict delay cost decrease for all studied instances and all studied uncertainty levels, due to the one-minute
ime advance in the en-route phase. The delay cost decrease is computed as the relative difference between the average validation
elay costs of stochastic solutions in the ‘‘no advance’’ case and in the ‘‘with advance’’ case. The delay cost decrease, plotted with
green line in both figures, ranges from around 200 euros to more than 550 euros. Hence, allowing time advance helps decreasing

ignificantly the delay cost. This is due to the fact that the unit cost of time advance is very low compared to the unit cost of delay,
or all aircraft types, creating thereby a window of opportunity to find lower-cost solutions. This decrease in delay cost comes at
he price of longer computing times, with an increase ranging from 2.6 to 46.6 s in the ‘‘IAF as an input’’ variant, and from 4.0 to
44.0 s in the ‘‘IAF as a decision’’ variant. In the remainder of this computational study, we shall only consider the ‘‘with advance’’
ase, where 𝑑𝑅 = 60 s (see Fig. 6).
𝑎



Table 9
Result summary of the stochastic solutions of all instances for the case ‘‘IAF as a decision" with en-route advance.

Instance 𝜎 CPU Validation score VSS Avg nb # diff seq

euros % IAF changes IAF 1 IAF 2 RWY

10_559_618 30 50.03 980.75 −117.36 −10.69% 1.0 1 1 1
60 116.07 1,549.53 −219.65 −12.42% 1.9 2 2 2
90 157.68 2,141.14 −347.28 −13.96% 2.9 2 2 1

120 165.92 2,783.25 −477.72 −14.65% 3.0 1 1 1

10_607_623 30 55.21 702.86 −166.68 −19.17% 0.0 1 1 1
60 65.05 1,068.42 −297.77 −21.80% 0.0 1 1 1
90 79.24 1,511.39 −376.39 −19.94% 0.6 2 2 2

120 91.80 1,994.27 −451.53 −18.46% 0.9 3 3 4

10_619_634 30 82.39 669.42 −17.42 −2.54% 0.0 1 1 1
60 140.28 1,064.62 −19.70 −1.82% 0.0 2 2 3
90 482.67 1,475.07 −31.35 −2.08% 0.0 2 2 5

120 608.00 1,895.56 −63.15 −3.22% 0.0 2 2 3

10_624_640 30 326.57 631.36 −86.75 −12.08% 0.0 1 1 1
60 530.76 943.70 −136.85 −12.66% 0.1 2 2 1
90 566.34 1,299.71 −166.19 −11.34% 0.9 5 3 6

120 538.87 1,671.35 −208.38 −11.09% 1.4 4 4 5

10_634_659 30 9.80 340.64 −55.46 −14.00% 0.0 1 2 2
60 33.82 669.45 −109.40 −14.05% 0.5 2 2 2
90 73.97 1,033.71 −189.99 −15.53% 1.0 1 2 2

120 137.94 1,443.08 −268.70 −15.70% 1.0 1 2 2

6.3. Summary results

Summary results of the stochastic solutions for the two variants (‘‘IAF as a decision’’ and ‘‘IAF as an input’’) are given in Tables 9
and 10. ‘‘CPU’’ stands for the computing time, expressed in seconds, as returned by CPLEX, of stochastic solutions, averaged over
𝑛 = 10 replications. The ‘‘Validation score’’ column reports the average validation score of stochastic solutions obtained for 𝑛 = 10
replications, which gives an order of magnitude of the time-deviation cost (in euros) for each test setup. The ‘‘VSS’’ column displays
the value of the stochastic solution. Definitions of validation score and VSS of a stochastic solution, are given in Section 5.2. The
number of IAF changes averaged over 10 replications is given (only in Table 9) in column ‘‘Avg nb IAF changes’’. The last three
columns ‘‘# diff seq IAF 1’’, ‘‘IAF 2’’, and ‘‘RWY’’ give the number of unique IAF 1, IAF 2, and runway sequences, given that 10
replications of each problem are solved. A low number of unique sequences shows that there is low discrepancy among different
replications. Ideally, when for a given test setup (an instance, and an uncertainty level), stochastic solutions from all replications
are identical (or at least, the solution sequences are identical), this indicates that solving only one replication suffices, and that the
number of second-stage scenarios, 𝑛 , is sufficiently large to capture the information behind the original complete set of scenarios.

6.4. Value of the stochastic solution

For all instances and all uncertainty levels, VSS, given in Tables 9 and 10, is negative and decreases as uncertainty level increases.
Negative VSS shows that stochastic solutions perform better than deterministic solutions, in terms of time-deviation costs, when
all solutions are evaluated on the same large uncertainty-scenario set. The cost saving of stochastic solutions compared to their
deterministic counterparts, for the very high uncertainty level (𝜎 = 120 s), as given by the relative VSS, ranges from 3.22% to
18.46% less than the time-deviation cost of deterministic solutions (corresponding to 63.15 euros and to 451.53 euros respectively).
This illustrates that there is a significant benefit from taking into account uncertainty through two-stage stochastic programming,
and that this benefit is more prominent for higher levels of uncertainty, as expected.

We observe that the VSS in the ‘‘IAF as a decision’’ and the ‘‘IAF as an input’’ variants are very similar, for all instances, except
for instance 10_559_618. In fact, stochastic solutions from both variants are quite similar, and the average number of IAF changes
is low, except for instance 10_559_618 whose stochastic solution features 3 IAF changes. This suggests that flexible IAF assignment
can be used to mitigate uncertainty.

Comparison of the deterministic and the stochastic solutions
In order to understand better the reason behind large VSS, for uncertainty level 𝜎 = 120 s, we plot in Figs. 7 and 8 the breakdown

of validation costs and of delay and advance times, for each problem variant. Very importantly, these figures highlight the difference
in cost and time (delay and advance) between deterministic and stochastic solutions, at each flight phase: at-gate, en-route, and
approach phases.
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Fig. 10. Validation costs for all instances and uncertainty levels in the ‘‘IAF as a decision’’ and the ‘‘IAF as an input’’ problem variants. Positive cost saving is
the gain from flexible IAF assignment.

Fig. 11. Relationship between cost saving due to flexible IAF assignment and average number of IAF changes, for all instances and uncertainty levels.

f IAF changes. When there is no IAF change in the stochastic solutions of the ‘‘IAF as a decision’’ problem variant (as in instance
0_619_634), there is no cost saving compared to the variant ‘‘IAF as an input’’; in such a test setup, solutions from both variants
re identical (yet, more CPU time is needed to find them in the ‘‘IAF as a decision’’ variant). On the other hand, more IAF changes
nduce more cost saving, as illustrated clearly in instance 10_559_618, for example. We also see that the average number of IAF
hanges increases, as uncertainty increases, for most instances (all instances but 10_619_634). Hence, flexible IAF change can act as
hedging measure against uncertainty.

For a more thorough understanding of the added value of stochastic solutions compared to deterministic ones, and of the benefit
f flexible against fixed IAF assignment, we focus in the next subsection on the test setup involving the largest VSS, and the largest
verage number of IAF changes in the stochastic solutions: instance 10_559_618 with uncertainty level 𝜎 = 120 s.

6.6. Detailed results of a typical instance with high VSS and high cost saving due to IAF change

According to Tables 9 and 10, instance 10_559_618, together with uncertainty level 𝜎 = 120 s, features the largest value of the
stochastic solution (−477.72 and −370.16 euros, for the ‘‘IAF as a decision’’ and ‘‘IAF as an input’’ problem variants, respectively),
as well as the largest number of IAF changes (3 flights change their IAF). Table 11 describes this instance in more detail.

As a preliminary remark, the deterministic solutions for this test setup are identical for both problem variants. For the stochastic
solution of each problem variant, we select the one with the smallest validation cost among the solutions of the 𝑛 = 10 replications

hat we solved. We call such a solution the ‘‘best’’ stochastic solution for the considered problem variant. In this subsection, we
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uncertainty by avoiding delay in the approach phase, and by applying, instead, larger delays in the upstream phases, than in the
deterministic solution. In fact, the deterministic solution considers only one second-stage scenario, where all aircraft arrive at IAF
on time (i.e., the mean scenario). When confronted with scenarios having large uncertainties, the delays to apply in the approach
phase, assuming the first-stage decision is the deterministic solution, are large and their cost is large too. This inverted tendency
between minimization of delay time and minimization of delay cost, has also been observed in the literature, yet in a different
deterministic optimization problem for air traffic flow management (Bolić et al., 2017), where similar unit delay cost from Cook
nd Tanner (2015) are used.

From the distribution of cost and time over the flight phases (Figs. 13(a) and 13(b)), we deduce that the stochastic solution,
hen IAF assignment is fixed, uses as much as possible the delay at gate, since it is less expensive than in other flight phases. This

s to anticipate as much as possible the delay to be encountered in the approach phase, where delay unit cost becomes very high.
n an analogous way, the stochastic solution, when IAF re-assignment is possible, anticipates again delay in the approach phase,
y rerouting three flights to a different IAF. More precisely, these three aircraft are asked to change their IAF from IAF 2, the IAF
losest to the runway threshold, to IAF 1, that is the farthest IAF away from the runway threshold. These reroutings have two direct
ffects. Firstly, they increase delay time and cost in the en-route phase, compared to the other two solutions. Secondly, they defer
he unconstrained landing times of the three rerouted aircraft, used to compute delay at approach. This is particularly convenient
nd cost efficient for these three aircraft since they are computed as the last three aircraft to land according to the target landing
equence, as shown in Fig. 14. With later unconstrained landing times, the three rerouted aircraft will need less delay (and less cost)
n the approach phase, in order to achieve their target positions in the landing sequence.

The breakdown of the validation results (cost and time) by flight phase and by aircraft, shown in Figs. 15(a) to 15(h), confirms
he last remark. Moreover, we observe that aircraft 2 (an A388, already airborne at the beginning of the optimization) has a huge
elay cost in the approach phase, in the deterministic solution, where this aircraft is computed to land in the third position after an
319 (see Fig. 14). In fact, A388 has the largest delay unit cost, particularly in the approach phase, among all considered aircraft

ypes. According to the landing sequence of the deterministic solution, the first aircraft (an A320) can land without delay, i.e., exactly
t its unconstrained landing time. Then, the A319 can land soon after that A320 aircraft, by leaving the required runway threshold
eparation (but also never before its own unconstrained landing time). For the third position, the A388 has to be separated from
he A319. Note that if in any scenario, the A319 has to be delayed for separation with the A320, and that such a delay consumes
he buffer between the A319 and the A388, then the A388 will have to be further delayed in order to be separated from the A319.
owever, the two stochastic solutions decided to delay the A319 towards the end of sequence, so that the A388 can land in the

econd position without being affected by the possible delay incurred by the A319. This is also motivated by the fact that an A319
as relatively low delay unit costs.

In the stochastic solution when IAF assignment is fixed, the A319 is delayed on the ground by more than 10 min. In this case,
he cost of at-gate delay covers entirely the first piece of the piecewise-defined cost function, from 0 to 5 min, and partially the
econd piece, from 5 to 15 min. Recall that the delay unit cost of the second piece is higher than that of the first piece, as the delay
ost function is convex. In the stochastic solution when IAF assignment is flexible, the A319 is delayed at gate by 5 min exactly. In
he en-route phase, it is rerouted to a different IAF, causing 5 min of delay, and expedited by one minute; overall it is delayed by
round 4 min. However, the validation delay time is computed after uncertainty is revealed. Thus, for a given uncertainty scenario,
he validation delay time for the A319 in the en-route phase can be less or greater than 4 min, depending on the uncertainty
mount. The validation delay time for the A319 in the en-route phase, averaged over all validation scenarios, is around 250 s.
imilar observations can be made for aircraft 6 (A320), and 9 (E190). Remark also that the validation delay and advance cost for
ll three rerouted aircraft (in the stochastic solution when IAF assignment is flexible) are smaller than in the stochastic solution
hen IAF assignment is fixed. This confirms that IAF re-assignment, modeled as a path stretching in the en-route phase, can be an
fficient measure to decrease overall delay cost in the extended arrival management context (see Fig. 13).

. Conclusions and perspectives

We build on the literature of the extended aircraft arrival management problem under uncertainty (Khassiba et al., 2019, 2020)
y proposing a two-stage stochastic programming formulation that takes into account three new operational aspects: (i) multiple
AFs feeding the landing runway, (ii) different flight status in the first stage (aircraft are initially either at departure gate or airborne),
nd (iii) a time-deviation-cost function to minimize that is based on reference values depending on aircraft type and flight phase,
ased on Cook and Tanner (2015). We formulate and study two problem variants. The first variant considers the general case of
lexible re-assignment of IAFs to aircraft, as a new decision in the first stage. In the second variant, IAF assignment is assumed to
e given as an input and fixed.

We conduct a computational study on five realistic instances from Paris Charles-de-Gaulle airport, each of which involves 10
ircraft and two IAFs. For large uncertainty, values of the stochastic solution show a decrease in the time-deviation cost ranging
rom 3.22% to 18.46% of the deterministic solutions’ cost. This illustrates the benefit of taking into account uncertainty through
wo-stage stochastic programming. As for the effect of flexible IAF assignment, through the detailed study of a typical instance, we
emark that IAF changes help to decrease time-deviation cost, showing that IAF re-assignment can act as a hedging measure against
ncertainty.

An even more realistic study would take into account not only uncertainty but also the dynamic nature of the operational
roblem: continuously, new aircraft enter, while other aircraft leave the optimization horizon. Very recently, a few works tackled
he problem of aircraft scheduling and sequencing in the dynamic context, taking into account uncertainty (Huo et al., 2021; Vié
t al., 2022). Perspectives of the current work include extending the two-stage stochastic programming formulation to the dynamic
ase. Similar approaches have already been applied to other scheduling problems in transportation (see e.g., Zhu and Goverde
2020)). Advanced solution methods, e.g., based on Benders decomposition, may also be explored to reduce the computation time.
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Table A.1
Expressions of the constants 𝐸best

𝑏 and 𝐿best
𝑎 that occur in the definition of the big-M constant 𝑀𝑎𝑏 according to flight status (case

where IAF assignment is a first-stage decision). Same as Table 3.
Flight status On-ground Airborne

(in 𝐺) (in 𝐴)

𝐸best
𝑏 𝑃 TOT

𝑏 + 𝑉 𝑂
𝑏 − 𝑑𝑅

𝑏 𝐸𝑗∗
𝑏 , where 𝑗∗ is the initial IAF of 𝑏

𝐿best
𝑎 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑟 + 𝑑
𝑅
𝑎 𝐿𝑘

𝑎 , where 𝑘 ∈ ∖{𝑖∗} is an IAF different
from 𝑖∗ the initial IAF of 𝑎

Table A.2
Expressions of the constants 𝐸𝐿,best

𝑏 and 𝐿𝐿,best
𝑎 that occur in the definition of the big-M constant 𝑀𝐿

𝑎𝑏 according to flight status
(case where IAF assignment is a first-stage decision). Same as Table 4.

Flight status On-ground Airborne
(in 𝐺) (in 𝐴)

𝐸𝐿,best
𝑏 𝑃 TOT

𝑏 + 𝑉 𝑂
𝑏 − 𝑑𝑅

𝑏 + 𝜔𝑏 + min
𝑘∈

{

𝑉𝑏
𝑘 + 𝑟𝑗∗𝑘

}

𝑃 𝑗∗
𝑏 − 𝑑𝑅

𝑏 + 𝜔𝑏 + min
𝑘∈

{

𝑉𝑏
𝑘 + 𝑟𝑗∗𝑘

}

where 𝑗∗ ∈  is the initial IAF of aircraft 𝑏

𝐿𝐿,best
𝑎 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑑
𝑅
𝑎 + 𝜔𝑎 + max

𝑘∈

{

𝑉𝑎
𝑘
+ 𝑟𝑖∗𝑘

}

𝑃 𝑖∗
𝑎 + 𝑑

𝑅
𝑎 + 𝜔𝑎 + max

𝑘∈

{

𝑉𝑎
𝑘
+ 𝑟𝑖∗𝑘

}

where 𝑖∗ ∈  is the initial IAF of aircraft 𝑎

– For an on-ground aircraft 𝑏 ∈ 𝐺, with an initial IAF 𝑗∗ ∈ , and assigned IAF 𝑘 ∈ , we have:

𝑥𝑏 ≥ 𝑡𝑎 + 𝑉 𝑂
𝑎 + 𝑟𝑗

∗𝑘 − 𝑑𝑅𝑏 ≥ 𝑃 TOT
𝑎 + 𝑉 𝑂

𝑎 − 𝑑𝑅𝑏 (A.1)

– For an airborne aircraft 𝑏 ∈ 𝐴: the expression of the smallest earliest IAF time is trivial, since any rerouting will cause
a delay in the en-route phase. Hence, for any IAF different from the initial IAF, the earliest IAF time is greater than the
earliest IAF time for the initial IAF. We obtain:

𝑥𝑏 ≥ 𝐸𝑘
𝑏 = 𝐸𝑗∗

𝑏 + 𝑟𝑗
∗𝑘 ≥ 𝐸𝑗∗

𝑏 (A.2)

• Expression of 𝐿best
𝑎

– For an on-ground aircraft 𝑎 ∈ 𝐺, with an initial IAF 𝑗∗ ∈ , and assigned IAF 𝑘 ∈ , we have:

𝑥𝑎 ≤ 𝑡𝑎 + 𝑉 𝑂
𝑎 + 𝑟𝑗

∗𝑘 + 𝑑
𝑅
𝑏 ≤ 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑟 + 𝑑
𝑅
𝑎 (A.3)

– For an airborne aircraft 𝑎 ∈ 𝐴: the expression of the greatest latest IAF time is trivial, since any rerouting will cause
a delay in the en-route phase. Hence, for any IAF different from the initial IAF, the latest IAF time is greater than the
latest IAF time for the initial IAF, by 𝑟 seconds:

𝑥𝑎 ≤ 𝐿𝑘
𝑎 = 𝐿𝑖∗

𝑎 + 𝑟𝑖
∗𝑘 (A.4)

max
𝑘∈

{

𝐿𝑘
𝑎
}

= 𝐿𝑖∗
𝑎 + 𝑟 (A.5)

A.1.2. Expressions of best bounds on target landing time: 𝐸𝐿,best
𝑏 and 𝐿𝐿,best

𝑎

See Table A.2.

roofs
• Expression of 𝐸𝐿,best

𝑏

– For an on-ground aircraft 𝑏 ∈ 𝐺, assigned to IAF 𝑘 ∈ , we have:

𝑦𝑏 ≥ 𝑥𝑏 + 𝜔𝑏 + 𝑉 𝑘
𝑏 (A.6)

≥ 𝑃 TOT
𝑏 + 𝑉 𝑂

𝑏 + 𝑟𝑗
∗𝑘 − 𝑑𝑅𝑏 + 𝜔𝑏 + 𝑉 𝑘

𝑏 (A.7)

Given that IAF 𝑘 in unknown before optimization, we can write:

𝐸𝐿,best
𝑏 = min

𝑘∈

{

𝑃 TOT
𝑏 + 𝑉 𝑂

𝑏 − 𝑑𝑅𝑏 + 𝜔𝑏 + 𝑉 𝑘
𝑏 + 𝑟𝑗

∗𝑘
}

(A.8)

= 𝑃 TOT + 𝑉 𝑂 − 𝑑𝑅 + 𝜔 + min
{

𝑉 𝑘 + 𝑟𝑗
∗𝑘
}

(A.9)
25

𝑏 𝑏 𝑏 𝑏 𝑘∈ 𝑏
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Table A.3
Expressions of the constants 𝐸best

𝑏 and 𝐿best
𝑎 that occur in the expression of the big-M constant 𝑀𝐿

𝑎𝑏 according to flight status
(case where IAF assignment is fixed). Same as Table 5.

Flight status On-ground Airborne
(in 𝐺) (in 𝐴)

𝐸best
𝑏 𝑃 TOT

𝑏 + 𝑉 𝑂
𝑏 − 𝑑𝑅

𝑏 𝐸𝑗∗
𝑏 (input data)

𝐿best
𝑎 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑑
𝑅
𝑎 𝐿𝑖∗

𝑎 (input data)

– For an airborne aircraft 𝑏 ∈ 𝐴, assigned to IAF 𝑘 ∈ , we have:

𝑦𝑏 ≥ 𝑥𝑏 + 𝜔𝑏 + 𝑉 𝑘
𝑏 (A.10)

≥ 𝑃 𝑖∗
𝑏 + 𝑟𝑖

∗𝑘 − 𝑑𝑏 + 𝜔𝑏 + 𝑉 𝑘
𝑏 (A.11)

Given that IAF 𝑘 in unknown before optimization, it follows:

𝐸𝐿,best
𝑏 = min

𝑘∈

{

𝑃 𝑗∗
𝑏 + 𝑟𝑗

∗𝑘 − 𝑑𝑏 + 𝜔𝑏 + 𝑉 𝑘
𝑏

}

(A.12)

= 𝑃 𝑗∗
𝑏 − 𝑑𝑏 + 𝜔𝑏 + min

𝑘∈

{

𝑉 𝑘
𝑏 + 𝑟𝑗

∗𝑘
}

(A.13)

• Expression of 𝐿𝐿,best
𝑎

– For an on-ground aircraft 𝑎 ∈ 𝐺, we have:

𝑦𝑎 ≤ 𝑥𝑎 + 𝜔𝑎 + 𝑉𝑎
𝑘
+ 𝑑

𝑅
𝑎 (A.14)

≤
(

𝑃 TOT
𝑎 + 𝑑

𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑟𝑖
∗𝑘
)

+ 𝜔𝑎 + 𝑉𝑎
𝑘
+ 𝑑

𝑅
𝑎 (A.15)

Given that the assigned IAF 𝑘 is unknown before optimization, we can write:

𝐿𝐿,best
𝑎 = max

𝑘∈

{

𝑃 TOT
𝑎 + 𝑑

𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑟𝑖
∗𝑘 + 𝜔𝑎 + 𝑉𝑎

𝑘
+ 𝑑

𝑅
𝑎

}

(A.16)

= 𝑃 TOT
𝑎 + 𝑑

𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑑
𝑅
𝑎 + 𝜔𝑎 + max

𝑘∈

{

𝑉𝑎
𝑘
+ 𝑟𝑖

∗𝑘
}

(A.17)

– For an airborne aircraft 𝑎 ∈ 𝐴, assigned to IAF 𝑘 ∈ , we have:

𝑦𝑎 ≤ 𝑥𝑎 + 𝜔𝑎 + 𝑉𝑎
𝑘
≤ 𝑃 𝑖∗

𝑎 + 𝑟𝑖
∗𝑘 + 𝜔𝑎 + 𝑉𝑎

𝑘
+ 𝑑

𝑅
𝑎 (A.18)

Given that the assigned IAF 𝑘 is unknown before optimization, we obtain:

𝐿𝐿,best
𝑎 = max

𝑘∈

{

𝑃 𝑖∗
𝑎 + 𝑟𝑖

∗𝑘 + 𝜔𝑎 + 𝑉𝑎
𝑘
+ 𝑑

𝑅
𝑎

}

(A.19)

= 𝑃 𝑖∗
𝑎 + 𝜔𝑎 + 𝑑

𝑅
𝑎 + max

𝑘∈

{

𝑉𝑎
𝑘
+ 𝑟𝑖

∗𝑘
}

(A.20)

A.2. Second-variant model: IAF as a problem input

See Table A.3.

A.2.1. Expressions of best bounds on target IAF time: 𝐸best
𝑏 and 𝐿best𝑎

roofs
• The expression of 𝐸best

𝑏 for an on-ground aircraft 𝑏 ∈ 𝐺 comes from:

𝑥𝑏 ≥ 𝑡𝑎 + 𝑉 𝑂
𝑎 − 𝑑𝑅𝑏 ≥ 𝑃 TOT

𝑎 + 𝑉 𝑂
𝑎 − 𝑑𝑅𝑏 (A.21)

• The expression of 𝐿best
𝑎 for an on-ground aircraft 𝑎 ∈ 𝐺 comes from:

𝑥𝑎 ≤ 𝑡𝑎 + 𝑉 𝑂
𝑎 + 𝑑

𝑅
𝑏 ≤ 𝑃 TOT

𝑎 + 𝑑
𝐺
𝑎 + 𝑉 𝑂

𝑎 + 𝑑
𝑅
𝑏 (A.22)

Appendix B. Instances

See Table B.1.

Appendix C. Delay and advance unit costs

See Table C.1



Table B.1
Original instance of 30 aircraft with initial IAFs and flight status. (559_659)

Callsign Flight Aircraft WTC Initial At-gate Planned En-route Approach Unconst. flight time

status type IAF Planned Max landing Max Max Max Max fr. IAF 1 fr. IAF 2
dep. delay advance delay advance delay to RWY to RWY

NLY966D On-ground A320 M 2 346 900 7846 60 300 0 1200 780 660
AFR007 Airborne A388 H 1 NA 0 7920 60 300 0 1200 780 660
GWI6Z On-ground A319 M 2 3451 900 7951 60 300 0 1200 780 660
AFR379 Airborne B772 H 1 NA 0 8096 60 300 0 1200 780 660
AFR347 Airborne A343 H 1 NA 0 8124 60 300 0 1200 780 660

GWI98M On-ground A320 M 2 2086 900 8086 60 300 0 1200 780 660
DAL400 Airborne A333 H 1 NA 0 8232 60 300 0 1200 780 660
UAL904 Airborne B763 H 1 NA 0 8280 60 300 0 1200 780 660
DLH68H On-ground E190 M 2 2602 900 8302 60 300 0 1200 780 660
AFR639 Airborne B77W H 1 NA 0 8476 60 300 0 1200 780 660

DLH28W On-ground A321 M 2 3930 900 8430 60 300 0 1200 780 660
AAL786 Airborne A333 H 1 NA 0 8544 60 300 0 1200 780 660
GWI3J On-ground A319 M 2 2198 900 8498 60 300 0 1200 780 660
BEE5JA On-ground E170 M 1 3208 900 8608 60 300 0 1200 780 660
KLM11P On-ground B739 M 2 3758 900 8558 60 300 0 1200 780 660

AFR191 Airborne A332 H 2 NA 0 8598 60 300 0 1200 780 660
BEE670U On-ground E190 M 1 3864 900 8664 60 300 0 1200 780 660
AAL62 Airborne B763 H 1 NA 0 8732 60 300 0 1200 780 660
AFR135Q On-ground A319 M 2 1266 900 8766 60 300 0 1200 780 660
AFR1473 On-ground E170 M 1 1740 900 8940 60 300 0 1200 780 660

AFR124C Airborne A321 M 2 NA 0 8886 60 300 0 1200 780 660
ACA880 Airborne B77W H 1 NA 0 8972 60 300 0 1200 780 660
LGL8011 On-ground E145 M 2 5058 900 8958 60 300 0 1200 780 660
CSA3DZ On-ground A319 M 2 2398 900 8998 60 300 0 1200 780 660
AFR1747 Airborne E170 M 2 NA 0 9082 60 300 0 1200 780 660

AFR341E Airborne A320 M 2 NA 0 9183 60 300 0 1200 780 660
AFR801F On-ground A320 M 1 4916 900 9416 60 300 0 1200 780 660
UAL987 Airborne B763 H 1 NA 0 9512 60 300 0 1200 780 660
CSN347 Airborne A332 H 2 NA 0 9583 60 300 0 1200 780 660
AFR1653 Airborne A319 M 2 NA 0 9635 60 300 0 1200 780 660

COUNT (16) Airborne (18) M (14) IAF 1
(14) On-ground (12) H (16) IAF 2

Table C.1
Unit delay and advance cost (in euros per second), by flight phase, and by delay range (in minutes). Values based on estimations are in bold.

Aircraft type At-gate En-route Approach

0 – 5 5 – 15 15 – 30 ≥ 30 ≤ 0 0 – 5 5 – 15 15 – 30 ≥ 30 0 – 5 5 – 15 15 – 30 ≥ 30

A319 0.23 0.62 1.29 3.18 −0.05 0.80 1.18 1.86 3.74 0.73 1.12 1.80 3.68
A320 0.27 0.7 1.47 3.63 −0.05 0.83 1.27 2.04 4.20 0.83 1.25 2.02 4.19
A321 0.33 0.8 1.76 4.36 −0.06 1.00 1.48 2.43 5.04 0.93 1.42 2.37 4.97
A332 0.6 1.35 2.84 7.18 −0.11 1.90 2.62 4.13 8.47 1.57 2.28 3.79 8.13
A333 0.6 1.38 2.94 7.41 −0.12 2.06 2.85 4.41 8.88 1.68 2.45 4.00 8.43
A343 0.66 1.53 3.27 8.25 −0.14 2.32 3.19 4.93 9.92 1.68 2.45 4.00 8.43
A388 0.99 2.26 4.86 12.34 −0.21 3.55 4.82 7.43 14.91 3.27 4.72 7.72 16.35
AT43 0.1 0.25 0.48 1.11 −0.01 0.23 0.37 0.60 1.23 0.23 0.37 0.60 1.22
AT72 0.13 0.33 0.64 1.54 −0.02 0.30 0.50 0.82 1.71 0.30 0.47 0.80 1.69
B733 0.23 0.6 1.24 3.04 −0.05 0.83 1.18 1.84 3.63 0.70 1.07 1.72 3.51
B734 0.27 0.67 1.4 3.44 −0.05 0.87 1.25 1.99 4.03 0.83 1.22 1.94 3.99
B735 0.23 0.53 1.12 2.71 −0.05 0.77 1.08 1.66 3.26 0.60 0.93 1.50 3.11
B738 0.3 0.75 1.56 3.84 −0.05 0.90 1.35 2.17 4.45 0.83 1.28 2.10 4.38
B739 0.3 0.72 1.52 3.76 −0.06 0.97 1.39 2.19 4.43 0.98 1.45 2.36 4.93
B744 0.8 1.88 4.03 10.24 −0.19 3.10 4.18 6.33 12.54 2.37 3.42 5.58 11.79
B752 0.33 0.87 1.86 4.63 −0.07 1.13 1.67 2.66 5.43 0.97 1.48 2.49 5.26
B763 0.57 1.22 2.56 6.43 −0.10 1.70 2.35 3.69 7.57 1.60 2.25 3.60 7.47
B772 0.62 1.44 3.07 7.73 −0.13 2.16 2.98 4.61 9.28 1.72 2.50 4.09 8.61
B77W 0.76 1.75 3.75 9.49 −0.16 2.69 3.68 5.68 11.43 2.11 3.06 5.00 10.56
(continued on next page)
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Table C.1 (continued).
Aircraft type At-gate En-route Approach

0 – 5 5 – 15 15 – 30 ≥ 30 ≤ 0 0 – 5 5 – 15 15 – 30 ≥ 30 0 – 5 5 – 15 15 – 30 ≥ 30

DH8D 0.13 0.35 0.71 1.67 −0.02 0.37 0.57 0.92 1.89 0.37 0.57 0.92 1.89
E145 0.11 0.28 0.57 1.32 −0.01 0.23 0.41 0.70 1.45 0.18 0.31 0.50 0.97
E170 0.18 0.44 0.92 2.21 −0.03 0.50 0.76 1.24 2.53 0.37 0.58 0.93 1.88
E190 0.2 0.43 0.92 2.22 −0.04 0.60 0.87 1.34 2.64 0.60 0.85 1.32 2.62
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