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Chapter 1

System norms

1.1 Introduction

In this chapter the main norms which will be used in this lecture are summarized.

1.2 Norms of vector

Let xT be the transpose of vector x. The norm N(x) of a vector x ∈ Rn is a
function N : Rn → R+ satisfying the following properties:

− N(x) ≥ 0

− N(x) = 0 ⇔ x = 0

− N(x+ y) ≤ N(x) +N(y)

− N(αx) ≤ |α|N(x) ∀α ∈ R

Let x =

 x1
·
xn

 be a vector of Rn. Denoting by |xi| the absolute value of

xi the l2 norm of vector x is de�ned by:

∥x∥2 =
√
xTx =

(
n∑

i=1

|xi|2
) 1

2

(1.1)

The l2 norm is a special case of a more general family of norms, called lp
norm where p ∈ N+. The lp norm of vector x is de�ned by:

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

(1.2)

The l∞ norm of vector x is de�ned by:

∥x∥∞ = max
i

|xi| = lim
p→∞

∥x∥p (1.3)
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1.3 Norms of vector signal

Let x(t) =

 x1(t)
·

xn(t)

 ∈ Rn be a vector depending of time t ≥ 0. Vector x(t)

is called a vector signal. Assuming that the following integral is de�ned its
represents the L2 norm of vector signal x(t):

∥x(t)∥2 =

√∫ ∞

0
xT (t)x(t)dt < ∞ (1.4)

The L2 norm of a vector signal is also called its energy. Vector signal x(t)
is said of �nite energy, or equivalently x(t) ∈ L2[0,∞) where L2[0,∞) is the
Hilbert space of �nite energy signal de�ned ∀t ≥ 0, as soon as the integral in
Equation (1.4) exists.

Let X(s) be the Laplace transform of vector signal x(t). As soon as the
vector signal x(t) ∈ L2 its Laplace transform X(s) is strictly proper and all its
poles have negative real part (or equivalently x(t) ∈ L2[0,∞) ⇔ X(s) ∈ H2

where notation H is used after the mathematician G.H. Hardy). Let C− be a
contour following the imaginary axis of the complex plane and closed through a
semicircle with in�nite radius in the left half plane. By Parseval's theorem we
have:

∥x(t)∥2 =
√

1
2πj

∮
C− XT (−s)X(s)ds

=︸︷︷︸
s=jω

√
1
2π

∫ +∞
−∞ XT (−jω)X(jω)dω

(1.5)

The use of the residue theorem �nally leads to the following expression:

∥x(t)∥2 =
√ ∑

poles of X(s)

Res
(
XT (−s)X(s)

)
(1.6)

Let λi be a pole (with negative real part) of X(s) with multiplicity ni.
Residue Res

(
XT (−s)X(s)

)
on pole λi is de�ned as follows:

Ress=λi

(
XT (−s)X(s)

)
=

1

(ni − 1)!

dni−1

dsni−1
(s− λi)

niXT (−s)X(s)

∣∣∣∣
s=λi

(1.7)

The L∞ norm of vector signal x(t) is de�ned by:

∥x(t)∥∞ = sup
t∈R+

max
i

|xi(t)| (1.8)

Example 1.1. Let x) be de�ned as follows where τ is a positive time constant:

x = e−
t
τ ∀t ≥ 0 (1.9)

The square of the L2 norm of signal x(t) is:

∥x(t)∥22 =
∫∞
0 xT (t)x(t)dt

=
∫∞
0 e−

2t
τ dt

= τ
2e

− 2t
τ

∣∣∣∞
0

= τ
2

(1.10)
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And consequently:

∥x(t)∥2 =
√

τ

2
(1.11)

The square of the L2 norm of signal x(t) can equivalently be computed using

the Laplace transform X(s) of x(t):

X(s) = 1
s+ 1

τ

= τ
1+sτ

⇒ XT (−s)X(s) = τ2

(1+sτ)(1−sτ)

(1.12)

Assuming τ > 0 the unique pole λ1 = − 1
τ of X(s) has a negative real part

and its multiplicity n1 is equal to 1. Then residue of XT (−s)X(s) on pole

λ1 = − 1
τ is computed as follows:

Ress=− 1
τ

(
XT (−s)X(s)

)
= 1

(1−1)!
d1−1

ds1−1 (s− λ1)
1XT (−s)X(s)

∣∣∣
s=− 1

τ

= (s+ 1
τ )

τ2

(1+sτ)(1−sτ)

∣∣∣
s=− 1

τ

= τ
1−sτ

∣∣∣
s=− 1

τ

= τ
2

(1.13)

We �nally get:

∥x(t)∥2 =
√ ∑

poles of X(s)

Res
(
XT (−s)X(s)

)
=

√
τ

2
(1.14)

The L∞ norm of signal x(t) is de�ned by:

∥x(t)∥∞ = sup
t∈R+

|e−
t
τ | = 1 (1.15)

■

Example 1.2. Let x(t) be de�ned as follows:

x(t) =

[
e−t

e−2t

]
∀t ≥ 0 (1.16)

The square of the L2 norm of signal x(t) is:

∥x(t)∥22 =
∫∞
0 xT (t)x(t)dt

=
∫∞
0 e−2t + e−4tdt

= e−2t

−2 + e−4t

−4

∣∣∣∞
0

= 1
2 + 1

4 = 3
4

(1.17)

And consequently:

∥x(t)∥2 =
√

3

4
(1.18)
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The square of the L2 norm of signal x(t) can equivalently be computed using

the Laplace transform X(s) of x(t):

X(s) =

[ 1
s+1
1

s+2

]
⇒ XT (−s)X(s) = 1

(−s+1)(s+1) +
1

(−s+2)(s+2) (1.19)

X(s) has two poles with negative real part, namely λ1 = −1 and λ2 = −2,
each pole having a multiplicity equal to 1.

− Residue of XT (−s)X(s) on pole λ1 = −1 with multiplicity n1 = 1 is

computed as follows:

Ress=−1

(
XT (−s)X(s)

)
= 1

(1−1)!
d1−1

ds1−1 (s− λ1)
1XT (−s)X(s)

∣∣∣
s=−1

= (s+ 1)
(

1
(−s+1)(s+1) +

1
(−s+2)(s+2)

)∣∣∣
s=−1

= 1
2

(1.20)

− Residue of XT (−s)X(s) on pole λ1 = −2 with multiplicity n2 = 1 is

computed as follows:

Ress=−2

(
XT (−s)X(s)

)
= 1

(1−1)!
d1−1

ds1−1 (s− λ2)
1XT (−s)X(s)

∣∣∣
s=−2

= (s+ 2)
(

1
(−s+1)(s+1) +

1
(−s+2)(s+2)

)∣∣∣
s=−2

= 1
4

(1.21)

We �nally get:

∥x(t)∥2 =
√∑

poles of X(s)Res
(
XT (−s)X(s)

)
=
√

1
2 + 1

4

=
√

3
4

(1.22)

The L∞ norm of signal x(t) is de�ned by:

∥x(t)∥∞ = supt∈R+ maxi |xi(t)|
= supt∈R+ max

{
e−t, e−2t

}
= supt∈R+ e−t

= 1

(1.23)

■

1.4 Frobenius norm

A Hermitian matrix Q = QT is said to be positive semide�nite or nonnegative
de�nite, written as Q ≥ 0, when the following relation holds:

xTQx ≥ 0 ∀x ∈ Rn (1.24)
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The trace of a square matrix Q, which is denoted tr (Q), is the sum of its
main diagonal entries, or, equivalently, the sum of its eigenvalues. Let Q be any
n×m matrix. The Frobenius norm ∥Q∥F of matrix Q is de�ned by the square
root of the sum of the absolute squares of its elements:

Q =

 a11 · · · a1m
...

...
an1 · · · anm

⇒ ∥Q∥F =

√√√√ n∑
i=1

m∑
j=1

|aij |2 (1.25)

The Frobenius norm ∥Q∥F of matrix Q is equal to the square root of the
trace of matrix QQT :

∥Q∥F =
√

tr (QQT ) (1.26)

Finally, the Frobenius inner product is de�ned in Rm×m by tr
(
QTQ

)
.

More generally it can be shown that tr
(
f
(
AB2A

))
= tr

(
f
(
BA2B

))
for

any function f : R → R.

1.5 Singular Value Decomposition

Let λ(A) be the set of eigenvalues of square matrix A ∈ Rn×n, Λ the diagonal
matrix formed by the eigenvalues of A and X the matrix formed by the right
eigenvectors of A and. We have by de�nition of eigenvalues and right
eigenvectors:

A
[
v1 v2 . . . vn

]
=
[
v1 v2 . . . vn

]


λ1

λ2

. . .

λn


⇔ AX = XΛ
⇔ A = XΛXH

(1.27)

In the following UH stands for complex conjugate transpose of matrix U.
Matrix U is said unitary when the following relation holds:

U =
[
u1 · · · um

]
∈ Cm×m, UHU = UUH = I (1.28)

Now let A ∈ Rm×p. Then there exists unitary matrices U and V such that
the following decomposition of matrix A holds:

A = UΣVH

Σ =

[
Λq 0
0 0

]

Λq =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . . . . .

0 0 0 σq


(1.29)
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where:
σi ∈ R+ ∀i = 1, 2, · · · , q
σ1 ≥ σ2 ≥ · · · ≥ σq > 0
q = min(m, p) assuming that A has no eigenvalue equal to 0

(1.30)

The preceding decomposition of matrix A is called the Singular Value
Decomposition (SVD) of matrix A. From the preceding de�nition we get the
following properties:

AAH =
(
UΣVH

) (
UΣVH

)H
= U

[
Λ2 0
0 0

]
UH

AHA =
(
UΣVH

)H (
UΣVH

)
= V

[
Λ2 0
0 0

]
VH

(1.31)

The preceding equations indicate that U is the matrix formed by the right
eigenvectors of AAH whereas V is the matrix formed by the right eigenvectors
of AHA. Moreover Λ2 is composed of the non-zero eigenvalues of either AAH

or AHA.

Singular-values of matrix A are de�ned as the root square of the non-zero
eigenvalues of either AHA or AAH . The set σi(A) is the set of singular-values
of matrix A and we equivalently have:

σi(A) =
√

λi(AHA)|λi ̸=0 =
√

λi(AAH)|λi ̸=0 (1.32)

Geometrically, the singular-values of a matrix A are the lengths of the semi-
axes of the hyper-ellipsoid E de�ned by:

E = {y : y = Ax, x ∈ Rn, ∥x∥2 = 1} (1.33)

Consider a square matrix A ∈ Rn×n and its singular-value decomposition
A = UΣVH where σ1 ≥ · · · ≥ σn > 0. Then the inverse of A only requires
calculating the inverse of n real numbers since:

A = UΣVH ⇒ A−1 = VΣ−1UH = V


1
σ1

0 · · · 0

0 1
σ2

· · · 0
...

...
...

0 0 · · · 1
σn

UH (1.34)

Example 1.3. Let A be de�ned as follows:

A =

 −1 0 0
0 2 0
0 0 −9

 (1.35)

It is clear that the root square of the non-zero eigenvalues of either AHA or

AAH are {1, 2, 9}: those are the singular-values σi(A) of A.
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Furthermore it can be shown that the singular-value decomposition of A is

the following: 

U =

 0 0 1
0 1 0
1 0 0


Σ =

 9 0 0
0 2 0
0 0 1


V =

 0 0 −1
0 1 0
−1 0 0


(1.36)

■

1.6 Induced norms

As far as matrices can be viewed as a linear operators, the norm of a matrix is
de�ned by extending the lp-norm of a vector to matrices. The norm is said to
be an induced norm since it depends on the choice of the vector norm.

In addition to the four norms properties of section 1.2 and in the case of
square matrices induced matrix norms satisfy the following multiplicative
property (also called the consistency condition):

∥AB∥ ≤ ∥A∥∥B∥ (1.37)

The p-norm (induced by vector lp-norm) of a matrix A is de�ned by:

∥A∥p = max
x̸=0

∥Ax∥p
∥x∥p

(1.38)

It can be shown that the 2-norm of matrix A is the largest singular-value of
A, which is denoted σ(A):

∥A∥2 = max
i

σi(A) = σ(A) = max
∥x∥2=1

∥Ax∥2 = max
x ̸=0

∥Ax∥2
∥x∥2

(1.39)

For the smallest singular-value σ(A) of matrix A we have the following
property:

σ(A) = min
∥x∥2=1

∥Ax∥2 = min
x̸=0

∥Ax∥2
∥x∥2

(1.40)

The inverse of the smallest singular-value of A is the 2-norm of matrix A−1:

∥A−1∥2 =
1

mini σi(A)
=

1

σ(A)
(1.41)

The condition number κ(A) of matrix A is de�ned as the ratio between the
maximum singular-value and the minimum singular-value of A. We get from
the preceding properties:

κ(A) =
σ1
σn

=
σ(A)

σ(A)
= ∥A∥2∥A−1∥2 (1.42)
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If κ(A) is large the matrix is said to be ill-conditioned and it may be di�cult
to numerically compute its inverse or pseudo inverse.

Let A be a matrix (non necessarily square) written as follows:

A =

 a11 · · · a1m
...

...
an1 · · · anm

 (1.43)

It can be shown that:

− The 1-norm of matrix A is the so called maximum column sum and can
be computed as follows:

∥A∥1 = max
j

n∑
i=1

|aij | (1.44)

− The ∞-norm of matrix A is the so called maximum row sum and can be
computed as follows:

∥A∥∞ = max
i

m∑
j=1

|aij | (1.45)

Notice that not all matrix norms are induced norms. An example is the
Frobenius norm. Indeed ∥In∥p = 1 for any induced p-norm whereas ∥In∥F =

√
n.

Example 1.4. Let A be de�ned as follows:

A =

 −1 0 0
0 2 0
0 0 −9

 (1.46)

We have seen that the singular-values σi(A) of A are {1, 2, 9}. The 2-norm
of matrix A is the largest singular-value of A:

∥A∥2 = max
i

σi(A) = σ(A) = 9 (1.47)

The ∞-norm of matrix A is the maximum row sum:

∥A∥∞ = max
i

n∑
j=1

|aij | = max (1, 2, 9) = 9 (1.48)

■

Example 1.5. Let A be de�ned as follows:

A =

 5 −4 2
−1 2 3
−2 1 0

 (1.49)
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Matrix Σ of the singular-value decomposition of A = UΣVH is:

Σ =

 7.1476828 0 0
0 3.5440075 0
0 0 0.5921495

 (1.50)

The 2-norm of matrix A is the largest singular-value of A:

∥A∥2 = max
i

σi(A) = σ(A) = 7.1476828 (1.51)

The ∞-norm of matrix A is the maximum row sum:

∥A∥∞ = max
i

n∑
j=1

|aij | = max (11, 6, 3) = 11 (1.52)

■

1.7 H2 -norm of stable plants

1.7.1 H2 -norm de�nition

Let F(s) be a strictly proper transfer matrix of a stable (i.e. all the eigenvalues
of the matrix lies in C−) linear time invariant system. The set RH∞ is the set
of all rational stable and proper (but not necessarily strictly proper) transfer
matrices. We will denote by g(t) the impulse response of the system and by
L [g(t)] the Laplace transform of g(t) :

F(s) = L [g(t)] ⇔ g(t) = L−1 [F(s)] (1.53)

The H2 -norm of transfer matrix F(s) is de�ned through the impulse response
g(t) of the system:

∥F(s)∥2 =
√∫∞

0 tr (gT (t)g(t)) dt

=
√∫∞

0 tr (g(t)gT (t)) dt
(1.54)

Let's write matrix g(t) by column as:

g(t) =
[
g
1
(t) g

2
(t) . . . g

m
(t)

]
(1.55)

Then we get:

∥F(s)∥2 =

√√√√ m∑
i=1

∫ ∞

0
gT
i
(t)g

i
(t)dt (1.56)

From the preceding de�nition it is clear that the H2 -norm of transfer matrix
F(s) is the L2-norm of the sum of output signal gT

i
(t) when impulses (or Delta

Dirac functions) are applied to each input channels.
The H2 -norm of transfer matrix F(s) can be equivalently de�ned by using

the Parseval's theorem. Let C− be a contour following the imaginary axis of the



18 Chapter 1. System norms

complex plane and closed through a semicircle with in�nite radius in the left
half plane. By Parseval's theorem we get:

∥F(s)∥2 =
√

1
2πj

∮
C− tr (FT (−s)F(s)) ds

=
√

1
2πj

∮
C− tr (F(s)FT (−s)) ds

=︸︷︷︸
s=jω

√
1
2π

∫ +∞
−∞ tr (F(jω)FT (−jω)) dω

=
√

1
2π

∫ +∞
−∞ tr (FT (−jω)F(jω)) dω

(1.57)

Using the de�nition of singular-values the H2 -norm of transfer matrix F(s)
can also be computed using its singular-values:

∥F(s)∥2 =
√

1
2πj

∑q
i=1

∮
C− σi (F (s))) ds

=
√

1
2π

∑q
i=1

∫∞
−∞ σi (F (jω))) dω

(1.58)

As soon as F(s) is strictly proper and all its poles have negative real part its
H2 -norm exists. The use of the residue theorem leads to the following expression:

∥F(s)∥2 =
√∑

poles of F (s)Res (tr (FT (−s)F(s)))

=
√∑

poles of F (s)Res (tr (F(s)FT (−s)))
(1.59)

Another interpretation of the H2 -norm is the following: assume that y(s) =

F(s)u(s), where y(s) := L
[
y(t)

]
is the Laplace transform of the output signal

y(t) of the linear system and u(s) := L [u(t)] the Laplace transform of its input
signal u(t). Then ∥F(s)∥22 represents the steady-state variance of the output
signal y(t) when each component of u(t) is a stochastic white noise with unit

covariance, i.e. E
[
u(t)uT (τ)

]
= δ(t− τ)I.

It is worth noticing that the H2 -norm is not an induced norm because it does
not satisfy the multiplicative property (1.37). This implies that the H2 -norm
does not provide any information on how the series (cascade) interconnection
will behave1.

Example 1.6. To calculate the H2 -norm of F (s) = 1/(s + a) where a > 0
(indeed F (s) shall be stable to compute its H2 -norm) we use the fact that:

g(t) = L−1 [F(s)] = L−1

[
1

s+ a

]
= exp (−at) (1.60)

and hence:

∥F(s)∥22 =
∫ ∞

0
exp (−2at) dt =

1

2a
⇒ ∥F(s)∥2 =

√
1

2a
where a > 0 (1.61)

1Multivariable Feedback Control: Analysis and Design, Sigurd Skogestad & Ian
Postlethwaite, Wiley-Interscience 2005
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For this example, it is clear that the H2 -norm does not satisfy the

multiplicative property (1.37). Indeed we have:

∥F(s)F(s)∥22 = ∥F2(s)∥2
=
∫∞
0

(
L−1

[
F2(s)

])2
dt

=
∫∞
0

(
L−1

[
1

(s+a)2

])2
dt

=
∫∞
0

(
t e−at

)2
dt

=
∫∞
0 t2 e−2atdt

(1.62)

Once the integration by parts is accomplished, we �nally get:

∥F(s)F(s)∥22 =
1

4a3
⇒ ∥F(s)F(s)∥2 =

1

2a
√
a

(1.63)

Thus, we conclude that for 0 < a < 1 the multiplicative property (1.37) does
not hold. Indeed:

0 < a < 1 ⇒ ∥F(s)F(s)∥2 =
1

2a
√
a
>

1

2a
= ∥F(s)∥2∥F(s)∥2 (1.64)

■

Example 1.7. We wish to calculate the H2 -norm of a second order system

whose input-output relation reads:

1

ω2
n

ÿ(t) +
2ζ

ωn
ẏ(t) + y(t) = Ku(t) (1.65)

where ζ is the damping ratio (ζ ≥ 0), ωn the natural frequency (ωn ≥ 0) and
K the static gain.

Taking the Laplace transform of the preceding input-output relation (without

initial conditions) leads to the transfer function F (s) of the system:

F (s) =
Kω2

n

s2 + 2ζωns+ ω2
n

(1.66)

We will assume in the following that the damping ratio ζ is lower than 1 such
that the 2 poles λ1 and λ2 of the transfer function F (s) are complex conjugates:{

λ1 = −ζωn + jωn

√
1− ζ2

λ2 = −ζωn − jωn

√
1− ζ2

(1.67)

Consequently transfer function F (s) reads:

F (s) =
Kω2

n

(s− λ1)(s− λ2)
(1.68)

Rather than computing the H2 -norm thanks to the impulse response g(t) =
L−1 [F(s)] we will use the residue theorem. Indeed th transfer function F (s) is
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strictly proper and all its poles have negative real part thus its H2 -norm exists

and the residue theorem can be applied. This leads to the following expression:

∥F (s)∥2 =
√ ∑

poles of F (s)

Res (F T (−s)F (s)) (1.69)

where:

Ress=λi

(
F T (−s)F (s)

)
=

1

(ni − 1)!

dni−1

dsni−1
(s− λi)

niF T (−s)F (s)

∣∣∣∣
s=λi

(1.70)

The multiplicity of pole λ1 is n1 = 1. We get:

Ress=λ1

(
F T (−s)F (s)

)
= (s− λ1)F

T (−s)F (s)
∣∣
s=λ1

= �����(s− λ1)
Kω2

n
(−s−λ1)(−s−λ2)

Kω2
n

���(s−λ1)(s−λ2)

∣∣∣
s=λ1

= (Kω2
n)

2

(−λ1−λ1)(−λ1−λ2)(λ1−λ2)

= (Kω2
n)

2

2λ1(λ1+λ2)(λ1−λ2)

(1.71)

Similarly the multiplicity of pole λ2 is n2 = 1. We get:

Ress=λ2

(
F T (−s)F (s)

)
= (s− λ2)F

T (−s)F (s)
∣∣
s=λ2

= �����(s− λ2)
Kω2

n
(−s−λ1)(−s−λ2)

Kω2
n

(s−λ1)���(s−λ2)

∣∣∣
s=λ2

= (Kω2
n)

2

(−λ2−λ1)(−λ2−λ2)(λ2−λ1)

= (Kω2
n)

2

2λ2(λ2+λ1)(λ2−λ1)

(1.72)

Using the fact that λ2 is the complex conjugate of λ1, λ2 = λ∗
1, we get:

Ress=λ2

(
F T (−s)F (s)

)
=
(
Ress=λ1

(
F T (−s)F (s)

))∗
(1.73)

Denoting by Re the real part of a complex number we get:

∥F (s)∥22 =
∑

poles of F (s)Res
(
F T (−s)F (s)

)
= 2Re

(
Ress=λ1

(
F T (−s)F (s)

))
= �2Re

(
(Kω2

n)
2

�2λ1(λ1+λ2)(λ1−λ2)

) (1.74)

Let's multiply the numerator and the denominator by λ2 = λ∗
1 such that

λ1λ2 = |λ1|2 = ω2
n :

∥F (s)∥22 = Re

(
(Kω2

n)
2
λ2

λ1λ2(λ1+λ2)(λ1−λ2)

)
= Re

(
(Kω2

n)
2
λ2

ω2
n(−2ζωn)

(
2jωn

√
1−ζ2

)
)

= Re

(
K2

(
−ζωn−jωn

√
1−ζ2

)
(−2ζ)

(
2jωn

√
1−ζ2

)
)

= Re

(
K2

(
−jζωn+ωn

√
1−ζ2

)
2ζ

(
2ωn

√
1−ζ2

)
)

= K2

4
ωn
ζ

(1.75)
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and hence:

∥F(s)∥2 =
|K|
2

√
ωn

ζ
(1.76)

■

1.7.2 H2 -norm and grammians

Let (A,B,C) be a minimal realization of a stable and strictly proper transfer
matrix F(s):

F(s) = C (sI−A)−1B ⇔ g(t) = C exp (At)B (1.77)

Then it can be shown that the square of the H2 -norm of transfer matrix
F(s) can be computed as follows:

∥F(s)∥22 =
∫∞
0 tr

(
g(t)gT (t)

)
dt

=
∫∞
0 tr

(
gT (t)g(t)

)
dt

=
∫∞
0 tr

(
BT exp

(
AT t

)
CTC exp (At)B

)
dt

= tr
(
BTWoB

)
= tr

(
CWcC

T
) (1.78)

Where Wo and Wc are the observability grammian and the controllability
grammian respectively. They are de�ned as follows:

Wo = WT
o =

∫ ∞

0
exp(AT t)CTC exp(At)dt > 0 (1.79)

And:

Wc = WT
c =

∫ ∞

0
exp(At)BBT exp(AT t)dt > 0 (1.80)

Matrices Wo and Wc are the solutions of the following Lyapunov equations:

ATWo +WoA+CTC = 0 (1.81)

And:
AWc +WcA

T +BBT = 0 (1.82)

Indeed when A is an Hurwitz matrix we have:

g(t) = C exp(At)B (1.83)

Thus:

∥F(s)∥22 =
∫∞
0 tr

(
gT (t)g(t)

)
dt

= tr
(∫∞

0 BT exp(AT t)CTC exp(At)Bdt
)

= tr
(
BT

(∫∞
0 exp(AT t)CTC exp(At)dt

)
B
)

= tr
(
BTWoB

) (1.84)

where Wo is the observability grammian:

Wo =

∫ ∞

0
exp(AT t)CTC exp(At)dt (1.85)
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When multiplying Wo by exp(AT t0) on the left and by exp(At0) on the
right, we get ∀ t0 ∈ R:

exp(AT t0)Wo exp(At0) =
∫∞
0 exp(AT (t+ t0))C

TC exp(A(t+ t0))dt
=
∫∞
t0

exp(AT t)CTC exp(At)dt

(1.86)
Di�erentiation with respect to t0 and using the facts that matrix A is

assumed to be stable (that is limt→∞ exp(At) = limt→∞ exp(AT t) = 0) and

that g(x) =
∫ b(x)
a(x) f(τ) dτ ⇒ g′(x) = f(b(x)) b′(x)− f(a(x)) a′(x) yields:

AT exp(AT t0)Wo exp(At0) + exp(AT t0)Wo exp(At0)A

= − exp(AT t0)C
TC exp(At0) (1.87)

Finally setting t0 = 0 leads to the following Lyapunov equation:

ATWo +WoA = −CTC (1.88)

We use the relation ∥F(s)∥22 =
∫∞
0 tr

(
g(t)gT (t)

)
dt to get the result

involving the controllability grammian.

1.7.3 Balanced realization

We have seen in section 1.7.2 that controllability grammian Wc and
observability grammian Wo can be obtained as the solution to the following
Lyapunov equations:

ATWo +WoA+CTC = 0 (1.89)

And:
AWc +WcA

T +BBT = 0 (1.90)

Let (A,B,C) be a minimal realization of a stable and strictly proper transfer
matrix F(s):

F(s) = C (sI−A)−1B :=

(
A B

C 0

)
(1.91)

The minimal realization of F(s) is said to be balanced as soon as its
controllability grammian Wc and observability grammian Wo are equal:

Wc = Wo (1.92)

In the balanced realization basis, the realization of F(s) reads:

F(s) :=

(
P−1

b APb P−1
b B

CPb 0

)
(1.93)

Furthermore, by writing the Lyapunov equations that controllability
grammian Wcb and observability grammian Wob solve in the balanced
realization basis, we obtain:{

Wcb = P−1
b Wc

(
P−1

b

)T
Wob = PT

b WoPb

(1.94)
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We de�ne the Hankel singular-values σi as the square roots of the eigenvalues
of the product WcWo:

σi :=
√
λi (WcWo) (1.95)

The realization is balanced as soon as:

Wcb = Wob = Σ :=

 σ1
. . .

σn

 (1.96)

To get the balanced realization we can proceed as follows: since Wo = WT
o

is positive de�nite, we can factor it as Wo = LT
o Lo by Cholesky factorization,

where Lo is an invertible matrix. Similarly since Wc = WT
c is positive de�nite,

we can factor it as Wc = LT
c Lc by Cholesky factorization, where Lc is an

invertible matrix. Then the singular value decomposition of product LoL
T
c is

used, where UUT = UTU = I and VVT = VTV = I:

LoL
T
c = UΣVT (1.97)

Then the similarity transformation Pb is de�ned as follows:

Pb = LT
c VΣ−0.5 (1.98)

Indeed, we can check that the controllability grammian in the balanced basis
is the following:

Wcb = P−1
b Wc

(
P−1

b

)T
=
(
Σ0.5VT

(
L−1
c

)T)
LT
c Lc

(
Σ0.5VT

(
L−1
c

)T)T
=
(
Σ0.5VT

(
L−1
c

)T)
LT
c Lc

(
L−1
c VΣ0.5

)
= Σ

(1.99)

Similarly using the fact that LoL
T
c = UΣVT ⇔ LcL

T
o = VΣUT , we can

check that the observability grammian in the balanced basis is the following:

Wob = PT
b WoPb

=
(
LT
c VΣ−0.5

)T
LT
o Lo

(
LT
c VΣ−0.5

)
=
(
Σ−0.5VTLc

)
LT
o Lo

(
LT
c VΣ−0.5

)
= Σ−0.5VT

(
LcL

T
o

) (
LoL

T
c

)
VΣ−0.5

= Σ

(1.100)

1.8 H∞-norm of a stable plant

1.8.1 Frequency response of a stable system

Let u(t) be the input vector signal of the system, u(s) the Laplace transform
of the input vector signal u(t), y(t) the output vector signal of the system and
y(s) the Laplace transform of the output vector signal y(t).
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The output vector signal y(t) can be computed thanks to the input vector
signal u(t) and the impulse response g(t). Indeed denoting by ∗ the convolution
product we have:

y(s) = F(s)u(s) ⇔ y(t) = g(t) ∗ u(t) =
∫ ∞

0
g(τ)u(t− τ)dτ (1.101)

We will specialized this relation assuming that the input vector signal u(t)
is an harmonic vector signal with frequency ω and constant amplitude a:

u(t) = a exp (jωt) (1.102)

This leads to the following expression of the output signal vector y(t):

y(t) =
∫∞
0 g(τ)u(t− τ)dτ

=
∫∞
0 g(τ)a exp (jω(t− τ)) dτ

=
(∫∞

0 g(τ) exp (−jωτ) dτ
)
a exp (jωt)

=
(∫∞

0 g(τ) exp (−sτ) dτ
∣∣
s=jω

)
a exp (jωt)

= F(s)|s=jω a exp (jωt)

= F(jω)a exp (jωt)

(1.103)

The output signal y(t) has the same frequency than the input signal u(t) =
a exp (jωt). F(jω) is the factor by which magnitude and phase of the harmonic
vector input signal u(t) = a exp (jωt) are modi�ed. Notice that the output
signal y(t) does not have an L2 norm because the integral

∫∞
0 yH(t)y(t)dt is

unbounded. Nevertheless we can compute the square of the amplitude of the
output signal as yH(t)y(t). using the fact that exp (jωt) is scalar we get:

yH(t)y(t) = exp (−jωt) aTFH(jω)F(jω)a exp (jωt)

= aTFH(jω)F(jω)a
(1.104)

From(1.31) the singular-value decomposition of F(jω) is written as follows:

FH(jω)F(jω) =

V(jω)



σ2
1(jω) 0 . . . 0 0 . . . 0

0 σ2
2(jω) 0

...
...

...
...

. . . 0
0 . . . 0 σ2

q (jω)
... . . . 0

. . .
. . .

0 0


VH(jω) (1.105)

Let σ (F (jω)) be the largest singular-value of matrix F(jω), that is the ω
valued upper bound of the set of singular-values {σi (F(jω))} and σ (F (jω)) be
the smallest singular-value of matrix F(jω), that is the ω valued lower bound
of the set of singular-values {σi (F(jω))}:

0 < σ (F (jω)) ≤ σi (F(jω)) ≤ σ (F (jω)) ∀ i, ω (1.106)
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Then using the fact that V(jω) is a unitary matrix, i.e. V(jω)VH(jω) = I,
we get :

σ2 (F (jω)) aTa ≤ yH(t)y(t) ≤ σ2 (F (jω)) aTa (1.107)

Thus the ratio between the amplitude
√
yH(t)y(t) = |y(t)| of the output

signal y(t) and the amplitude
√
aTa = |a| of the input harmonic signal u(t) =

a exp (jωt) is comprised between σ (F (jω)) and σ (F (jω)):

σ (F (jω)) ≤ |y(t)|
|a|

≤ σ (F (jω)) (1.108)

For SISO systems the unique singular-value of the transfer function F (jω)
represents its magnitude:

SISO system ⇒ σ (F (jω)) = σ (F (jω)) = |F (jω)| (1.109)

For MIMO systems the singular-values σi(jω) of the transfer matrix F (jω)
are called the principal gains.

1.8.2 H∞-norm de�nition

A system with transfer matrix F(s) can be viewed as a mapping between an
input signal u(t) and an output signal y(t). If u(t) has �nite energy, then

maxu(t)̸=0
∥y(t)∥2
∥u(t)∥2 is the maximum size of the output response of the system in

terms of its energy.

The energy gain (or L2 gain) γ of a system with transfer matrix F(s) is
de�ned as:

γ = max
0<∥u(t)∥2<∞

∥y(t)∥2
∥u(t)∥2

= max
0<∥u(t)∥2<∞

∥L−1 [F(s)u(s)] ∥2
∥u(t)∥2

(1.110)

Alternatively one can characterize the energy gain (or L2 gain) of a stable
plant as the minimal value of γ such that:

∥y(t)∥2 = ∥L−1 [F(s)u(s)] ∥2 ≤ γ ∥u(t)∥2 for all �nite energy inputs u(t)
(1.111)

If system with transfer matrix F(s) is not stable then no such γ exists and
γ = ∞. On the other hand if F(s) is stable then γ is �nite. Consequently a
transfer matrix F(s) is said to be stable if and only if all �nite energy signals
u(t) ∈ L2 are mapped by F(s) into �nite energy signals y(t) ∈ L2. Alternatively
the transfer matrix F(s) is stable if and only if γ < ∞. Furthermore if F(s) is a
stable transfer matrix, its H∞-norm is equal to the energy gain of the system:

∥F(s)∥∞ = γ = max
ω

σ (F (jω)) (1.112)

where σ (F (jω)) is such that:

0 < σ (F (jω)) ≤ σi (F(jω)) ≤ σ (F (jω)) ∀ i, ω (1.113)
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Note that σi (F (jω)) is the root square of any non-zero eigenvalue of either
FH (jω)F (jω) or F (jω)FH (jω), that is any singular value of F (jω).

The eigenvalues of FH (jω)F (jω) are the values of λ such that
det
(
λ I− FH (jω)F (jω)

)
= 0. Similarly the eigenvalues of F (jω)FH (jω) are

the values of λ such that det
(
λ I− F (jω)FH (jω)

)
= 0.

In other words the H∞-norm of transfer matrix F(s) is the induced norm
obtained by the L2 norms of input and output vector signals:

∥F(s)∥∞ = max
u(t)̸=0

∥y(t)∥2
∥u(t)∥2

= max
ω

σ (F (jω)) (1.114)

This equation indicates that H∞-norm is a measure of the maximum gain
of a stable system over all frequencies ω; it is the worst case frequency response
of the system.

For a stable SISO (Single Input Single Output) linear system with transfer
function F (s) the H∞-norm represents the maximal peak value on the Bode
magnitude plot of F(jω):

∥F (s)∥∞ = max
ω

|F (jω)| (1.115)

For MIMO (Multi Input Multi Output) systems, it represents the maximal
peak value on the singular-values magnitude plot of F(jω); in other words, it is
the largest gain when the system is fed by an harmonic input vector.

It is worth noticing that the H∞-norm is an induced norm and thus satis�es
the multiplicative property (1.37).

1.8.3 H∞-norm and Hamiltonian matrix

Unlike H2 -norm , the H∞-norm cannot be computed analytically. Only
numerical solutions can be obtained. It can be shown that if (A,B,C,D) is a
minimal realization of transfer matrix F(s) then its H∞-norm can be
computed as follows:

∥F(s)∥∞ = supγ≥0{γ : H has eigenvalue with null real part} (1.116)

The Hamiltonian matrix H is de�ned as follows2:

H =

[
A+BR−1

γ DTC BR−1
γ BT

−CT
(
I+DR−1

γ DT
)
C −

(
A+BR−1

γ DTC
)T ]

=

[
A 0

−CTC −AT

]
+

[
B

−CTD

]
R−1

γ

[
DTC BT

] (1.117)

Where Rγ = RT
γ > 0 reads:

Rγ = γ2I−DTD (1.118)

For the usual case where D = 0 the Hamiltonian matrix H reduces as
follows:

H =

[
A 1

γ2BBT

−CTC −AT

]
(1.119)

2Robust Control Design: An Optimal Control Approach, Feng Lin, Wiley�Blackwell, 2007
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The way to get such Hamiltonian matrix is based on the bounded-real lemma
which is presented in Section 8.2.3.

We may use the Routh�Hurwitz stability criterion on the characteristic
polynomial χH(s) := det (sI−H) to get H∞-norm of F(s). Because χH(s) is
a even polynomial involving powers of s2, a row of zeros will appear in the
Routh table of χH(s). In order to build the Routh table, the row of zeros shall
be replaced by the coe�cients of the auxiliary polynomial obtained by taking
the derivative with respect to s of the polynomial corresponding to the
previous row. Let {γi} be the set of values of γ ≥ 0 such that the γ-dependent
coe�cients in the �rst column of the Routh table become zero. Then,
following Aghdam3 the H∞-norm of F(s) is obtained as:

∥F(s)∥∞ = max
i

{γi} (1.120)

As shown by Doyle & al.4 the algorithm for the calculation of the
H∞-norm can be obtained by observing that ∥F(s)∥∞ < γ is equivalent to the
fact that I − 1

γ2F
T (−jω)F(jω) is invertible for all ω ∈ R, meaning that(

I− 1
γ2F

T (−s)F(s)
)−1

has no pole on the imaginary axis. Then construct a

realization of
(
I− 1

γ2F
T (−s)F(s)

)−1
and use the fact that the poles coincide

with the eigenvalues of the corresponding state matrix H. The key point is the
achievement of the realization, which is obtained through the following
following lemma4: let (A,B,C) be the realization of a strictly proper transfer
matrix F(s) and H the Hamiltonian matrix de�ned in (1.119). Then:

(
I− 1

γ2F
T (−s)F(s)

)−1
=

 A 1
γ2BBT B

γ

−CTC −AT 0

0 BT

γ I


:=
[
0 BT

γ

]
(sI−H)−1

[ B
γ

0

]
+ I

(1.121)

To get this result, consider Figure 1.1. The relation between e(s) and r(s)
is obtained by reading Figure 1.1 against the arrows:

e(s) = r(s) + 1
γ2F

T (−s)F(s)e(s)

⇒ e(s) =
(
I− 1

γ2F
T (−s)F(s)

)−1
r(s)

(1.122)

On the other hand, the realization of FT (−s) is obtained from the realization

3Amir G. Aghdam, A Method to Obtain the In�nity-Norm of Systems using the Routh
Table, World Automation Congress (WAC) 2006, July 24-26, Budapest, Hungary

4Doyle J.C. ,Glover K., Khargonekar P.P. and Francis B.A., State-space solutions to
standard H2 and H∞ control problems, IEEE Transaction on Automatic Control, Vol 34,
n 8, 1989, pp 831-847
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Figure 1.1: Closed-loop Hamiltonian transfer function

of F(s) as follows:

F(s) =

(
A B

γ

C 0

)
:= C (sI−A)−1 B

γ

⇒ FT (−s) =
(
C (−sI−A)−1 B

γ

)T
= −BT

γ

(
sI−

(
−AT

))−1
CT

=

(
−AT −CT

BT

γ 0

) (1.123)

Thus, in the time domain we have:
F(s) =

(
A B

γ

C 0

)
⇒
{

ẋ1 = Ax1 +
B
γ e

u = Cx1

FT (−s) =

(
−AT −CT

BT

γ 0

)
⇒

{
ẋ2 = −ATx2 −CTu

y = BT

γ x2

(1.124)

From Figure 1.1 we see that e = r + y. Thus the realization of Figure 1.1
reads as follows:

e = r + y

u = Cx1
y = BT

γ x2

⇒


[
ẋ1
ẋ2

]
=

[
A 1

γ2BBT

−CTC −AT

] [
x1
x2

]
+

[ B
γ

0

]
r

y =
[
0 BT

γ

] [ x1
x2

]
+ I r

(1.125)

In the frequency domain we get:

e(s) =

([
0 BT

γ

]
(sI−H)−1

[ B
γ

0

]
+ I
)
r(s) (1.126)

When identifying (1.122) with (1.126) we get relation (1.121). An alternate

relation can also be obtained by replacing F(s)FT (−s)
γ2 in Figure 1.1 by FT (−s)F(s)

γ2 .

Having in mind that for any square invertible matrix Y we have XY−1Z =

X adj(Y)Z
det(Y) (here X =

[
0 BT

γ

]
, Y = (sI−H) and Z =

[ B
γ

0

]
), we conclude

that relation (1.121) indicates that the eigenvalues of Hamiltonian matrix H are

the roots of det
(
I− 1

γ2F
T (−s)F(s)

)
.
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Example 1.8. Let F (s) be de�ned as follows:

F (s) =
1

s+ 2
(1.127)

To calculate the H∞-norm of F (s) we use the fact that:

F (jω) =
1

2 + jω
⇒ |F (jω)| = 1√

4 + ω2
(1.128)

And hence :

∥F (s)∥∞ = max
ω

|F (jω)| = |F (0)| = 1√
4
=

1

2
(1.129)

A realization of F (s) is the following:
A = −2
B = 1
C = 1

(1.130)

Then the Hamiltonian matrix H is de�ned as follows:

H =

[
A 1

γ2BBT

−CTC −AT

]
=

[
−2 1

γ2

−1 2

]
(1.131)

The characteristic polynomial χH(s) of H reads:

χH(s) := det (sI−H) = det

([
s+ 2 − 1

γ2

1 s− 2

])
= s2 − 4 +

1

γ2
(1.132)

The Routh table corresponding to χH(s) reads:

s2 1 −4 + 1
γ2

s1 0 → 2

s0 −4 + 1
γ2

(1.133)

Note that coe�cient 2 in row s1 has been obtained by taking the derivative

with respect to s of the polynomial corresponding to the previous row:

d

ds

(
s2 − 4 +

1

γ2

)
= 2 (1.134)

The γ-dependent coe�cient in the �rst column of the Routh table become

zero for γ ≥ 0 such that γ = 1
2 : this is actually H∞-norm of F (s).

■

Example 1.9. Let F(s) be de�ned as follows:

F(s) =

[ 1
s+1
1

s+2

]
(1.135)
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To calculate the H∞-norm of F(s) we use the fact that:

F(jω) =

[
1

jω+1
1

jω+2

]

⇒ FH(jω)F(jω) =
[

1
−jω+1

1
−jω+2

] [ 1
jω+1

1
jω+2

]
=

1

ω2 + 1
+

1

ω2 + 4
(1.136)

Thus:

σ (F (jω)) =

√
1

ω2 + 1
+

1

ω2 + 4
(1.137)

and:

∥F(s)∥∞ = γ = max
ω

σ (F (jω)) =

√
1 +

1

4
=

√
5

4
(1.138)

Alternatively we can write:

F(jω) =

[
1

jω+1
1

jω+2

]

⇒ F(jω)FH(jω) =

[
1

jω+1
1

jω+2

] [
1

−jω+1
1

−jω+2

]
=

[
1

(1+jω) (1−jω)
1

(1+jω) (2−jω)
1

(2+jω) (1−jω)
1

(2+jω) (2−jω)

] (1.139)

In order to compute the singular values of F(jω), lets compute the

characteristic polynomial of matrix F(jω)FH(jω):

det
(
λI− F(jω)FH(jω)

)
= λ2 ω4+5λ2 ω2+4λ2−2λω2−5λ

(1+jω) (1−jω) (2+jω) (2−jω)

=
λ (λ (ω4+5ω2+4)−2ω2−5)
(1+jω) (1−jω) (2+jω) (2−jω)

(1.140)

Thus the eigenvalues of F(jω)FH(jω) are λ = 0 and λ = 2ω2+5
ω4+5ω2+4

. The

root square of the non-zero eigenvalue of F (jω)FH (jω) reads:

σ (F(jω)) =

√
2ω2 + 5

ω4 + 5ω2 + 4
=

√
1

ω2 + 1
+

1

ω2 + 4
(1.141)

Thus for this example:

σ (F (jω)) = σ (F(jω)) =

√
1

ω2 + 1
+

1

ω2 + 4
(1.142)

We then retrieve the preceding result:

∥F(s)∥∞ = γ = max
ω

σ (F (jω)) =

√
1 +

1

4
=

√
5

4
(1.143)
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Alternatively, a realization of F(s) reads:

F(s) =
1

s2 + 3s+ 2

[
s+ 2
s+ 1

]
:=

(
A B

C 0

)
=


0 1 0
−2 −3 1

2 1 0
1 1 0

 (1.144)

Then the Hamiltonian matrix H is de�ned as follows:

H =

[
A 1

γ2BBT

−CTC −AT

]
=


0 1 0 0
−2 −3 0 1

γ2

−5 −3 0 2
−3 −2 −1 3

 (1.145)

The characteristic polynomial χH(s) of H reads:

χH(s) := det (sI−H)

= det




λ −1 0 0
2 λ+ 3 0 − 1

γ2

5 3 λ −2
3 2 1 λ− 3




= s4 +
(

2
γ2 − 5

)
s2 + 4− 5

γ2

(1.146)

The Routh table corresponding to χH(s) reads:

s4 1 2
γ2 − 5 4− 5

γ2

s3 0 → 4 0 → 2
(

2
γ2 − 5

)
s2 2

(
2
γ2 − 5

)
4
(
4− 5

γ2

)
s1 88

γ2 − 84

s0 4
(
4− 5

γ2

)
(1.147)

Note that coe�cients in row s3 have been obtained by taking the derivative

with respect to s of the polynomial corresponding to the previous row:

d

ds

(
s4 +

(
2

γ2
− 5

)
s2 + 4− 5

γ2

)
= 4 s3 + 2

(
2

γ2
− 5

)
s (1.148)

Let {γi} = {
√

2
5 ≈ 0.6325 ,

√
88
84 ≈ 1.0235 ,

√
5
4 ≈ 1.118} be the set of values

of γ ≥ 0 such that the γ-dependent coe�cients in the �rst column of the Routh

table become zero. Then the H∞-norm of F(s) is obtained as:

∥F(s)∥∞ = max
i

{γi} =

√
5

4
(1.149)

■
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Chapter 2

Sensitivity function

2.1 Open-loop versus closed-loop

Usually a plant alone do not �t with the industrial constraints within which it
will be used. Typically a plant without controller will not be neither enough
precise nor fast. Thus a controller shall be added to the plant (equipped with
sensors and actuators) to satisfy industrial speci�cations. We will denote:

− F (s) the transfer function of the plant;

− C(s) the transfer function of the controller;

− u(t) the plant input (actuator signal) and y(t) the plant output (sensor
signal) whose Laplace transform are respectively L (y(t)) = Y (s) and
L (u(t)) = U(s);

− r(t) the reference input whose Laplace transform is L (r(t)) = R(s).
Reference input r(t) represents what we would like y(t) to be;

− ϵ(t) = r(t)− y(t) the tracking error as depicted in Figure 2.2. Its Laplace
transform is L (ϵ(t)) = ϵ(s).

In that section we will compare open-loop control versus closed-loop control.
In open-loop control the output signal y(t) of the plant to be controlled has no
e�ect upon the input of the plant to be controlled as depicted in Figure 2.1. It
is not the case for closed-loop control.

Denoting by Co(s) the open-loop controller, simple algebra shows that the
input output relation Go(s) of the open-loop control depicted in Figure 2.1

Figure 2.1: Open-loop control
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Figure 2.2: Closed-loop control with controller in the direct path

Figure 2.3: Closed-loop control with controller in the feedback path

reads:

Y (s) = Co(s)F (s)R(s) ⇒ Go(s) =
Y (s)

R(s)
= Co(s)F (s) (2.1)

On the other hand closed-loop control, or feedback control loop, is a control
pattern within which the output signal y(t) of the plant to be controlled is
returned back and compared to the reference input to form the system control
as depicted in Figure 2.2.

Denoting by C(s) the closed-loop controller, simple algebra shows that the
input output relation G(s) of the closed-loop control depicted in Figure 2.2
reads:

Y (s) = F (s)C(s) (R(s)− Y (s)) ⇒ G(s) =
Y (s)

R(s)
=

F (s)C(s)

1 + F (s)C(s)
(2.2)

It is worth noticing that other feedback loop con�gurations exist. For
example the closed-loop controller C(s) may be put is the feedback path as
depicted in Figure 2.3.

The input output relation of Figure 2.3 reads:

Y (s) = F (s) (R(s)− C(s)Y (s)) ⇒ Y (s)

R(s)
=

F (s)

1 + F (s)C(s)
(2.3)

That is:

Y (s) =
F (s)C(s)

1 + F (s)C(s)

R(s)

C(s)
(2.4)

The preceding relation indicates that Figure 2.3 is equivalent to Figure 2.2
when the reference input R(s) is replaced by R(s)

C(s) .

In the following we will focus on the feedback loop where the controller is
situated in the direct path as depicted in Figure 2.2.
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When comparing (2.1) and (2.2) it is clear that the open-loop controller
Co(s) can be obtained from the closed-loop controller C(s) by choosing:

Co(s)F (s) =
F (s)C(s)

1 + F (s)C(s)
⇒ Co(s) =

C(s)

1 + F (s)C(s)
(2.5)

Consequently it seems that open-loop control and closed-loop control are
equivalent control. Nevertheless we shall have in mind that the plant model
F (s) often comes from linearization and simpli�cation, and thus is uncertain.
Thus we will study the sensitivity of both open-loop scheme and closed-loop
scheme with respect to the plant model uncertainty thanks to the sensitivity
function SH

α de�ned by:

SH
α =

∂H/H

∂α/α
=

α

H

∂H

∂α
(2.6)

Basically SH
α relates the relative change of quantity H with respects to the

relative change of quantity α.
Specializing the sensitivity function de�nition to the case where H is the

open-loop transfer function Go(s) and α the uncertain transfer function F (s) of
the plant we get:

SGo
F =

F

Go

∂Go

∂F
=

F

CoF

∂

∂F
(CoF ) =

F

CoF
Co = 1 (2.7)

The preceding relation indicates that any change in the plant transfer
function F (s) is totally transferred into the open-loop control scheme whatever
controller C0(s) is.

On the other hand we will now specialize the sensitivity function de�nition
to the case whereH is the closed-loop transfer function G(s) and α the uncertain
transfer function F (s) of the plant:

SG
F =

F

G

∂G

∂F
=

F
CF

1+CF

∂

∂F

(
CF

1 + CF

)
=

1 + CF

C

∂

∂F

(
CF

1 + CF

)
(2.8)

Let's compute the following expression:

∂

∂F

(
CF

1 + CF

)
=

C (1 + CF )− CFC

(1 + CF )2
=

C

(1 + CF )2
(2.9)

We �nally get:

SG
F =

1

1 + CF
(2.10)

Thus the sensitivity function S(s) of the closed-loop system reads:

SG
F := S(s) =

1

1 + C(s)F (s)
(2.11)

The preceding relation clearly indicates that as soon as the product
C(s)F (s) is high within the frequency range of the uncertain plant F (s) then
the closed-loop control scheme allows a great reduction of the sensitivity of the
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controlled system with respects to uncertainties. Same result can be achieved
when comparing the sensitivity of open-loop control scheme and closed-loop
control scheme with respect to external disturbances.

As a consequence the central idea to control a plant is the feedback loop
where the output signal y(t) of the plant to be controlled is returned back and
compared to the reference input to form the system control as depicted in Figure
2.2.

2.2 SISO systems

For SISO systems S(s) = e(s)
r(s) = 1

1+L(s) represents the sensitivity function. It
can be shown that sensitivity function quanti�es how sensitive is the closed loop
system to variations of the plant.

Indeed let L(s) = F (s)C(s), where F (s) is the transfer function of the plant
and C(s) is the transfer function of the corrector. Then according to Figure 4.3
the closed loop transfer function G(s) reads:

L(s) = F (s)C(s) ⇒ G(s) =
y(s)

r(s)
=

L(s)

1 + L(s)
=

F (s)C(s)

1 + F (s)C(s)
(2.12)

Then the relative sensitivity of the closed loop transfer function G(s) with
respect to variations of the plant transfer function F (s) reads:

∂G(s)/∂F (s)
G(s)/F (s) = ∂G(s)

∂F (s)
F (s)
G(s)

= C(s) (1+F (s)C(s))−F (s)C(s)C(s)
(1+F (s)C(s))2

1+F (s)C(s)
C(s)

= 1
1+F (s)C(s)

= 1
1+L(s)

= S(s)

(2.13)

The same result is obtained when the controller C(s) is laid in the feedback
loop:

G(s) = F (s)
1+F (s)C(s)

⇒ ∂G(s)/∂F (s)
G(s)/F (s) = ∂G(s)

∂F (s)
F (s)
G(s)

= 1+F (s)C(s)−F (s)C(s)
(1+F (s)C(s))2

(1 + F (s)C(s))

= 1
1+F (s)C(s)

= 1
1+L(s)

= S(s)

(2.14)

Therefore one of the objective of robust control is to minimize the H∞-norm
of the sensitivity function S(s).

Nevertheless the minimization of the H∞-norm of the sensitivity function
S(s) alone turns out to be an ill-posed problem because the gain of the resulting
controller would be in�nite.

The complementary sensitivity function T (s) = 1 − S(s) = L(s)
1+L(s)

represents the closed loop transfer function. The inverse of the in�nity-norm of
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the complementary sensitivity function ∥T (s)∥−1
∞ is thus the reciprocal of the

resonance peak of the closed loop transfer function and constitutes an
important performance indicator for the closed loop system.

2.3 Bode's integral theorem

Let S(s) = 1
1+L(s) be the sensitivity function of a SISO system. We will assume

that S(s) goes to zero faster than 1/s for large s. Let λk be the poles of the
open loop transfer function L(s) in the right-half plane. Then denoting by λk the
unstable poles of L(s) (that are the poles in the right-half plane), and assuming
the the closed loop is stable, it can be shown that the sensitivity function S(s)
satis�es the following relation1, which is called the Bode's integral theorem:

S(s) =
1

1 + L(s)
⇒
∫ ∞

0
ln (|S(jω)|) dω = π

∑
k

λk (2.15)

For an open loop transfer function without pole in the right-half plane the
Bode's integral theorem reads:∫ ∞

0
ln (|S(jω)|) dω = 0 (2.16)

This result can be interpreted as follows: the integrated value of the log of
the magnitude of the sensitivity function remains the same whatever the
action of the feedback control. At low frequencies, in order to have good
tracking performance, the magnitude of the sensitivity function S(s) shall be
much lower than 1, thus ln (|S(jω)|) is negative. The Bode's integral theorem
indicates that the average sensitivity improvement at low frequencies thanks to
the feedback control is obtained through the average sensitivity deterioration

at high frequencies.
If the plant is unstable the situation is worse since the right part of (2.15)

is becoming positive.
There is an analogous result for the complementary sensitivity function

T (s) = 1 − S(s) = L(s)
1+L(s) . Denoting by zk the zeros of L(s) in the open

right-half plane it can be shown that the following relation holds:

T (s) =
L(s)

1 + L(s)
⇒
∫ ∞

0
ln

(∣∣∣∣T ( 1

jω
)

∣∣∣∣) dω = π
∑
k

1

zk
(2.17)

2.4 Requirements on sensitivity function

Consider Figure 2.2 where controller C(s) is laid in the direct path. Then it can

be shown that for this controller con�guration the transfer function ϵ(s)
R(s) has the

same expression than the sensitivity function S(s):

ϵ(s)

R(s)
=

1

1 + F (s)C(s)
= S(s) (2.18)

1Multivariable Gain-Phase and Sensitivity Integral Relations and Design Tradeo�s, Jie
Chen, IEEE Transactions On Automatic Control, Vol. 43, No. 3, March 1998
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Figure 2.4: Requirements on loop gain L(s) and sensitivity function S(s)

Thus, having in mind the �nal value theorem which states that
limt→∞ϵ(t) = lims→0 s ϵ(s), we conclude that for good tracking performances
the sensitivity function S(s) shall be close to zero (in fact much smaller than
1) at low frequency, meaning that loop gain L(s) = F (s)C(s) shall be
su�ciently high at low frequency. Customary performance speci�cations
require the sensitivity function to be small at low frequencies and to level o�
to one at high frequencies.

Indeed, the loop gain L(s) = F (s)C(s) shall be su�ciently small at high
frequency to be robust to high frequency noise and unmodelled dynamics,
meaning that sensitivity function S(s) shall be close to 1 at high frequency.

Those requirements are illustrated in Figure 2.4. Bode's integral theorem
states that those requirements are con�icting because rolling-o� the magnitude
of the sensitivity function at high frequencies results in an increase at low
frequencies, and vice versa. Sensitivity reduction at low frequencies inevitably
leads to sensitivity increase at higher frequencies.

2.5 MIMO systems

In the following Fn(s) will represent the nominal transfer function, that is the
known part of the actual transfer function F(s).

We have seen that sensitivity function plays an important role in robust
control. For MIMO systems, the (output) sensitivity matrix S(s) is de�ned as
follows:

S(s) = (I+ Fn(s)C(s))−1 (2.19)

The (output) complementary sensitivity matrix T(s) reads:

T(s) = (I+ Fn(s)C(s))−1Fn(s)C(s) (2.20)

Notice that S(s) and T(s) are related according to:

S(s) +T(s) = I (2.21)
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Indeed:

I− S(s) = I− (I+ Fn(s)C(s))−1

= (I+ Fn(s)C(s))−1 (I+ Fn(s)C(s))− (I+ Fn(s)C(s))−1

= (I+ Fn(s)C(s))−1 ((I+ Fn(s)C(s))− I)
= (I+ Fn(s)C(s))−1Fn(s)C(s)
= T(s)

(2.22)

Furthermore the (output) complementary sensitivity matrix T(s) can be
expressed as follows:

T(s) = S(s)Fn(s)C(s) = Fn(s)C(s)S(s) (2.23)

Indeed:

S(s)Fn(s)C(s) = Fn(s)C(s)S(s)

⇔ (I+ Fn(s)C(s))−1Fn(s)C(s) = Fn(s)C(s) (I+ Fn(s)C(s))−1

⇔ Fn(s)C(s) = (I+ Fn(s)C(s))Fn(s)C(s) (I+ Fn(s)C(s))−1

⇔ Fn(s)C(s) (I+ Fn(s)C(s)) = (I+ Fn(s)C(s))Fn(s)C(s)

⇔ Fn(s)C(s) + (Fn(s)C(s))2 = Fn(s)C(s) + (Fn(s)C(s))2

(2.24)
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Chapter 3

Modelling uncertainty

3.1 Introduction

A control system is robust if it is insensitive to di�erences between the actual
system and the model of the system which is used to design the controller.

There are typically two sources of uncertainties: unstructured uncertainties
and parametric uncertainties:

− Unstructured uncertainties come from unmodelled or neglected system
dynamics (usually high-frequency) or neglected nonlinearities when
modelling the plant as a linear time invariant system.

− Parametric uncertainties come from an inaccurate description of
component characteristics. They can be described by variations of
certain system parameters over some set of possible values. They a�ect
the low-frequency range performance.

These modelling uncertainties may adversely a�ect the stability and
performance of a control system. In this chapter we will discuss how dynamic
perturbations are usually described so that they can be used in the framework
of robust system design.

Furthermore we will illustrate that uncertainty can be modelled through the
block diagram in Figure 3.1 where:

− w is the exogenous input vector such as disturbances or reference input

− z is the performance output vector, that is the vector that allows to
characterize the performance of the closed loop system. This is a virtual

output used only for design that we wish to maintain as small as possible

− M(s) is the transfer matrix of the known generalized plant.

− ∆(s) is an unknown transfer matrix which represents uncertainty. ∆(s)
is taken in the set of all stable and proper rational transfer matrices that
map the imaginary axis into the open disk of radius γ:

∆(s) ∈ RH∞ s.t. ∥∆(s)∥∞ < γ (3.1)
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Figure 3.1: M∆ structure

− The output of ∆(s) is d(s) and its input is e(s).

The transfer matrix of the interconnected system depicted in Figure 3.1 is
the following: [

e(s)
z(s)

]
=

[
M11(s) M12(s)
M21(s) M22(s)

] [
d(s)
w(s)

]
(3.2)

3.2 Unstructured uncertainty

We recall that unstructured uncertainties come from unmodelled or neglected
system dynamics (usually high-frequency) or neglected nonlinearities when
modelling the plant as a linear time invariant system. As far as unstructured
uncertainty is concerned, we will consider additive uncertainty, input
multiplicative uncertainty and numerator-denominator perturbations. Those
uncertainties can easily be plotted in the Bode magnitude plot.

3.2.1 Additive uncertainty

If the plant is subject to additive uncertainty then its input-output relation can
be written as follows where Fn is the transfer matrix of the nominal plant:

y
p
(s) = (Fn(s) +∆(s)Wu(s))u(s) (3.3)

This equation indicates that the deviation of the actual transfer matrix
from the nominal transfer matrix Fn(s) is located inside a circle of radius
∥∆(s)Wu(s)∥∞ ≤ ∥∆(s)∥∞∥Wu(s)∥∞ ≤ γ ∥Wu(s)∥∞ which varies with
frequency ω when setting s = jω. Thus the weighting function Wu(s)
indicates how the size of the uncertainties depends upon frequency. Typically
Wu(s) is a high-pass �lter because linear time invariant models are, usually,
not very accurate at high frequency.

Plant with additive uncertainty is shown on Figure 3.2.

To be compliant with the block diagram of Figure 3.1 we write:{
y
p
(s) = Fn(s)u(s) + d(s)

d(s) = ∆(s)Wu(s)u(s) := ∆(s)e(s) ⇒ e(s) = Wu(s)u(s)
(3.4)
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Figure 3.2: Plant with additive uncertainty

Figure 3.3: Plant with multiplicative uncertainty

That is: [
e(s)
y
p
(s)

]
=

[
0 Wu(s)
I Fn(s)

[
d(s)
u(s)

]
:= M(s)

[
d(s)
u(s)

]
(3.5)

We can make the identi�cation y
p
(s) := z(s) and u(s) := w(s).

3.2.2 Output multiplicative uncertainty

Now if the plant is subject to output multiplicative uncertainty then its input-
output relation can be written as follows:

y
p
(s) = (I+∆(s)Wu(s))Fn(s)u(s) (3.6)

Plant with multiplicative uncertainty is shown on Figure 3.3.

To be compliant with the block diagram of Figure 3.1 we de�ne ∆(s) as
follows: {

y
p
(s) = Fn(s)u(s) + d(s)

d(s) = ∆(s)Wu(s)Fn(s)u(s) := ∆(s)e(s)
(3.7)

That is:[
e(s)
y
p
(s)

]
=

[
0 Wu(s)Fn(s)
I Fn(s)

[
d(s)
u(s)

]
:= M(s)

[
d(s)
u(s)

]
(3.8)

We can make the identi�cation y
p
(s) := z(s) and u(s) := w(s).



44 Chapter 3. Modelling uncertainty

3.2.3 Input-output multiplicative uncertainty

Finally if the plant is subject to input-output multiplicative uncertainty then
its input-output relation can be written as follows:

y
p
(s) = (I+∆1(s)W1(s))Fn(s) (I+∆2(s)W2(s))u(s) (3.9)

To be compliant with the block diagram of Figure 3.1 we �rst de�ne ∆1(s)
as follows:{

z(s) := y
p
(s) = Fn(s) (I+∆2(s)W2(s))u(s) + d1(s)

d1(s) = ∆1(s)W1(s)Fn(s) (I+∆2(s)W2(s))u(s) := ∆1(s)e1(s)
(3.10)

In a second step, we do the same with ∆2(s):{
z(s) := y

p
(s) = Fn(s)u(s) + Fn(s)d2(s) + d1(s)

d2(s) = ∆2(s)W2(s)u(s) := ∆2(s)e2(s)
(3.11)

Using the expressions of d2(s) the expression of e1(s) becomes:

d2(s) = ∆2(s)W2(s)u(s)
⇒ e1(s) = W1(s)Fn(s)u(s) +W1(s)Fn(s)d2(s)

(3.12)

We �nally get: e1(s)
e2(s)

z(s)

 =

 0 W1(s)Fn(s) W1(s)Fn(s)
0 0 W2(s)

I Fn(s) Fn(s)

 d1(s)
d2(s)

u(s)

 (3.13)

That is: [
e(s)
z(s)

]
:= M(s)

[
d(s)
u(s)

]
(3.14)

Where:

e(s) =

[
e1(s)
e2(s)

]
and d(s) =

[
d1(s)
d2(s)

]
(3.15)

And:

d(s) =

[
d1(s)
d2(s)

]
= ∆(s)

[
e1(s)
e2(s)

]
:= ∆(s)e(s) (3.16)

Where:

∆(s) =

[
∆1(s) 0

0 ∆2(s)

]
(3.17)

3.2.4 Numerator-denominator perturbations

Let the plant transfer function F (s) by represented as follows, where Nn(s) and
Dn(s) represent the nominal plant numerator and denominator, respectively1:

F (s) :=
yp(s)

u(s)
=

Nn(s) + δn(s)Wn(s)

Dn(s) + δd(s)Wd(s)
(3.18)

1Huibert Kwakernaak, Robust control and H∞-optimization � Tutorial paper, Automatica
Volume 29, Issue 2, March 1993, Pages 255-273
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Figure 3.4: Numerator-denominator perturbations model

Frequency dependent functions Wn(s) and Wd(s) represent the largest
possible perturbations of the denominator and numerator, respectively,
whereas δn(s) and δd(s) are frequency dependent functions representing the
uncertainty of magnitude not greater and satisfying:∥∥[ δn(s) δd(s)

]∥∥
∞ < 1 (3.19)

It can be checked that the plant transfer function F (s) can be represented
by the block diagram of Figure 3.4. Note that the perturbation δd(s) appears
in the feedback loop:

yp(s) =
1

Dn(s)
(−δd(s)Wd(s)yp(s) + (Nn(s) + δn(s)Wn(s))u(s))

⇔ yp(s)
u(s) =

Nn(s) + δn(s)Wn(s)

Dn(s) + δd(s)Wd(s)

(3.20)

To be compliant with the block diagram of Figure 3.1 we de�ne ∆(s) as
follows:

yp(s) = 1
Dn(s)

(d(s) +Nn(s)u(s))

d(s) = δn(s)Wn(s)u(s)− δd(s)Wd(s)yp(s)

=
[
δn(s) −δd(s)

] [ e1(s)
e2(s)

]
:= ∆(s)e(s)

(3.21)

For MIMO plant, the left normalized coprime factorization of the nominal
plant transfer function Fn(s) shall be used

2:

Fn(s) :=

(
A B

C D

)

⇔ Fn(s) = D−1
n (s)Nn(s) where


Dn(s) =

(
A+HC H

R−0.5C R−0.5

)
Nn(s) =

(
A+HC B+HD

R−0.5C R−0.5D

)
(3.22)

2D. J. Hoyle, R. A. Hyde and D. J. N. Limebeer, An H∞ approach to two degree of freedom
design, [1991] Proceedings of the 30th IEEE Conference on Decision and Control, Brighton,
UK, 1991, pp. 1581-1585 vol.2, doi: 10.1109/CDC.1991.261671.
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In the preceding relation matrices R and H are de�ned as follows:{
R := I+DDT

H := −
(
BDT + ZCT

)
R−1 (3.23)

Assuming that R−1 is a positive de�nite matrix, it can be factored as
follows where matrix Rchol is an upper triangular matrix with positive
diagonal elements:

R−1 = RT
cholRchol (3.24)

Rchol is called the Cholesky factor of R−1 and can be interpreted as the
square root of the positive de�nite matrix R−1:

R−0.5 := Rchol (3.25)

Matrix Z = ZT ≥ 0 is the unique stabilizing solution to the following Riccati
algebraic equation:(

A−BS−1DTC
)
Z+ Z

(
A−BS−1DTC

)T
− ZCTR−1CZ+BS−1BT = 0 (3.26)

with:

S := I+DTD (3.27)

3.3 Parametric uncertainty

We recall that parametric uncertainties come from an inaccurate description of
component characteristics. We will consider in that section some examples of
parametric uncertainty.

Example 3.1. Let's consider a second order system with parametric uncertainty

on damping ratio c:

ÿp(t) + cẏp(t) + yp(t) = u(t) where c < c < c (3.28)

The nominal value of the damping ratio c is denoted c0:

c0 =
c+ c

2
(3.29)

Introducing weight W de�ned as follows:

W =
c− c

2c0
(3.30)

We get:

c = c0 (1 +W∆) (3.31)

Where:

−1 < ∆ < 1 (3.32)
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Figure 3.5: Second order system with parametric uncertainty

The transfer function of the system is obtained by taking the Laplace

transform of (3.28) without any initial condition on yp(0) and ẏp(0):

s2yp(s) + c0 (1 +W∆) syp(s) + yp(s) = u(s)

⇔ yp(s) =
u(s)−yp(s)

s2
− c0 (1 +W∆)

yp(s)
s

(3.33)

In order to obtain the block diagram in Figure 3.1 where M(s) is the transfer
function of the known generalized plant and ∆(s) the transfer function of the

uncertainty let's draw the block diagram associated with (3.33) which is shown

in Figure 3.5.

We choose to identify output d(s) with ∆ c0 yp(s) (others choices are possible,
for example d(s) = ∆ yp(s)). Thus equation (3.33) can be rewritten as follows:

d(s) := ∆ c0 yp(s)

⇒ yp(s) =
u(s)
s2

− c0
yp(s)
s −W d(s)

s − yp(s)
s2

⇔ yp(s)
(
1 + c0

s + 1
s2

)
= u(s)

s2
−W d(s)

s

⇔ yp(s) =
1

s2+c0s+1
u(s)− Ws

s2+c0s+1
d(s)

(3.34)

Then identifying input e(s) with c0yp(s) we get:

e(s) := c0yp(s) ⇒ e(s) =
c0

s2 + c0s+ 1
u(s)− c0Ws

s2 + c0s+ 1
d(s) (3.35)

Finally we obtain the matrix formalism of (3.2):[
e(s)
yp(s)

]
=

[
M11(s) M12(s)
M21(s) M22(s)

] [
d(s)
u(s)

]
(3.36)

Where: 
M11(s) = − c0Ws

s2+c0s+1

M12(s) =
c0

s2+c0s+1

M21(s) = − sW
s2+c0s+1

M22(s) =
1

s2+c0s+1

(3.37)

Moreover:

d(s) = ∆(s)e(s) where ∆(s) = ∆ (3.38)

And:

−1 < ∆ < +1 ⇒ ∥∆(s)∥∞ = 1 (3.39)

■
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Figure 3.6: Mass-spring damper with parametric uncertainty

Example 3.2. Let's consider a mass-spring damper whose dynamical equation

of motion is the following:

mÿp(t) + cẏp(t) + kyp(t) = u(t) (3.40)

We will assume parametric uncertainty on damping ratio c and mass m
whereas the spring sti�ness k is perfectly known:{

c < c < c
m < m < m

(3.41)

The nominal value of the damping ratio c is c0 and the nominal value of the

mass m is m0: {
c0 =

c+c
2

m0 =
m+m

2

(3.42)

Introducing weight Wc on the damping ratio and weight Wm on the mass

we get: {
Wc =

c−c
2c0

Wm = m−m
2m0

⇒
{

c = c0 (1 +Wc∆c)
m = m0 (1 +Wm∆m)

(3.43)

Where: {
−1 < ∆c < 1
−1 < ∆m < 1

(3.44)

The transfer function of the system is obtained by taking the Laplace

transform of (3.40) without any initial condition on yp(0) and ẏp(0):

m0 (1 +Wm∆m) s2yp(s) + c0 (1 +Wc∆c) syp(s) + kyp(s) = u(s)

⇔ yp(s) =
1

m0(1+Wm∆m)
u(s)−kyp(s)

s2
− c0(1+Wc∆c)

m0(1+Wm∆m)
yp(s)
s

(3.45)

In order to obtain the block diagram in Figure 3.1 where M(s) is the transfer
function of the known generalized plant and ∆(s) the transfer function of the

uncertainty let's draw the block diagram associated with (3.45) which is shown

in Figure 3.6.

We choose to identify output d(s) with
[
dm dc

]T
where dm = ∆msyp(s)

and dc = ∆cc0yp(s). With this choice the �rst equation of (3.45) can be rewritten
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as follows:

d(s) :=

[
dm
dc

]
=

[
∆msyp(s)
∆cc0yp(s)

]
⇒ m0s

2yp(s) +m0Wmsdm(s) + c0syp(s) +Wcsdc(s) + kyp(s) = u(s)
⇔
(
m0s

2 + c0s+ k
)
yp(s) = u(s)−m0Wmsdm(s)−Wcsdc(s)

⇔ yp(s) =
1

m0s2+c0s+k
u(s)− m0Wms

m0s2+c0s+k
dm(s)− Wcs

m0s2+c0s+k
dc(s)

(3.46)

Then identifying input e(s) with
[
em(s) ec(s)

]T
where em(s) = syp(s)

and ec(s) = c0yp(s) we �nally obtain the matrix formalism of (3.2):

e(s) :=

[
em(s)
ec(s)

]
=

[
syp(s)
c0yp(s)

]
⇒
[

e(s)
yp(s)

]
=

[
M11(s) M12(s)
M21(s) M22(s)

] [
d(s)
u(s)

]
(3.47)

Where: 

M11(s) =

[
− m0Wms2

m0s2+c0s+k
− Wcs2

m0s2+c0s+k

− c0m0Wms
m0s2+c0s+k

− c0Wcs
m0s2+c0s+k

]

M12(s) =

[
s

m0s2+c0s+k
c0

m0s2+c0s+k

]
M21(s) =

[
− m0Wms

m0s2+c0s+k
− Wcs

m0s2+c0s+k

]
M22(s) =

1
m0s2+c0s+k

(3.48)

Moreover:

d(s) = ∆(s)e(s) where ∆(s) =

[
∆m 0
0 ∆c

]
(3.49)

And: {
−1 < ∆c < +1
−1 < ∆m < +1

⇒ ∥∆(s)∥∞ = 1 (3.50)

■
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Chapter 4

Stability Analysis of Uncertain
Systems

4.1 Nyquist stability criterion

4.1.1 MIMO (Generalized) case

Let's consider the closed-loop in Figure 4.1 where L(s) denotes the loop transfer
function.

The generalized (MIMO) Nyquist stability criterion1 states that the number
of unstable closed-loop poles (that are the roots of det(I + L(s))) is equal to
the number of unstable open-loop poles of the loop transfer function L(s) plus
the number of encirclements of the critical point (0, 0) by the Nyquist plot of
det(I+L(s)); the encirclement is counted positive in the clockwise direction and
negative otherwise.

We remind that the Nyquist plot of det(I + L(s)) is the image of det(I +
L(s)) as s goes clockwise around the Nyquist contour: this includes the entire
imaginary axis (s = jw) and an in�nite semi-circle around the right half plane
as shown in Figure 4.2.

It is worth noticing that if the loop transfer function L(s) is stable without
zeros in the right half plane (that is minimum phase), the Nyquist plot of det(I+

1Multivariable Feedback Control: Analysis and Design, Sigurd Skogestad & Ian
Postlethwaite, Wiley-Interscience 2005

Figure 4.1: Unity feedback loop
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Figure 4.2: Nyquist contour

L(s)) must not encircle the critical point (0, 0) for the closed-loop to be stable.

4.1.2 SISO case

For Single-Input Single-Output (SISO) systems the loop transfer function L(s)
is a scalar and we have:

det(I+ L(s)) = det(1 + L(s)) = 1 + L(s) (4.1)

Thus for Single-Input Single-Output (SISO) systems the number of
encirclements of the critical point (0, 0) by the Nyquist plot of 1 + L(s) is
equivalent to the number of encirclements of the critical point (−1, 0) by the
Nyquist plot of L(s).

4.1.3 Phase margin, gain margin and modulus margin

We assume in that section that the loop transfer function L(s) is stable without
zeros in the right half plane (that is minimum phase transfer function).

We recall that the gain crossover frequency is the frequency ωc at which
the magnitude ∥L (jω)∥ of the loop transfer function L(s) is unity. The gain
crossover frequency is closely related to the rise time and thus to the bandwidth
of the closed-loop system.

At the gain crossover frequency ωc the phase angle Φ(ωc) = arg (L(jωc))
of the loop transfer function reads as follows where MΦ represents the phase
margin of the closed-loop system:

∥L (jωc)∥ = 1 ⇒ MΦ = 180◦ + arg (L(jωc)) (modulo 360◦)
⇔ Φ(ωc) = arg (L(jωc)) = −180◦ +MΦ (modulo 360◦)

(4.2)

For closed-loop system to be stable the phase margin MΦ must be positive;
it indicates the amount of phase lag which is required to bring the closed-loop
system unstable.
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Figure 4.3: Nyquist plot and modulus margin Mm

The phase crossover frequency is the frequency ωπ at which the phase
angle of the loop transfer function L(s) is equal to −180◦. At the phase
crossover frequency ωπ the magnitude ∥L (jω)∥ of the loop transfer function is
the reciprocal of the gain margin Gm:

arg (L(jωπ)) = −180◦ (modulo 360◦) ⇒ Gm =
1

∥L (jωπ)∥
(4.3)

The modulus margin Mm is de�ned as the inverse of the in�nity-norm of the
sensitivity function, that is the reciprocal of the peak of the sensitivity function
S(s):

Mm = ∥S(s)∥−1
∞ =

1

∥S(s)∥∞
where S(s) =

1

1 + L(s)
(4.4)

In other words, and assuming that SISO loop transfer function L(s) is stable
without zeros in the right half plane (that is minimum phase), the reciprocal of
the modulus margin Mm is the shortest distance from the Nyquist plot of the
loop transfer function L(s) to the critical point (−1, 0). This is obtained as the
tangent of the Nyquist plot of L(jω) with the circle of centre (−1, 0) as shown
in Figure 4.3. Typical values of 1

Mm
are in the range of [0.5, 0.75].

For the MIMO case, and assuming that loop transfer function L(s) is stable
without zeros in the right half plane (that is minimum phase), modulus margin
Mm represents the minimum distance between the Nyquist plot of det(I+L(s))
and the critical point (0, 0):

Mm = min
ω≥0

|det(I+ L(jω))|

= inf
ω≥0

σ (I+ L(jω))

= 1
sup
ω≥0

σ((I+L(jω))−1)

(4.5)

where σ (G (jω)) is the largest singular-value of matrix G(jω), that is the ω
valued upper bound of the set of singular-values {σi (G(jω))} and σ (G (jω)) is



54 Chapter 4. Stability Analysis of Uncertain Systems

the smallest singular-value of matrix G(jω), that is the ω valued lower bound
of the set of singular-values {σi (G(jω))}.

Using the fact that O⃗C + C⃗A = O⃗A, we can write the following relations
when identifying the real part and the imaginary part of the equation2:

O⃗C + C⃗A = O⃗A

⇔ (−1 + j · 0) + ( 1
Mm

e−jθ) = 1 · ej(π+ÂOC)

⇔

{
−1 + 1

Mm
cos(θ) = − cos(ÂOC)

− 1
Mm

sin(θ) = − sin(ÂOC)

(4.6)

Using the fact that triangle (AOC) is an isocele triangle we have:

2 θ + ÂOC = π (4.7)

Thus, from the fact that cos(2 θ) = 2 cos2(θ)−1 and sin(2 θ) = 2 cos(θ) sin(θ)
we get:{

−1 + 1
Mm

cos(θ) = cos(2 θ)
1

Mm
sin(θ) = sin(2 θ)

⇒ 1

Mm
= 2 cos(θ) = 2 sin

(
ÂOC

2

)
(4.8)

From the preceding relation and Figure 4.3 phase margin MΦ can be related
to modulus margin Mm through the following inequality:

MΦ ≥ ÂOC = 2 asin

(
1

2Mm

)
(4.9)

We can also notice from Figure 4.3 that gain margin Gm can be related to
modulus margin Mm through the following inequality:

1

Mm
+

1

Gm
≤ 1 ⇔ Gm ≥ Mm

Mm − 1
(4.10)

4.2 Kharitonov theorem

Let's consider the following polynomial where each coe�cient ai is uncertain:

P (s) = a0 + a1s
1 + a2s

2 + ...+ ans
n (4.11)

We assume that each coe�cient ai ∈ R can take any value in a speci�ed
interval:

li ≤ ai ≤ ui (4.12)

It is also assumed that the leading coe�cient cannot be zero: 0 /∈ [ln, un].
Kharitonov theorem states that polynomial P (s) is stable (i.e. all members

of the family are stable) if and only if the four so-called Kharitonov polynomials
are stable 3:

k1(s) = l0 + l1s
1 + u2s

2 + u3s
3 + l4s

4 + l5s
5 + · · ·

k2(s) = u0 + u1s
1 + l2s

2 + l3s
3 + u4s

4 + u5s
5 + · · ·

k3(s) = l0 + u1s
1 + u2s

2 + l3s
3 + l4s

4 + u5s
5 + · · ·

k4(s) = u0 + l1s
1 + l2s

2 + u3s
3 + u4s

4 + l5s
5 + · · ·

(4.13)

2PID controller design with an H∞ criterion, Sangjin Han, Lee H.Keel, Shankar
P.Bhattacharyya, IFAC-PapersOnLine Volume 51, Issue 4, 2018, Pages 400-405

3https://en.wikipedia.org/wiki/Kharitonov's_theorem
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Figure 4.4: M∆ structure

4.3 Small gain theorem

Small gain theorem deals with the stability of the interconnection of two systems
as shown in Figure 4.4.

The input-output relation is written as follows:[
e(s)
z(s)

]
= M(s)

[
d(s)
w(s)

]
(4.14)

Where:

M(s) =

[
M11(s) M12(s)
M21(s) M22(s)

]
(4.15)

We will assume that there is no internal Right Half Plane (RHP) pole
cancellation in the open loop transfer matrix M11(s)∆(s) (i.e. M11(s)∆(s)
contains no hidden unstable mode).

The M∆ structure in Figure 3.1 is stable for all allowed perturbations if and
only if all the roots of the characteristic equation det (I−M11(s)∆(s)) = 0 (we
assume positive feedback) are situated in the Left Half Plane (LHP) 4.

The generalized (MIMO) Nyquist theorem 1 indicates that if N denotes the
number of open loop unstable poles in M11(s)∆(s) then the M∆ structure
is stable if and only if the Nyquist plot of det (I−M11(jω)∆(jω)) makes N
anti-clockwise encirclements of the origin and does not pass through the origin.

The Routh criterion may also be applied to the characteristic equation
det (I−M11(s)∆(s)) to check the stability as soon as ∆(s) represents
unstructured uncertainty for which transfer matrix ∆(s) is known. On the
other hand we may use the Kharitonov theorem in the case of parametric
uncertainty.

Let's consider the case where M11(s) ∈ RH∞, which means that M11(s) is
taken in the set of all stable and proper rational transfer matrices. Then the
closed-loop system in Figure 4.4 is internally stable for all ∆(s) ∈ RH∞ with
∥∆(s)∥∞ ≤ γ if ∥M11(s)∥∞ ≤ 1/γ. This can be summarized by the so-called
small gain theorem:

∥M11(s)∥∞∥∆(s)∥∞ < 1 ⇒ closed-loop stability

assuming

{
M11(s) ∈ RH∞
∆(s) ∈ RH∞

(4.16)

4Essentials of Robust Control, Kemin Zhou & John C. Doyle, Prentice Hall 1997
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Figure 4.5: Feedback loop with additive uncertainty

From a practical point of view, transfer matrix M11(s) can be computed
directly by setting the exogenous input vector w to zero.

It can be also shown that the small gain theorem provides a su�cient, but
not necessary, condition to guarantee the internal stability of the loop even if
∆(s) is a nonlinear and/or time-varying stable operator with an appropriate
de�nition of stability. Thus the small gain theorem provides a conservative
stability condition.

Finally, the small gain theorem is usually slightly adapted as follows: the
interconnection is stable for all ∆(s) such that ∥∆(s)/Wa(s)∥∞ ≤ 1/γ if
∥Wa(s)M11(s)∥∞ < γ:

− if γ < 1 stability is proved for a larger uncertainty set than required ;

− if γ > 1 stability is proved for a subset of the admissible uncertainties.

4.4 Applications

4.4.1 Additive uncertainties

Let's consider the feedback control loop in Figure 4.5 where Fn(s) represents
the transfer function of the nominal plant and Wu(s)∆(s) is the additive model
uncertainty. The transfer function F(s) of the actual plant reads:

F(s) = Fn(s) +∆(s)Wu(s) (4.17)

− Wu(s) is a given stable uncertainty weighting function;

− ∆(s) is the uncertainty itself. This is any stable transfer function which
is here assumed to be such that ∥∆(s)∥∞ ≤ 1.

We will denote:

− The reference input by r

− The output vector of the controller C(s) by u. In the feedback loop under
study, this is also the control vector of the actual plant;

− The input vector of the controller by y
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Figure 4.6: Feedback loop with multiplicative uncertainty

We are interested in �nding a conservative condition leading to a stable
closed-loop despite the additive uncertainty on the plant.

By setting the exogenous input vector w := r to zero, transfer matrixM11(s)
can be computed directly:

w := r = 0 ⇒ e(s) = −Wu(s)C(s)
(
d(s) + Fn(s)W

−1
u (s)e(s)

)
⇒ e(s) (1 + Fn(s)C(s)) = −Wu(s)C(s)d(s)

(4.18)

We �nally get:

e(s) = M11(s)d(s) where M11(s) =
−Wu(s)C(s)

1 + Fn(s)C(s)
(4.19)

Therefore using the assumption that ∥∆(s)∥∞ ≤ 1, the small gain theorem
indicates that the closed-loop system in Figure 4.5 is internally stable if :

∥M11(s)∥∞∥∆(s)∥∞ < 1 ⇒
∥∥∥∥Wu(s)

C(s)

1 + Fn(s)C(s)

∥∥∥∥
∞

< 1 (4.20)

It is worth noticing that S(s) = 1
1+Fn(s)C(s) de�nes the sensitivity function.

Thus a su�cient condition for the closed-loop to be stable is:

∥Wu(s)C(s)S(s)∥∞ < 1 (4.21)

4.4.2 Multiplicative uncertainties

Let's consider the feedback control loop in Figure 4.6 where Fn(s) represents
the transfer function of the nominal plant and Wu(s)∆(s) is the multiplicative
model uncertainty. The transfer function F(s) of the actual plant reads:

F(s) = (I+∆(s)Wu(s))Fn(s) (4.22)

− Wu(s) is a given stable uncertainty weighting function;

− ∆(s) is the uncertainty itself. This is any stable transfer function which
is here assumed to be such that ∥∆(s)∥∞ ≤ 1.

We will denote:

− The reference input by r
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Figure 4.7: Feedback loop with numerator-denominator perturbation model

− The output vector of the controller C(s) by u. In the feedback loop under
study, this is not the control vector of the actual plant;

− The input vector of the controller by y

We are interested in �nding a conservative condition leading to a stable
closed-loop despite the multiplicative uncertainty on the plant.

By setting the exogenous input vector w := r to zero, transfer matrixM11(s)
can be computed directly:

w := r = 0 ⇒ e(s) = −Wu(s)Fn(s)C(s)
(
d(s) +W−1

u (s)e(s)
)

⇒ e(s) (1 +C(s)Fn(s)) = −Wu(s)Fn(s)C(s)d(s)
(4.23)

We �nally get:

e(s) = M11(s)d(s) where M11(s) =
−Wu(s)Fn(s)C(s)

1 + Fn(s)C(s)
(4.24)

Therefore using the assumption that ∥∆(s)∥∞ ≤ 1, the small gain theorem
indicates that the closed-loop system in Figure 4.6 is internally stable if :

∥M11(s)∥∞∥∆(s)∥∞ < 1 ⇒
∥∥∥∥Wu(s)

Fn(s)C(s)

1 + Fn(s)C(s)

∥∥∥∥
∞

< 1 (4.25)

It is worth noticing that T(s) = Fn(s)C(s)
1+Fn(s)C(s) de�nes the complementary

sensitivity function (the sensitivity function is de�ned as S(s) = 1
1+Fn(s)C(s)).

Thus a su�cient condition for the closed-loop to be stable is:

∥Wu(s)T(s)∥∞ < 1 (4.26)

4.4.3 Numerator-denominator perturbation of SISO plant

Let's consider the feedback control loop in Figure 4.7.

The SISO plant transfer function F (s) is represented as follows, where
Nn(s) and Dn(s) represent the nominal plant numerator and denominator,
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respectively5:

F (s) :=
yp(s)

u(s)
=

Nn(s) + δn(s)Wn(s)

Dn(s) + δd(s)Wd(s)
(4.27)

Frequency dependent functions Wn(s) and Wd(s) represent the largest
possible perturbations of the denominator and numerator, respectively,
whereas δn(s) and δd(s) are frequency dependent functions representing the
uncertainty of magnitude not greater and satisfying:∥∥[ δn(s) δd(s)

]∥∥
∞ < 1 (4.28)

The nominal plant transfer function Fn(s) is de�ned as follows:

Fn(s) :=
Nn(s)

Dn(s)
(4.29)

We have seen in section 3.2.4 that ∆(s) :=
[
δn(s) −δd(s)

]
. We have

added function Wp(s) ̸= I which will allow for partial pole placement5.

We will denote:

− The reference input by r

− The output vector of the controller C(s) by u

− The input vector of the controller by y

We are interested in �nding a conservative condition leading to a stable
closed-loop despite the Numerator-denominator uncertainties on the plant.

By setting the exogenous input vector w := r to zero, transfer matrixM11(s)
can be computed directly:

− Firstly the transfer from e1(s) to d(s) is obtained as follows:

w := r = 0 ⇒ e1(s) = −Wn(s)C(s) 1
Dn(s)

(
Wp(s)d(s) +Nn(s)W

−1
n (s)e1(s)

)
⇒ e1(s)

(
1 +C(s)Nn(s)

Dn(s)

)
= −Wn(s)C(s) 1

Dn(s)
Wp(s)d(s)

(4.30)

Using the expression of the nominal plant transfer function Fn(s) :=
Nn(s)
Dn(s)

we �nally get:

e1(s) =
−Wn(s)C(s) 1

Dn(s)
Wp(s)

1 +C(s)Nn(s)
Dn(s)

d(s) =
−Wn(s)C(s)

Wp(s)
Dn(s)

1 +C(s)Fn(s)
d(s) (4.31)

− Secondly the transfer from e2(s) to d(s) is obtained as follows:

5Huibert Kwakernaak, Robust control and H∞-optimization � Tutorial paper, Automatica
Volume 29, Issue 2, March 1993, Pages 255-273
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w := r = 0 ⇒ e2(s) = Wd(s)
1

Dn(s)

(
Wp(s)d(s)−Nn(s)C(s)W−1

d (s)e2(s)
)

⇒ e2(s)
(
1 + Nn(s)

Dn(s)
C(s)

)
= Wd(s)

1
Dn(s)

Wp(s)d(s)

(4.32)

Using the expression of the nominal plant transfer function Fn(s) :=
Nn(s)
Dn(s)

we �nally get:

e2(s) =
Wd(s)

1
Dn(s)

Wp(s)

1 + Nn(s)
Dn(s)

C(s)
d(s) =

Wd(s)
Wp(s)
Dn(s)

1 + Fn(s)C(s)
d(s) (4.33)

We �nally get:

[
e1(s)
e2(s)

]
:= e(s) = M11(s)d(s) where M11(s) =

 −Wn(s)C(s)
Wp(s)

Dn(s)

1+C(s)Fn(s)

Wd(s)
Wp(s)

Dn(s)

1+Fn(s)C(s)

 (4.34)

It is worth noticing that S(s) = 1
1+Fn(s)C(s) de�nes the sensitivity function.

Thus a su�cient condition for the closed-loop to be stable is:∥∥∥∥∥
[

Wn(s)
Wp(s)
Dn(s)

C(s)S(s)

Wd(s)
Wp(s)
Dn(s)

S(s)

]∥∥∥∥∥
∞

< 1 (4.35)

Kwakernaak5 have shown that when the degree of polynomial Wp(s) is
chosen to be equal to the degree of polynomial Dn(s), then the roots of Wp(s)
belong to the set of the closed-loop poles. Furthermore by suitably choosing
Wn(s) and Wd(s) these roots may often be arranged to be dominant poles.

4.4.4 Time-delay systems

Let's consider the following state space representation where τ represents a delay
in the system: {

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t− τ)
y(t) = Cx(t)

(4.36)

The state space representation (4.36) can be rewritten as follows:
ẋ(t) = Ax(t) + Iw(t)
y(t) = Cx(t)
z(t) = Adx(t) +Bu(t)
w(t) = z(t− τ)

(4.37)

More generally the state space representation of a time-delay systems is the
following:
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Figure 4.8: General structure for time-delay systems

Figure 4.9: System with delay


ẋ(t) = Ax(t) +B1u(t) +B2w(t)
y(t) = C1x(t) +D11u(t) +D12w(t)
z(t) = C2x(t) +D21u(t) +D22w(t)
w(t) = z(t− τ)

(4.38)

Having in mind that the Laplace transform of x(t − τ) is X(s)e−τs where
X(s) = L [x(t)] this leads to the general structure for time-delay systems in
Figure 4.8.

Example 4.1. Let's consider the feedback control loop in Figure 4.9 where we

will assume a pure unknown delay in the open loop, denoted by τ (τ > 0).

We will denote:

− The reference input by r

− The control vector of the plant by u

− The vector of system disturbances by n

− The vector of measured outputs by yp

− Constant Kp > 0 is a proportional gain

The transfer function of the plant is denoted Fn(s):

Fn(s) =
1

s+ 4
(4.39)
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Figure 4.10: First M∆ structure for a system with delay

We are interested in �nding a conservative condition on the gain Kp such

that the closed-loop is stable. Stability of the feedback control loop is equivalent

to negativity of the real part of all solutions s ∈ C of the transcendental equation
where the delay τ is unknown:

1 + exp(−τs)KpFn(s) = 0 (4.40)

The Small Gain Theorem provides an easy su�cient criterion of stability

analysis for this con�guration.

M∆ structure

Because the uncertainty is related to the unknown delay τ we set ∆(s) as follows:

∆(s) := exp(−τs) (4.41)

It is clear that ∆(s) ∈ RH∞ (a bounded input leads to a bounded output).

Furthermore we have seen that for a stable SISO linear system with transfer

function ∆(s) the H∞ norm is de�ned as follows:

∥∆(s)∥∞ = max
ω

|∆(jω)| = max
ω

|exp(−jτω)| = 1 (4.42)

Accordingly, using the relation yp(s) = exp(−τs)e(s) = ∆(s)e(s), the block

diagram in Figure 4.9 can be redrawn in the M∆ structure form as shown in

Figure 4.10.

In order to compute M11(s), let's compute the relation between e(s) and d(s)
assuming that r(s) = 0 and n(s) = 0. Starting from e(s) and reading Figure

4.10 back the arrows, we get using that fact that d(s) = yp(s):
r(s) = 0
n(s) = 0
d(s) = yp(s)

⇒ e(s) = Fn(s)Kp (0− yp(s)) = −KpFn(s)d(s) (4.43)

Substituting Fn(s) by its actual expression leads to the following expression

of M11(s) : {
M11(s) = −KpFn(s)
Fn(s) =

1
s+4

⇒ M11(s) =
−Kp

s+ 4
(4.44)
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Transfer function M11(s) ∈ RH∞, which means that M11(s) belongs to the

set of all stable and proper rational transfer functions. Thus the H∞ norm of

M11(s) exists and is computed as follows:

∥M11(s)∥∞ = max
ω

∣∣∣∣ −Kp

jω + 4

∣∣∣∣ = max
ω

|Kp|√
ω2 + 16

=
|Kp|
4

(4.45)

Therefore using the assumption that ∥∆(s)∥∞ = 1, the small gain theorem

indicates that a su�cient condition ensuring the stability of the feedback loop in

Figure 4.9 whatever the value of delay τ is the following:

∥M11(s)∥∞ < 1 ⇔ |Kp| < 4 (4.46)

Routh criterion

We can retrieve this result through the Routh criterion by approximating

exp(−τs) using the Padé approximation:

exp(−τs) =
exp(−τs/2)

exp(τs/2)
≈ 1− τs/2

1 + τs/2
=

2− τs

2 + τs
(4.47)

The transcendental equation of the loop can now be written as follows:

0 = 1 + exp(−τs)KpFn(s) ≈ 1 +KpFn(s)
2− τs

2 + τs
(4.48)

Using the fact that Fn(s) =
1

s+4 we get:

0 = 1 +
Kp

s+ 4
× 2− τs

2 + τs
=

(s+ 4)(2 + τs) +Kp(2− τs)

(s+ 4)(2 + τs)
(4.49)

Thus the roots of the preceding equation are the roots of (s + 4)(2 + τs) +
Kp(2− τs). We get:

(s+ 4)(2 + τs) +Kp(2− τs) = τs2 + (2 + 4τ − τKp)s+ 8 + 2Kp (4.50)

We can now apply the Routh criterion to check for which values of Kp all

the roots remain in the left half plane (of the complex plane):

s2 τ 8 + 2Kp

s1 2 + 4τ − τKp

s0 8 + 2Kp

(4.51)

Using the fact that τ > 0 and applying the Routh criterion leads to the

following condition for all the poles to have negative real part:{
2 + 4τ − τKp > 0

8 + 2Kp > 0
⇔
{

Kp < 4 + 2
τ

Kp > −4
(4.52)

Assuming Kp > 0 and τ → ∞ (which is the worst case) leads to the condition

obtained with the small gain theorem:

Kp < lim
τ→∞

4 +
2

τ
= 4 (4.53)

■
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Figure 4.11: Block diagram to check internal stability of feedback loop

4.5 Well-posedness of feedback loop and internal
stability

In this section we consider Figure 4.11. Well-posedness of feedback loop
indicates that all closed-loop transfer matrices are well-de�ned and proper.
The feedback system in Figure 4.11 is said to be well-posed if and only if
(I+P(∞)C(∞)) is invertible. Well-posedness condition is equivalent to the

invertibility of matrix

[
I C(∞)

−P(∞) I

]
.

Let H(s) be the following transfer matrix from external signal
[
rT dT

]T
to internal signals

[
yT
p

uT
]T

in Figure 4.11:


[

y
p
(s)

u(s)

]
= H(s)

[
r(s)
d(s)

]
H(s) =

[
P(s)C(s) (I+P(s)C(s))−1 P(s) (I+C(s)P(s))−1

C(s) (I+P(s)C(s))−1 −C(s)P(s) (I+C(s)P(s))−1

]
(4.54)

To get H(s), the following push through rule has been used, which is a
straightforward result when multiplying by (I+P(s)C(s)) on the left side and
by (I+C(s)P(s)) on the right side:

(I+P(s)C(s))−1P(s) = P(s) (I+C(s)P(s))−1 (4.55)

When transfer matrix H(s) is stable, the closed loop in Figure 4.11 is said
to be internally stable. Internal stability indicates that the zero-input solution
converges to zero, for any initial states. This is a basic requirement for feedback
system. Indeed interconnected systems may be subject to some nonzero initial
conditions and some (possibly small) errors and it is not acceptable from a
practical point of view that such nonzero initial conditions lead to unbounded
signals in the closed-loop system. Internal stability guarantees that all signals
in a system are bounded provided that the input signals (at any locations) are
bounded.

Transfer matrix H(s) is sometimes called the gang of four. It can be shown
that internal stability of the closed-loop is equivalent to asymptotical stability
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of either (I+P(s)C(s))−1P(s) or the following matrix M(s)6:

M(s) =

[
I C(s)

−P(s) I

]−1

(4.56)

When the M∆ structure in Figure 4.4 is considered, it can be shown that
the small gain condition is su�cient to guarantee internal stability4.

6Multivariable Feedback Control: Analysis and Design, Sigurd Skogestad & Ian
Postlethwaite, Wiley-Interscience 2005
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Chapter 5

Robust control problem

5.1 Generalized plant

5.1.1 Realization

Robust control problems are solved in a dedicated framework previously
presented in Figure 5.1 where:

− G(s) is the transfer matrix of the generalized Linear Time Invariant (LTI)
plant. We will assume that G(s) is a proper and real rational transfer
matrices describing some linear time invariant systems. From Figure 5.1
we have: [

z(s)
y(s)

]
= G(s)

[
w(s)
u(s)

]
(5.1)

As far as robust control problems are most conveniently solved in the time
domain we will consider the minimal realization of transfer matrix G(s)
of the generalized plant shown in Figure 5.1: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x(t)
w(t)
u(t)

 (5.2)

Figure 5.1: Generalized plant G(s) with controller C(s)
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We recall that the realization of G(s) =

[
A B

C D

]
is a minimal

realization if and only if (A,B) is controllable and (C,A) is observable.
Then A has the smallest possible dimension. Here B =

[
B1 B2

]
and

C =

[
C1

C2

]
.

− C(s) is the transfer matrix of the controller. We will also assume that
C(s) is a proper and real rational transfer matrix describing the linear
time invariant controller;

− u is the vector of outputs computed by the controller C(s). According
to the feedback loop con�guration, this could be the control vector of the
actual plant, for example when there is no comparison with a reference
signal;

− y is the vector of inputs available for the controller C(s). According to the
feedback loop con�guration, this could be the output vector of the actual
plant;

− w is the input vector formed by exogenous inputs such as reference inputs,
disturbances or noise;

− z is the performance output vector, that is the vector that allows to
characterize the performance of the closed-loop system, such as errors for
example. This is a virtual output used only for design that we wish to
maintain as small as possible.

The objective of the robust control is to minimize the impact of exogenous
inputs vector w on the performance output vector z through control vector u.

5.1.2 Block diagram of the generalized plant

Assume that the linear time invariant generalized plant shown in Figure 5.1 has
the following state-space representation where x(t) is the state vector, w(t) is
a exogenous input vector, u(t) is the control vector, z(t) is an error vector and
y(t) is the observation vector: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (5.3)

Usually this state-space representation includes a plant augmented with
frequency-dependent weights.

Taking the Laplace transform of the �rst equation of (5.3) and assuming no
initial conditions we get:

sx(s) = Ax(s) +B1w(s) +B2u(s)

⇔ x(s) = (sI−A)−1B1w(s) + (sI−A)−1B2u(s)
(5.4)
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Figure 5.2: Block diagram of the generalized plant

Thus we can write the Laplace transform of the two last equations of (5.2)
as follows: [

z(s)
y(s)

]
= G(s)

[
w(s)
u(s)

]
(5.5)

Where:

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]
=

[
C1

C2

]
(sI−A)−1 [ B1 B2

]
+

[
0 D12

D21 0

] (5.6)

The block diagram of the transfer matrix G(s) is shown in Figure 5.2.

5.1.3 Adding integral action

We consider the following state-space realization of the nominal plant where
the state vector xp is of dimension n (that is the size of state matrix Ap). In
addition y

p
(t) denotes the output vector of the nominal plant and u(t) the input

vector. We will assume that the feedforward gain matrix D is zero (D = 0):{
ẋp(t) = Apxp(t) +Bpu(t)

y
p
(t) = Cpxp(t)

(5.7)

In some circumstances it may be helpful to use integral action in the
controller design. This can be achieved by adding to the state vector of the
state-space realization (5.7) the integral of the tracking error eI(t) which is
de�ned as follows:

eI(t) =

∫ t

0

(
r(τ)− y

p
(τ)
)

dτ (5.8)

where r(t) is the reference input signal.

Assuming that the feedforward gain matrix D is zero (D = 0) we get:

ėI(t) = r(t)− y
p
(t) = r(t)−Cpxp(t) (5.9)
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This leads to the following augmented state-space realization:[
ẋp(t)

ėI(t)

]
=

[
Ap 0
−Cp 0

] [
xp(t)

eI(t)

]
+

[
Bp

0

]
u(t) +

[
0
I

]
r(t) (5.10)

The output vector of the augmented system is the following:[
y
p
(t)

eI(t)

]
=

[
Cp 0
0 I

] [
xp(t)

eI(t)

]
(5.11)

The regulation problem deals with the case where r(t) = 0. In that situation
the preceding augmented state-space realization has the same structure than the
state-space realization (5.7).

On the other hand the tracking problem deals with the case where r(t) ̸= 0.
Let's denote xe(t) the augmented state-space vector de�ned as follows::

xe(t) =

[
xp(t)

eI(t)

]
(5.12)

Thus the augmented state-space realization (5.10) reads as follows where
the tracking error r(t) − y

p
(t) may be de�ned as the output vector y(t) of the

generalized plant: ẋe(t) =

[
Ap 0
−Cp 0

]
xe(t) +

[
0
I

]
r(t) +

[
Bp

0

]
u(t)

y(t) = r(t)− y
p
(t) = r(t)−

[
Cp 0

]
xe(t)

(5.13)

We �nally get a state space realization similar to the formalism (5.2) by
de�ning w(t) := r(t). Nevertheless the performance output vector z(t) has still
to be de�ned: [

ẋe(t)
y(t)

]
=

[
A B1 B2

C2 D21 0

] xe(t)
r(t)
u(t)

 (5.14)

5.2 Linear Fractional Transformation (LFT)

The transfer matrix of the generalized plant G(s) is split as follows:[
z(s)
y(s)

]
= G(s)

[
w(s)
u(s)

]
:=

[
G11(s) G12(s)
G21(s) G22(s)

] [
w(s)
u(s)

]
(5.15)

Setting u(s) = C(s)y(s) leads to the performance transfer matrix Tzw(s),
which is actually the transfer matrix between the performance output vector z
and the exogenous input vector w of the closed-loop system:

u(s) = C(s)y(s) ⇒ z(s) = Tzw(s)w(s) (5.16)
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Now let's compute the expression of the performance transfer matrixTzw(s).
First using (5.15) we get the relation between the vector of output y and the
exogenous input vector w:

z(s) = G11(s)w(s) +G12(s)u(s)
y(s) = G21(s)w(s) +G22(s)u(s)

u(s) = C(s)y(s)

⇒
{

z(s) = G11(s)w(s) +G12(s)C(s)y(s)

y(s) = G21(s)w(s) +G22(s)C(s)y(s)

⇒ y(s) = (I−G22(s)C(s))−1G21(s)w(s)

(5.17)

We �nally get:

z(s) = Tzw(s)w(s) (5.18)

Where the performance transfer matrix Tzw(s) is a Linear Fractional
Transformation (LFT) with respect to G:

Tzw(s) = G11(s) +G12(s)C(s) (I−G22(s)C(s))−1G21(s)

= G11(s) +G12(s) (I−C(s)G22(s))
−1C(s)G21(s)

:= Fl (G(s),C(s))

(5.19)

The H2 control problem consists in �nding a controllerC(s) which minimizes
∥Tzw(s)∥2 = ∥Fl (G(s),C(s)) ∥2. Similarly the H∞ control problem consists in
�nding a controller C(s) which minimizes ∥Tzw(s)∥∞ = ∥Fl (G(s),C(s)) ∥∞.

5.3 Observer-based controller

The controller C(s) is obtained by gathering two subsystems:

− A state estimator (observer) which provides an estimate x̂(t) of the actual
state vector x(t) from the input u(t) and output y(t) of the system. The
so-called Luenberger observer is obtained through the following equation
where L is the observer gain :

˙̂x(t) = Ax̂(t) +B2u(t) + L
(
y(t)−C2x̂(t)

)
(5.20)

It is worth noticing that matrices A, B2 and C2 are known and come from
the state space realization of the generalized plant (5.2).

− A state-feedback control law based on the the estimate x̂(t) and the
controller gain K:

u(t) = −Kx̂(t) (5.21)

Thus the dynamics of the controllerC(s) is driven by the following equations:{
˙̂x(t) = (A−B2K− LC2) x̂(t) + Ly(t)

u(t) = −Kx̂(t)
(5.22)
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From the preceding relation it is clear that the input of the controller C(s) is
y(t) whereas its output is u(t). By taking the Laplace transform of the preceding
relation we get the transfer function C(s) of the controller:

s x̂(s) = (A−B2K− LC2) x̂(s) + Ly(s)

⇔ (sI−A+B2K+ LC2) x̂(s) = Ly(s)

⇔ x̂(s) = (sI−A+B2K+ LC2)
−1 Ly(s)

(5.23)

We �nally get:
u(s) = −Kx̂(s) := C(s)y(s) (5.24)

where:
C(s) = −K (sI−A+B2K+ LC2)

−1 L

:=

[
A−B2K− LC2 L

−K 0

]
(5.25)

In other words the realization of the controller C(s) which solves the robust
control problem is the following, where matrices K and L are the parameters
to be found: {

u(s) = C(s)y(s)

C(s) = −K (sI− (A−B2K− LC2))
−1 L

⇔
[

˙̂x(t)
u(t)

]
=

[
A−B2K− LC2 L

−K 0

] [
x̂(t)
y(t)

] (5.26)

It is worth noticing that it is the state space realization of the generalized

plant which is used here, through matrices A, B2 and C2, not state space
realization of the actual plant.

5.4 H2 and H∞ robust control problems

5.4.1 H2 control problem

The H2 control problem consists in �nding a proper real rational controller C(s)
which minimizes the e�ect of the exogenous inputs w(s) on the performance
output vector z(s) with respect to the H2 -norm. In other words it consists
in �nding an admissible controller C(s) such that the transfer ∥Tzw(s)∥2 =
∥Fl (G(s),C(s)) ∥2 is minimized.

5.4.2 H∞ control problem

The worst case of the ratio ∥z(t)∥2
∥w(t)∥2 is given by the H∞-norm of the Linear

Fractional Transformation (LFT) Fl (G(s),C(s)):

max
w(t)̸=0

∥z(t)∥2
∥w(t)∥2

= ∥Tzw(s)∥∞ := ∥Fl (G(s),C(s)) ∥∞ (5.27)

The H∞ control problem consists in �nding a proper real rational controller
C(s) which minimizes the e�ect of the exogenous inputs w(s) on the performance
output vector z(s) with respect to the H∞-norm. In other words it consists
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in �nding an admissible controller C(s) such that the transfer ∥Tzw(s)∥∞ :=
∥Fl (G(s),C(s)) ∥∞ is minimized. The minimum value of ∥Fl (G(s),C(s)) ∥∞
is denoted γopt.

In practice the minimum bound γopt is often di�cult to �nd. Consequently
a simpler problem, also called suboptimal H∞ control problem, is de�ned as
follows: given γ ≥ γopt �nd an admissible controller C(s) such that:

∥Tzw(s)∥∞ := ∥Fl (G(s),C(s)) ∥∞ ≤ γ (5.28)

5.4.3 Algebraic Riccati Equation

In order to solve the H2 and H∞ robust control problems we recall some facts
about Algebraic Riccati Equation.

First we recall that the Algebraic Riccati Equation is the following matrix
equation:

ATP+PA−PRP+Q = 0 (5.29)

Matrices A, P, R and Q are real matrices. Furthermore we will assume
that R and Q are symmetric but not necessarily positive de�nite matrices :{

R = RT

Q = QT (5.30)

The solution P = PT of the Algebraic Riccati Equation is said to be a
stabilizing solution ifA−RP is stable (that is all the eigenvalues ofA−RP have
negative real part). The stabilizing solution of an Algebraic Riccati Equation is
unique.

In order to solve the Algebraic Riccati Equation the following Hamiltonian
matrix H is associated to equation (5.29) :

H =

[
A −R
−Q −AT

]
(5.31)

Thus if A is a n× n matrix then H is a 2n× 2n matrix.

MatrixH is called s called Hamiltonian because it has the following property:

HJ = (HJ)T where J =

[
0 I
−I 0

]
(5.32)

It can be shown that the eigenvalues of H are symmetric with respect to the
imaginary axis. Assuming that H has no pure imaginary eigenvalues (this is the
stability condition) the computation of the solution P = PT of the Algebraic
Riccati Equation (5.29) which renders A−RP stable involves the eigenvectors
corresponding to the eigenvalues with negative real part of the Hamiltonian

matrix H. More precisely form the 2n×n matrix
[
v1 · · · vn

]
:=

[
X1

X2

]
by

putting into column the n eigenvectors vi corresponding to the n eigenvalues of
the 2n×2n matrix H with negative real part. Assuming that X1 is nonsingular
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(this is the complementary condition) the positive semi de�nite solution P of
the Algebraic Riccati Equation (5.29) can be computed as follows:

[
v1 · · · vn

]
:=

[
X1

X2

]
⇒ P = X2X

−1
1 (5.33)

Furthermore all the eigenvalues of the stable matrix A − RP are equal to
the eigenvalues with negative real part of the Hamiltonian matrix H.

Example 5.1. Let's solve the following Algebraic Riccati Equation where α is

assumed to be a positive constant (α > 0):

1− αP 2 = 0 (5.34)

Identifying the Algebraic Riccati Equation to be solved with Equation (5.29)
leads to the following expressions of A, R and Q:

αP 2 − 1 := ATP+PA−PRP+Q ⇒


A = 0
R = α
Q = 1

(5.35)

It is clear that the stabilizing solution is the positive solution of αP 2−1 = 0:

P =
1√
α

(5.36)

Indeed in that case the eigenvalue of A −RP = −
√
α will be with negative

real part.

Let's us retrieve the stabilizing solution through the Hamiltonian matrix H.

The following Hamiltonian matrix H is associated to equation (5.29) :

H =

[
A −R
−Q −AT

]
=

[
0 −α
−1 0

]
(5.37)

Let's compute the eigenvalues of H:

sI−H =

[
s α
1 s

]
⇒ det (sI−H) = s2 − α (5.38)

There are two eigenvalues: {
λ1 = −

√
α

λ2 = +
√
α

(5.39)

The eigenvalue with negative real part is λ1 = −
√
α. The associated

eigenvector is computed as follows:

Hv1 = λ1v1

⇔
[

0 −α
−1 0

] [
v11
v12

]
= −

√
α

[
v11
v12

]
⇔
{

αv12 =
√
αv11

v11 =
√
αv12

⇒ v11 =
√
αv12

(5.40)
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Thus the eigenvector associated with the eigenvalue with negative real part is

λ1 = −
√
α can be expressed as:

v1 =

[
v11
v12

]
=

[ √
αv12
v12

]
(5.41)

Identifying this expression with

[
X1

X2

]
we �nally get:

v1 =

[ √
αv12
v12

]
:=

[
X1

X2

]
⇒ P = X2X

−1
1 =

1√
α

(5.42)

We can check that the eigenvalue of the stable matrix A − RP = −
√
α is

equal to the eigenvalue with negative real part of the Hamiltonian matrix H.

■

5.5 Closed-loop transfer function and separation
principle

5.5.1 Closed-loop transfer

We will assume the following form of the realization of the generalized plant
G(s):

G(s) :

 ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (5.43)

We are looking for the following dynamical output feedback controller C(s)
that meets some speci�cations for the closed-loop system:

C(s) :

[
ẋK(t)
u(t)

]
=

[
AK BK

CK DK

] [
xK(t)
y(t)

]
(5.44)

For an observer-based controller, expression of matrices AK , BK , CK and
DK are provided in (5.25).

With the plant G(s) and the controller C(s) de�ned as above a realization
of the closed-loop system Pcl is the following:

Pcl :

[
ẋcl(t)
z(t)

]
=

[
Acl Bcl

Ccl Dcl

] [
xcl(t)
w(t)

]
(5.45)

where: 

xcl(t) =

[
x(t)
xK(t)

]
Acl =

[
A+B2DKC2 B2CK

BKC2 AK

]
Bcl =

[
B1 +B2DKD21

BKD21

]
Ccl =

[
C1 +D12DKC2 D12CK

]
Dcl = D12DKD21

(5.46)
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Once the loop is closed, transfer function Tzw(s) from w(s) to z(s) reads:{
z(s) = Tzw(s)w(s)

Tzw(s) = Ccl (sI−Acl)
−1Bcl +Dcl

(5.47)

In the particular case of state feedback control where u(t) = −Kx(t) the
realization the dynamical output feedback controller C(s) in (5.44) reduce as
follows:

C(s) :

[
AK BK

CK DK

]
=

[
0 0

0 −K

]
(5.48)

whereas the realization of the generalized plant G(s) in (5.43) reads:

{
C2 = I
D21 = 0

⇒ G(s) :

 ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

I 0 0

 x(t)
w(t)
u(t)

 (5.49)

5.5.2 Separation principle

For an observed-based controller, we have seen in (5.25) that DK = 0.
Consequently the state matrix Acl of the closed-loop transfer function in
(5.46) reduces as follows:

Acl =

[
A B2CK

BKC2 AK

]
(5.50)

where according to (5.25):
AK = A−B2K− LC2

BK = L
CK = −K

(5.51)

Thus the closed-loop state matrix Acl reads:

Acl =

[
A −B2K

LC2 A−B2K− LC2

]
(5.52)

The closed-loop eigenvalues are the roots of the characteristic polynomial
χAcl

(s) de�ned as follows:

χAcl
(s) = det (sI−Acl) = det

([
sI−A B2K
−LC2 sI−A+B2K+ LC2

])
(5.53)

Now we will use the fact that adding one column / row to another column
/ row does not change the value of the determinant. Thus adding the �rst

column to the second column of

[
sI−A B2K
−LC2 sI−A+B2K+ LC2

]
leads to

the following expression of χAcl
(s):

χAcl
(s) = det

([
sI−A sI−A+B2K
−LC2 sI−A+B2K

])
(5.54)



5.6. One degree of freedom control loop 77

Now subtracting the second row to the �rst row of[
sI−A sI−A+B2K
−LC2 sI−A+B2K

]
leads to the following expression of χAcl

(s):

χAcl
(s) = det

([
sI−A+ LC2 0

−LC2 sI−A+B2K

])
(5.55)

It is worth noticing that matrix is block triangular. Consequently we can
write:

χAcl
(s) = det (sI−Acl) = det (sI−A+ LC2) det (sI−A+B2K) (5.56)

In other words the eigenvalues of the closed-loop system are obtained by
the union of the eigenvalues of matrix A−B2K, that is the state matrix of the
closed-loop system without the observer, and the eigenvalues of matrixA−LC2,
that is the state matrix of the closed-loop system without the controller. This
result is known as the separation principle. As a consequence the observer
and the controller can be designed separately: the eigenvalues obtained thanks
to the controller gain K assuming full state feedback are independent of the
eigenvalues obtained thanks to the observer gain L assuming no controller.

Usually observer gain L is chosen such that the eigenvalues of matrix A −
LC2 are around 5 to 10 times faster than the eigenvalues of matrix A−B2K,
so that the state estimation moves towards the actual state as early as possible.

5.6 One degree of freedom control loop

5.6.1 Feedback loop

In the following, we will consider the control of an uncertain system as
represented in Figure 5.3 where:

− Fn(s) is the transfer matrix of the nominal plant (that is the plant without
uncertainty) to be controlled;

− F(s) is the transfer matrix of the actual plant;

− Wu(s) is a given stable uncertainty weighting function;

− ∆(s) is an additive uncertainty which is assumed to be bounded;{
F(s) = Fn(s) +Wu(s)∆(s)
∥∆(s)∥∞ = 1

(5.57)

− C(s) is the transfer matrix of the controller;

− u is the output vector of the controller C(s). In the feedback loop under
study, this is also the control vector of the actual plant;

− y
p
is the output vector of the actual plant;

− r is the reference input;
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Figure 5.3: One degree of freedom feedback control of uncertain system

Figure 5.4: M∆ structure corresponding to additive uncertainty

− y is the input vector of the controller C(s): y = r − y
p
.

The robust control problem consists in �nding the controller C(s) such
that the feedback loop in Figure 5.3 is stable for all uncertainties ∆(s) while
minimizing the norm (either the H2 or the H∞ norm) of a performance
transfer function denoted Tzw(s) which will be de�ned later.

5.6.2 Robust stability

In order to assess the stability of the closed-loop uncertain plant represented in
Figure 5.3 we have to build the corresponding M∆ structure as shown in Figure
5.4.

The transfer matrix of the interconnected system depicted in Figure 5.4 is
the following: [

e(s)
y
p
(s)

]
=

[
M11(s) M12(s)
M21(s) M22(s)

] [
d(s)
r(s)

]
(5.58)

To apply the small gain theorem we have to compute matrixM11(s). Matrix
M11(s) corresponds to the transfer matrix Ted(s) between e(s) which feeds the
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uncertainty block ∆(s) its output d(s) assuming that reference input r(s) is set
to zero:

M11(s) := Ted(s) (5.59)

We get from Figure 5.4:
e(s) = Wu(s)u(s)

u(s) = C(s)
(
r(s)− y

p
(s)
)

y
p
(s) = d(s) + Fn(s)u(s)

(5.60)

Thus:

y
p
(s) = d(s) + Fn(s)C(s)

(
r(s)− y

p
(s)
)

⇔ y
p
(s) = (I+ Fn(s)C(s))−1 (d(s) + Fn(s)C(s)r(s))

(5.61)

To get Ted(s) the reference input r(s) is set to zero. We get:

r(s) = 0 ⇒

{
y
p
(s) = (I+ Fn(s)C(s))−1 d(s)

u(s) = −C(s)y
p
(s)

⇒ e(s) = Wu(s)u(s)
= −Wu(s)C(s)y

p
(s)

= −Wu(s)C(s) (I+ Fn(s)C(s))−1 d(s)
= Ted(s)d(s)

(5.62)

Thus transfer matrix Ted(s) is de�ned by:

Ted(s) = −Wu(s)C(s) (I+ Fn(s)C(s))−1 (5.63)

We recognize in (I+ Fn(s)C(s))−1 the (output) sensitivity matrix S(s):

S(s) = (I+ Fn(s)C(s))−1 (5.64)

Consequently:
Ted(s) = −Wu(s)C(s)S(s) (5.65)

When the plant is subject to additive uncertainty then the small gain
theorem may be applied on relation (5.65) to get a conservative stability
condition for the closed-loop system to remain stable despite the uncertainty:

∥∆(s)∥∞∥Ted(s)∥∞ < 1
⇔ ∥∆(s)∥∞∥ −Wu(s)C(s)S(s)∥∞ < 1
⇔ ∥∆(s)∥∞∥Wu(s)C(s)S(s)∥∞ < 1

(5.66)

As far as we assume that ∥∆(s)∥∞ = 1 the preceding relation reads:

∥∆(s)∥∞ = 1 ⇒ ∥Wu(s)C(s)S(s)∥∞ < 1 (5.67)

This relation indicates that for good robustness, the norm of the product
C(s)S(s) is required to be small.

The same kind of result exists for a plant with output multiplicative
uncertainty. As a summary we have:
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− For additive uncertainty the robust stability condition reads:

F(s) = Fn(s) +Wu(s)∆(s) ⇒ ∥Wu(s)C(s)S(s)∥∞ < 1 (5.68)

− For output multiplicative uncertainty the robust stability condition reads:

F(s) = (I+Wu(s)∆(s))Fn(s) ⇒ ∥Wu(s)T(s)∥∞ < 1 (5.69)

Where T(s) is the complementary sensitivity function:

T(s) = S(s)Fn(s)C(s) (5.70)



Chapter 6

H2 robust control design

6.1 Introduction

In this chapter the H2 observer-based controller design is considered. We recall
in Figure 6.1 the general framewok for such design.

We have seen that the general form of the realization of the generalized plant
G(s) is the following: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (6.1)

The H2 control problem consists in �nding the controller C(s) which
minimizes ∥Tzw(s)∥2 = ∥Fl (G,K) ∥2. The usual technique to compute
∥Tzw(s)∥2 is to compute the H2 -norm of z(t) assuming that the exogenous
disturbance input vector w(t) is the Dirac delta function δ(t):

∥Tzw(s)∥22 =
∫ ∞

0
zT (t)z(t)dt assuming that w(t) = Iδ(t) (6.2)

We will �rst tackle the control problem where the full state of the system is
assumed to be available for control. Then the optimal state estimator problem
is tackled: it consists in estimating the full state of the system thanks to the

Figure 6.1: Generalized plant G(s) with controller C(s)
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measurement vector y(t). Finally both results are gathered to get the H2

observer-based controller law.
The relation with LQG control is also stressed. Indeed the H2 control

problem can easily be extended to the stochastic case where the exogenous
disturbance input vector w(t) is a white noise:

∥Tzw(s)∥22 = E

(
lim
T→∞

1

T

∫ T

0
zT (t)z(t)dt

)
assuming that E

(
w(t)wT (τ)

)
= Iδ(t− τ) (6.3)

where E() denotes the mathematical expectation.

6.2 State feedback problem

6.2.1 Problem to be solved

In that section we present the H2 state feedback problem. We will assume that
the state vector x(t) is fully available for control and we are looking for a state
feedback control K such that:

u(t) = −Kx(t) (6.4)

As far as the state vector x(t) is fully available for control the realization of
the generalized plant is the following: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

I 0 0

 x(t)
w(t)
u(t)

 (6.5)

In addition the following assumptions are made:

− (A,C1) has no unobservable modes on the imaginary axis

− (A,B2) is stabilizable

− DT
12D12 > 0 (thus the product is invertible)

− DT
12C1 = 0

The two last assumptions are not very restrictive and can be relaxed but
they are convenient because they lead to simpli�cations in the solution of the
problem.

By taking the Laplace transform (without initial condition) of (6.5) and
using the fact that u = −Kx we get:{

sx(s) = Ax(s) +B1w(s)−B2Kx(s)
z(s) = C1x(s)−D12Kx(s)

⇒
{

x(s) = (sI−A+B2K)−1B1w(s)
z(s) = (C1 −D12K)x(s)

⇒ z(s) = (C1 −D12K) (sI−A+B2K)−1B1w(s)

(6.6)
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Thus:

Tzw(s) = (C1 −D12K) (sI−A+B2K)−1B1 (6.7)

From the results of section 1.7.2, minimizing the H2 -norm of Tzw(s)
consists in solving the following semi-de�nite program where Y stands for the
controllability grammian of Tzw(s):

min tr
(
(C1 −D12K)Y (C1 −D12K)T

)
s.t.

{
(A−B2K)Y +Y (A−B2K)T +B1B

T
1 = 0

Y = YT > 0

(6.8)

A similar semi-de�nite program to be solved can also be formulated with
the observability grammian of Tzw(s). Denoting X the observability grammian
of Tzw(s) we get from the results of section 1.7.2:

min tr
(
BT

1 XB1

)
s.t.

{
(A−B2K)T X+X (A−B2K) + (C1 −D12K)T (C1 −D12K) = 0
X = XT > 0

(6.9)

6.2.2 Corresponding LQR problem to be solved

As in LQR design approach, we may use the Lagrange multiplier approach to
solve the H2 state feedback problem. Let de�ne the (scalar) Hamiltonian H as
follows where Λ = ΛT is a n× n diagonal matrix of Lagrange multipliers to be
determined. On the basis on (6.9) involving the observability grammian we get:

H = tr
(
BT

1 XB1

)
+ tr

(
Λ
(
(A−B2K)T X+X (A−B2K) + (C1 −D12K)T (C1 −D12K)

))
(6.10)

Let YXZ be a square matrix where matrices X, Y and Z are of appropriate
dimension. Then the following properties hold1:{

∂ tr(XYZ)
∂Y = XTZT

∂ tr(XYTZ)
∂Y =

∂ tr(ZTYXT )
∂Y = ZX

(6.11)

Thus the necessary conditions to solve this optimization problem with
respect to matrices K, X and Λ read as follows:

∂H
∂K = 0 ⇒ 2

(
−BT

2 X−DT
12C1 +DT

12D12K
)
Λ = 0

∂H
∂X = 0 ⇒ B1B

T
1 +

(
Λ (A−B2K)T

)T
+Λ (A−B2K) = 0

∂H
∂Λ = 0 ⇒ (A−B2K)T X+X (A−B2K)

+ (C1 −D12K)T (C1 −D12K) = 0

(6.12)

1Lewis F., Vrabie D., Syrmos V., Optimal Control, John Wiley & Sons, 3rd Edition, 2012
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From the �rst equation, and assuming that matrices Λ and DT
12D12 are

nonsingular, the static output feedback gain K can be computed as a function
of matrix X:

∂H
∂K = 0 ⇒ −BT

2 X−DT
12C1 +DT

12D12K = 0

⇒ K =
(
DT

12D12

)−1 (
BT

2 X+DT
12C1

) (6.13)

Assuming that DT
12C1 = 0, the expression of K simpli�es as follows:

DT
12C1 = 0 ⇒ K =

(
DT

12D12

)−1
BT

2 X (6.14)

Moreover, assuming that DT
12C1 = 0 ⇔

(
DT

12C1

)T
= CT

1 D12 = 0, the last
equation of (6.12) reads:

(A−B2K)T X+X (A−B2K) +CT
1 C1 +KTDT

12D12K = 0
⇔ ATX+XA+CT

1 C1 −KTBT
2 X−XB2K+KTDT

12D12K = 0
(6.15)

Finally, assuming that DT
12C1 = 0 and using the relation

K =
(
DT

12D12

)−1
BT

2 X we conclude that matrix X is the positive semi-de�nite
solution of the following algebraic Riccati equation (ARE):

ATX+XA−XB2

(
DT

12D12

)−1
BT

2 X+CT
1 C1 = 0 (6.16)

The following Hamiltonian matrix HY is associated to equation (6.16) :

HY =

[
A −B2

(
DT

12D12

)−1
BT

2

−CT
1 C1 −AT

]
(6.17)

It is worth noticing that the H2 state feedback problem reduces to a linear
quadratic (LQ) optimal control problem where the performance index to be
minimized reads as follows:

JLQ =

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (6.18)

Matrix Q is a symmetric positive semi-de�nite matrix and matrix R is a
symmetric positive de�nite matrix. They are de�ned as follows:{

Q = QT := CT
1 C1 ≥ 0

R = RT := DT
12D12 > 0

(6.19)

Moreover, the minimum value of the performance index achieved by the
state feedback (6.14) is:

∥Tzw(s)∥22 = tr
(
BT

1 XB1

)
(6.20)

Furthermore, comparing (6.20) and (6.9), we conclude that the positive
semi-de�nite solution X of the algebraic Riccati equation (ARE) (6.16) is the
observability grammian of Tzw(s).
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Figure 6.2: Double integrator a�ected by disturbance on input u(t)

6.2.3 Example

Consider the double integrator in Figure 6.2 where the input control u(t) is
a�ected by a disturbance d(t).

The state space form is the following:{
ẋ1(t) = x2(t)
ẋ2(t) = u(t) + d(t)

(6.21)

Here the exogenous input vector is:

w(t) = d(t) (6.22)

We get:[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
w(t) +

[
0
1

]
u(t) (6.23)

Furthermore we will assume that the state vector x(t) =

[
x1(t)
x2(t)

]
is

available for control.
The virtual output z(t) used only for design that we wish to maintain as

small as possible is the actual position x1(t) and the control u(t) (we include
control signal u(t) in order to bound it):

z(t) =

[
x1(t)
u(t)

]
(6.24)

Using the standard state space equations (6.5) for state feedback H2 control
we get:  ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

I 0 0

 x(t)
w(t)
u(t)

 (6.25)

Where: 

A =

[
0 1
0 0

]
B1 = B2 =

[
0
1

]
C1 =

[
1 0
0 0

]
D12 =

[
0
1

]
(6.26)

It is clear that the following assumptions are satis�ed:
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− (A,C1) as no unobservable modes on the imaginary axis

− (A,B2) is stabilizable

− DT
12D12 > 0 (here DT

12D12 = 1)

− DT
12C1 = 0

Let the symmetric matrix X be written as follows:

X =

[
x11 x12
x12 x22

]
(6.27)

Then expanding (6.16) leads to the following equations:

ATX+XA−XB2

(
DT

12D12

)−1
BT

2 X+CT
1 C1 = 0

⇔
[

1− x212 x11 − x12x22
x11 − x12x22 2x12 − x222

]
=

[
0 0
0 0

]
(6.28)

From which we get:
x12 = +1 ( + sign because of x22 expression)
x22 = ±

√
2x12

x11 = x12x22

(6.29)

It is the positive semi-de�nite solution X of the algebraic Riccati equation
(ARE) which stabilizes matrix A −B2K. Matrix X is obtained by taking the
positive values of xij :

x12 = +1

x22 =
√
2

x11 =
√
2

⇒ X =

[ √
2 1

1
√
2

]
(6.30)

Thus the control u(t) has the following expression:

u(t) = −Kx(t) (6.31)

Where:

K =
(
DT

12D12

)−1
BT

2 X =
[
0 1

] [ √
2 1

1
√
2

]
⇔ K =

[
1

√
2
] (6.32)

6.3 State estimation

6.3.1 Problem to be solved

In that section we solve the H2 state estimation problem whose purpose is
to asymptotically reconstructs the system's state x(t). The state estimation
problem consists in �nding the matrix gain L of a observer (also called estimator)
which estimates the full state of the system x̂(t) thanks to the measurement
vector y(t) while minimizing the in�uence of the exogenous disturbance w(t).
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Let's consider the following state-space realization of the generalized plant:{
ẋ(t) = Ax(t) +B1w(t) +B2u(t)
y(t) = C2x(t) +D21w(t)

(6.33)

The observer for this system is de�ned as follows where gain L has to be set:{
˙̂x(t) = Ax̂(t) +B2u(t) + L

(
y(t)− ŷ(t)

)
ŷ(t) = C2x̂(t)

(6.34)

The H2 state estimation problem consists in �nding the gain L which renders
A−LC2 Hurwitz while minimizing the H2 -norm of the transfer matrix Tzw(s)
from the exogenous disturbance w(t) to the estimation error z(t) = C1 e(t)
where the state error e(t) reads:

e(t) = x(t)− x̂(t) (6.35)

First let's compute the dynamics of the state error e(t):

ė(t) = ẋ(t)− ˙̂x(t)
= Ae(t) +B1w(t)− L

(
y(t)− ŷ(t)

)
= Ae(t) +B1w(t)− L (C2e(t) +D21w(t))
= (A− LC2) e(t) + (B1 − LD21)w(t)

(6.36)

By taking the Laplace transform (without initial condition) of this relation
we obtain:

e(s) = (sI−A+ LC2)
−1 (B1 − LD21)w(s) (6.37)

Thus the transfer matrix Tzw(s) from the exogenous disturbance w(t) to
the estimation error z(t) = C1 e(t) reads:

Tzw(s) = C1 (sI−A+ LC2)
−1 (B1 − LD21) (6.38)

From the results of section 1.7.2, minimizing the H2 -norm of Tzw(s)
consists in solving the following semi-de�nite program where Y stands for the
observability grammian of Tzw(s):

min tr
(
(B1 − LD21)Y (B1 − LD21)

T
)

s.t.

{
(A− LC2)

T Y +Y (A− LC2) +CT
1 C1 ≤ 0

Y = YT > 0

(6.39)

A similar semi-de�nite program to be solved can also be formulated with the
controllability grammian of Tzw(s). Denoting X the controllability grammian
of Tzw(s) we get from the results of section 1.7.2:

min tr
(
C1XCT

1

)
s.t.

{
(A− LC2)X+X (A− LC2)

T + (B1 − LD21) (B1 − LD21)
T ≤ 0

X = XT > 0
(6.40)
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State feedback State estimation

A AT

B1 CT
1

B2 CT
2

C1 BT
1

D12 DT
21

K LT

Table 6.1: Duality principle for state feedback and state estimation matrices

6.3.2 Duality principle

As underlined by Professor Hannu T. Toivonen 2, when comparing (6.38) and
(6.7) it is worth noticing that transfer matrices Tzw(s) whose H2 -norm has
to be minimized can be obtained by transpose of each other and by using the
equivalence in Table 6.1, which is called the duality principle.

Indeed by taking the transpose of (6.38) we get:

(Tzw(s))
T =

(
BT

1 −DT
21L

T
) (

sI−AT +CT
2 L

T
)−1

CT
1

:= (C1 −D12K) (sI−A+B2K)−1B1
(6.41)

Applying the duality principle on the realization of the generalized plant
(6.5) dedicated to state feedback, the realization of the generalized plant for
state estimation is the following: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

I 0 0

T  x(t)
w(t)
u(t)

 =

 AT B1 I
C1 0 0
C2 D21 0

 x(t)
w(t)
u(t)


(6.42)

In addition the following assumptions are made:

− (A,B1) has no uncontrollable modes on the imaginary axis

− (A,C2) is detectable

− D21D
T
21 > 0 (thus the product is invertible)

− B1D
T
21 = 0

The two last assumptions are not very restrictive and can be relaxed but
they are convenient because they lead to simpli�cations in the solution of the
problem.

6.3.3 Observer design

Thanks to the duality principle, we can reuse the results of the section dealing
with the H2 state feedback control problem. This leads to the following
conclusion: the H2 optimal observer (or estimator) which estimates the full

2http://users.abo.�/htoivone/courses/robust/rob3.pdf
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state of the system x̂(t) thanks to the measurement vector y(t) while
minimizing the in�uence of the exogenous disturbance w(t) has the following
the realization: {

˙̂x(t) = Ax̂(t) +B2u(t) + L
(
y(t)− ŷ(t)

)
ŷ(t) = C2x̂(t)

(6.43)

where gain matrix L is obtained thanks to identi�cation with the matrices
of the dual problem and depends on the symmetric positive de�nite matrix
Y = YT > 0:

K =
(
DT

12D12

)−1
BT

2 X ⇒ LT =
(
D21D

T
21

)−1
C2Y (6.44)

That is:
L = YCT

2

(
D21D

T
21

)−1
(6.45)

Again applying the identi�cation process with the matrices of the dual
problem we conclude that positive semi-de�nite matrix Y is the solution of the
following algebraic Riccati equation (ARE) which comes from (6.16):

AY +YAT −YCT
2

(
D21D

T
21

)−1
C2Y +B1B

T
1 = 0 (6.46)

The algebraic Riccati equation (ARE) (6.46) is associated with the following
Hamiltonian matrix HY :

HY =

[
AT −CT

2

(
D21D

T
21

)−1
C2

−B1B
T
1 −A

]
(6.47)

In order to get a stabilizing solution the symmetric matrixY which solves the
algebraic Riccati equation (ARE) (6.46) is chosen to be positive semi-de�nite.
Such a choice leads to a stable closed loop matrixA−LC2, i.e. all its eigenvalues
have negative real parts.

Moreover, the minimum value of the cost achieved by the estimator (6.45)
is:

∥Tzw(s)∥22 =
1

2
tr
(
C1YCT

1

)
(6.48)

This is clearly the value (6.20) obtained when the duality principle shown
in Table 6.1 is applied.

Furthermore, comparing (6.48) and (6.40), we conclude that the positive
semi-de�nite solution Y of algebraic Riccati equation (ARE) (6.46) is the
controllability grammian of Tzw(s).

6.4 H2 robust control design

6.4.1 LQR problems to be solved

Linear-Quadratic-Regulator (LQR) tackles the problem of designing a state
feedback stabilizing controller which minimizes the following criteria:

JLQR =
1

2

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (6.49)
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under the following constraint:

ẋ(t) = Ax(t) +Bu(t) (6.50)

The solution of this problem is closely related to matrix P = PT > 0 which
solves the following algebraic Riccati equation:

ATP+PA−PBR−1BTP+Q = 0 (6.51)

Equations (6.16) and (6.46) show that the H2 robust control problem can
be seen as two separate Linear-Quadratic-Regulator (LQR) design problems:

− The H2 state feedback problem can be seen as an LQR design problem
where the cost to be minimized is:

JH2f
=

1

2

∫ ∞

0

(
xT (t)CT

1 C1x(t) + uT (t)DT
12D12u(t)

)
dt (6.52)

under the constraint:

ẋ(t) = Ax(t) +B2u(t) (6.53)

− The H2 state estimation problem can be seen as an LQR design problem
where the cost to be minimized is:

JH2e =
1

2

∫ ∞

0

(
xT (t)B1B

T
1 x(t) + uT (t)D21D

T
21u(t)

)
dt (6.54)

under the constraint:

ẋ(t) = ATx(t) +CT
2 u(t) (6.55)

It is worth noticing that in the H2 robust control problem matrix A stands
for the state matrix of the generalized plant G(s) whereas in the LQR problem
matrix A stands for the state matrix of the actual nominal plant Fn(s).

6.4.2 Observer-based controller

We recall the general form of the realization of a plant: ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (6.56)

Furthermore we will assume that:

− (A,B1,C1) has no uncontrallable and no unobservable modes on the
imaginary axis

− (A,B2,C2) is stabilizable and detectable

− DT
12D12 > 0 and D21D

T
21 > 0 (thus the product is invertible)
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− DT
12C1 = 0 and B1D

T
21 = 0

The two last assumptions are not very restrictive and can be relaxed but
they are convenient because they lead to simpli�cations in the solution of the
problem.

The realization of the controller C(s) which minimizes ∥Tzw(s)∥2 may be
split between a state estimator and a state feedback control law of the estimated
state as follows:{

˙̂x(t) = Ax̂(t) +B2u(t) + L
(
y(t)−C2x̂(t)

)
u(t) = −Kx̂(t)

(6.57)

In other words the realization of the controller C(s) is the following:{
u(s) = C(s)y(s)

C(s) = −K (sI− (A−B2K− LC2))
−1 L

⇔
[

˙̂x(t)
u(t)

]
=

[
A−B2K− LC2 L

−K 0

] [
x̂(t)
y(t)

] (6.58)

Furthermore the gains K and L of the stabilizing controller C(s) which
minimizes ∥Tzw(s)∥2 have the following expression:{

K =
(
DT

12D12

)−1
BT

2 X

L = YCT
2

(
D21D

T
21

)−1 (6.59)

Where the symmetric matricesX = XT andY = YT are symmetric positive
semi-de�nite solutions of the two following algebraic Riccati equations (AREs){

ATX+XA−XB2

(
DT

12D12

)−1
BT

2 X+CT
1 C1 = 0

AY +YAT −YCT
2

(
D21D

T
21

)−1
C2Y +B1B

T
1 = 0

(6.60)

Those solutions may equivalently be expressed through the following
Hamiltonian matrices:

HX =

[
A −B2

(
DT

12D12

)−1
BT

2

−CT
1 C1 −AT

]
(6.61)

and:

HY =

[
AT −CT

2

(
D21D

T
21

)−1
C2

−B1B
T
1 −A

]
(6.62)

In order to get a stabilizing solution:

− The symmetric matrix X shall be chosen such that the matrix A−B2K
is stable, i.e. all its eigenvalues have negative real parts;

− The symmetric matrix Y shall be chosen such that the matrix A − LC2

is stable, i.e. all its eigenvalues have negative real parts.
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A particular feature of the solution is that the optimal estimator and state
feedback can be calculated independently of each other. This feature of H2

controllers is called the separation principle.
Moreover, the minimum value of the cost achieved by the controller (6.58)

is:

∥Tzw(s)∥22 =
1

2

(
tr
(
D12KYKTDT

12

)
+ tr

(
BT

1 XB1

))
(6.63)

Now assume DT
12C1 ̸= 0. Then Doyle & al.3 have shown that relations

(6.58) and (6.59) are still valid but the symmetric and positive semi-de�nite
matrix X = XT ≥ 0 de�ned in (6.61) is now solution of the following algebraic
Riccati equations (AREs) expressed through the following Hamiltonian matrix:

HX =

 A−B2D̃12D
T
12C1 −B2D̃12B

T
2

−C̃T
1 C̃1 −

(
A−B2D̃12D

T
12C1

)T
 (6.64)

where:
D̃12 =

(
DT

12D12

)−1
(6.65)

Furthermore state feedback gain matrix K now reads as follows:

K = D̃12

(
BT

2 X+DT
12C1

)
(6.66)

Similarly assume B1D
T
21 ̸= 0. Then Doyle & al.3 have shown that relations

(6.58) and (6.59) are still valid but the symmetric and positive semi-de�nite
matrix Y = YT ≥ 0 de�ned in (6.62) is now solution of the following algebraic
Riccati equations (AREs) expressed through the following Hamiltonian matrix:

HY =

 (A−B1D
T
21D̃21C2

)T
−CT

2 D̃21C2

−B̃1B̃
T
1 −

(
A−B1D

T
21D̃21C2

)
 (6.67)

where:
D̃21 =

(
D21D

T
21

)−1
(6.68)

Furthermore observer gain matrix L now reads as follows:

L =
(
YCT

2 +B1D
T
21

)
D̃21 (6.69)

6.4.3 Linear-Quadratic-Gaussian (LQG) control

Let's consider the following plant realization:{
ẋ(t) = Ax(t) +Bu(t) + d(t)
y
p
(t) = Cx(t) + n(t)

(6.70)

3Zhou K., Doyle J., Essentials of Robust Control (p. 262), Prentice Hall, 1997, ISBN
0-13-525833-2



6.4. H2 robust control design 93

Figure 6.3: Standard form of LQG control problem

Where d(t) and n(t) are white noise with the intensity of their
autocorrelation function equals to Wd and Wn respectively, as shown in
Figure 6.3. Denoting by E() the mathematical expectation we have:

E

([
d(t)
n(t)

] [
dT (τ) nT (τ)

])
=

[
Wd 0
0 Wn

]
δ(t− τ) (6.71)

The LQG problem consists in �nding a controller u(s) = C(s)y(s) such that
the following performance index is minimized:

JLQG = E

(
lim
T→∞

1

T

∫ T

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

)
(6.72)

Matrices Q and R are symmetric and (semi)-positive de�nite matrices:{
Q = QT ≥ 0
R = RT > 0

(6.73)

We will see that Linear-Quadratic-Gaussian (LQG) control is a special case
of H2 control applied to stochastic system and how to set matrices Q and R. To
achieve this goal, we will recast the LQG problem into the H2 control framework
as follows:

− First we de�ne signal z(t), whose norm is to be minimized, as follows:

z(t) =

[
Q0.5 0
0 R0.5

] [
x(t)
u(t)

]
(6.74)

− Secondly we write the stochastic inputs d(t) and n(t) as a function of the
vector w(t) of exogenous disturbances, which is here a white noise with
components wd(t) and wn(t):[

d(t)
n(t)

]
=

[
W0.5

d 0
0 W0.5

n

] [
wd(t)
wn(t)

]
:=

[
W0.5

d 0
0 W0.5

n

]
w(t)

⇔ w(t) :=

[
wd(t)
wn(t)

]
=

[
W−0.5

d 0
0 W−0.5

n

] [
d(t)
n(t)

]
(6.75)
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Here w(t) is a white noise process of unit intensity. Then the LQG cost
function reads as follows:

JLQG = E

(
lim
T→∞

1

T

∫ T

0
zT (t)z(t)dt

)
E(w(t)wT (τ))=δ(t−τ)

:= ∥Tzw(s)∥22 (6.76)

The generalized plant reads as follows: ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (6.77)

Where we get by identi�cation:

ẋ(t) = Ax(t) +Bu(t) + d(t)
y
p
(t) = Cx(t) + n(t)

y(t) = r(t)− y
p
(t) where r(t) = 0[

d(t)
n(t)

]
=

[
W0.5

d 0
0 W0.5

n

]
w(t)

⇒



B1 =
[
W0.5

d 0
]

B2 = B

C2 = −C

D21 = −
[
0 W0.5

n

]
(6.78)

Costs (6.72) and (6.76) are equivalent as soon as the following relation holds

zT (t)z(t) = (C1x(t) +D12u(t))
T (C1x(t) +D12u(t))

:= xT (t)Qx(t) + uT (t)Ru(t)
(6.79)

This leads to the following identi�cation:

CT
1 D12 = DT

12C1 = 0 ⇒


C1 :=

[
Q0.5

0

]
D12 :=

[
0

R0.5

] (6.80)

We have seen in (6.46) that the solution of the H2 robust observer design
problem is related to the following algebraic Riccati equation:

AY +YAT −YCT
2

(
D21D

T
21

)−1
C2Y +B1B

T
1 = 0 (6.81)

On the other hand, let's have a look on the Linear-Quadratic-Regulator
(LQR) which tackles the problem of designing a state feedback stabilizing
controller which minimizes the following criteria:

JLQR =
1

2

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (6.82)

under the following constraint:

ẋ(t) = Ax(t) +Bu(t) (6.83)

The solution of this problem is closely related to matrix Y = YT > 0 which
solves the following algebraic Riccati equation:

ATY +YA−YBR−1BTY +Q = 0 (6.84)
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Figure 6.4: Double integrator a�ected by disturbance on input u(t) and noise
on output yp(t)

When the algebraic Riccati equation (6.81) related to the H2 robust observer
design problem is identi�ed to the algebraic Riccati equation (6.84) related the
Linear-Quadratic-Regulator (LQR) we get:

0 = AY +YAT −YCT
2

(
D21D

T
21

)−1
C2Y +B1B

T
1

:= ATY +YA−YBR−1BTY +Q

⇒


R := D21D

T
21 = Wn ≥ 0

Q := B1B
T
1 = Wd > 0

B → CT
2

A → AT

(6.85)

6.4.4 Example

Consider again the double integrator in Figure 6.4 where the input control u(t)
is a�ected by a white noise d(t) and output yp(t) is a�ected by a white noise
n(t). We consider the problem of �nding an H2 observer-based controller.

The state space form is the following:{
ẋ1(t) = x2(t)
ẋ2(t) = u(t) + d(t)

(6.86)

That is:[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
d(t) +

[
0
1

]
u(t) (6.87)

Furthermore we will assume that the following output vector yp(t) a�ected
by a noise n(t) is available for control:

yp(t) =
[
1 0

] [ x1(t)
x2(t)

]
+ n(t) (6.88)

Moreover we will assume that d(t) and n(t) are white noise with the intensity
of their autocorrelation function equals to ρd and ρn respectively. Denoting by
E() the mathematical expectation we have:

E

([
d(t)
n(t)

] [
d(τ) n(τ)

])
=

[
ρd 0
0 ρn

]
δ(t− τ) (6.89)
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The exogenous input vector w(t) is de�ned as follows:[
d(t)
n(t)

]
=

[ √
ρd 0
0

√
ρn

] [
w1(t)
w2(t)

]
=

[ √
ρd 0
0

√
ρn

]
w(t) (6.90)

The virtual output z(t) used only for design that we wish to maintain as
small as possible is the actual position x1(t) and the control u(t) (we include
control signal u(t) in order to bound it):

z(t) =

[
x1(t)
u(t)

]
(6.91)

Using the standard state space equations (6.1) for H2 observer-based
controller, and using the feedback control loop of Figure 6.3, we set
y(t) := r(t)− yp(t) and r(t) = 0: ẋ(t)

z(t)
y(t) = −yp(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (6.92)

Where:


A =

[
0 1
0 0

]
B2 =

[
0
1

]
C2 = −

[
1 0

] and



B1 =

[
0 0√
ρd 0

]
C1 =

[
1 0
0 0

]
D12 =

[
0
1

]
D21 = −

[
0

√
ρn
]

(6.93)

It is worth noticing that we have put in B1 and D21 the root square of the
intensity of the autocorrelation function of the white noises which a�ect the
system.

It is clear that the following assumptions are satis�ed:

− (A,B1,C1) has no uncontrallable and no unobservable modes on the
imaginary axis

− (A,B2,C2) is stabilizable and detectable

− DT
12D12 > 0 andD21D

T
21 > 0 have full rank (thus the product is invertible)

− DT
12C1 = 0 and B1D

T
21 = 0

First we focus on the state feedback control. Let the symmetric matrix X
be written as follows:

X =

[
x11 x12
x12 x22

]
(6.94)

Then expanding (6.16) leads to the following equations:

ATX+XA−XB2

(
DT

12D12

)−1
BT

2 X+CT
1 C1 = 0

⇔
[

1− x212 x11 − x12x22
x11 − x12x22 2x12 − x222

]
=

[
0 0
0 0

]
(6.95)
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From which we get:
x12 = +1 ( + sign because of x22 expression)
x22 = ±

√
2x12

x11 = x12x22

(6.96)

It is the positive semi-de�nite solution X of the algebraic Riccati equation
(ARE) which stabilizes matrix A −B2K. Matrix X is obtained by taking the
positive values of xij :

x12 = +1

x22 =
√
2

x11 =
√
2

⇒ X =

[ √
2 1

1
√
2

]
(6.97)

Thus the control u(t) has the following expression:

u(t) = −Kx(t) (6.98)

Where:

K =
(
DT

12D12

)−1
BT

2 X =
[
0 1

] [ √
2 1

1
√
2

]
⇔ K =

[
1

√
2
] (6.99)

Then we focus on the state estimation problem. Let the symmetric matrix
Y be written as follows:

Y =

[
y11 y12
y12 y22

]
(6.100)

Expanding (6.46) leads to the following equations:

AY +YAT −YCT
2

(
D21D

T
21

)−1
C2Y +B1B

T
1 = 0

⇔

[
2y12 −

y211
ρn

y22 − y11y12
ρn

y22 − y11y12
ρn

ρd −
y212
ρn

]
=

[
0 0
0 0

]
(6.101)

From which we get:
y12 = +

√
ρdρn ( + sign because of y11 expression)

y11 = ±
√
2ρny12

y22 =
y11y12
ρn

(6.102)

It is the positive semi-de�nite solution Y of the algebraic Riccati equation
(ARE) which stabilizes matrix A − LC2. Matrix Y is obtained by taking the
positive values of yij : 

y12 = +
√
ρdρn

y11 =
√
2ρn

√
ρdρn

y22 =
√
2
√
ρdρn

(6.103)

We get:

Y =

[ √
2ρn

√
ρdρn

√
ρdρn√

ρdρn
√

2
√
ρdρn

]
=

[ √
2ρ0.25d ρ0.75n ρ0.5d ρ0.5n

ρ0.5d ρ0.5n

√
2ρ0.25d ρ0.25n

] (6.104)
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Thus the state x(t) is estimated as follows:

˙̂x(t) = Ax̂(t) + L
(
y(t)−C2x̂(t)

)
(6.105)

Where:

L = YCT
2

(
D21D

T
21

)−1
= −

 √
2
(

ρd
ρn

)0.25(
ρd
ρn

)0.5
 (6.106)



Chapter 7

H∞ robust control design

7.1 Introduction

In this chapter the H∞ observer-based controller design is considered. We recall
in Figure 7.1 the general framework for such design.

Furthermore the general form of the realization of the generalized plantG(s)
is the following:

[
z(s)
y(s)

]
= G(s)

[
w(s)
u(s)

]
⇔

 ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (7.1)

The H∞ control problem consists in �nding the controller C(s) which
achieves the inequality ∥Tzw(s)∥∞ = ∥Fl (G(s),C(s)) ∥∞ < γ provided that
such a controller exists.

First let's analyze the inequality :

max
w(t)̸=0

∥z(t)∥2
∥w(t)∥2

≤ γ (7.2)

As far as state vector x(t) depends on control vector u(t) it is clear that
the performance output vector z(t) fully depends on control vector u(t). Thus
the H∞ state feedback control problem can be envisioned as a zero-sum game

Figure 7.1: Generalized plant G(s) with controller C(s)
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between the controller C(s) (indeed from Figure 7.1 we have u(s) = C(s)y(s))
and the disturbance w(t):

max
w(t)̸=0

min
u(s)=C(s)y(s)

∥z(t)∥22 − γ2∥w(t)∥22 = 0 (7.3)

This can be rewritten as follows:

max
w(t)̸=0

min
u(s)=C(s)y(s)

JH∞ = 0 (7.4)

Where the performance index JH∞ to be zeroed is the following (1/2 has
been added in front of the integral without loss of generality to facilitate the
calculus):

JH∞ =
1

2

∫ ∞

0

(
z(t)T z(t)− γ2w(t)Tw(t)

)
dt (7.5)

As underlined by Professor Hannu T. Toivonen 1 the H∞ control problem
can be tackled in two steps. The �rst steps deals with the computation of the
optimal state-feedback control law. The second steps consists in �nding the
optimal state estimator.

7.2 State feedback control

7.2.1 Problem to be solved

In this section we will assume that the realization of the plant simpli�es as
follows:  ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

I 0 0

 x(t)
w(t)
u(t)

 (7.6)

In addition the following assumptions are made:

− (A,C1) has no unobservable modes on the imaginary axis

− (A,B2) is stabilizable

− DT
12D12 > 0 (thus the product is invertible)

− DT
12C1 = 0

Taking the Laplace transform (with initial condition set to zero) of the
preceding realization leads to the expression of the transfer matrix G(s):

x(s) = (sI−A)−1B1w(s) + (sI−A)−1B2u(s)

⇒
[
z(s)
y(s)

]
=

[
C1 (sI−A)−1B1 C1 (sI−A)−1B2 +D12

(sI−A)−1B1 (sI−A)−1B2

] [
w(s)
u(s)

]
:= G(s)

[
w(s)
u(s)

]
(7.7)

1http://users.abo.�/htoivone/courses/robust/rob4.pdf
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From (7.6) we get:

z(t) = C1x(t) +D12u(t)
⇒ z(t)T z(t) =

(
xT (t)CT

1 + uT (t)DT
12

)
(C1x(t) +D12u(t))

(7.8)

That is:

z(t)T z(t) = xT (t)CT
1 C1x(t) + xT (t)CT

1 D12u(t)

+ uT (t)DT
12C1x(t) + uT (t)DT

12D12u(t) (7.9)

Thanks to the simplifying assumptions we get:

DT
12C1 = 0 ⇒ z(t)T z(t) = xT (t)CT

1 C1x(t) + uT (t)DT
12D12u(t) (7.10)

Thus the performance index JH∞ in (7.5) to be minimized reduces as follows:

JH∞ =
1

2

∫ ∞

0

(
xT (t)CT

1 C1x(t) + uT (t)DT
12D12u(t)− γ2w(t)Tw(t)

)
dt (7.11)

Under the constraint :

ẋ(t) = Ax(t) +B1w(t) +B2u(t) (7.12)

7.2.2 Controller design

Applying classical results of optimal control theory we form the Hamiltonian
H(u,w, x) as the sum of the vector-valued mapping to be minimized and the
product between the Lagrange multipliers λ(t) and the constraint to be satis�ed:

H(u,w, x) =
1

2

(
xT (t)CT

1 C1x(t) + uT (t)DT
12D12u(t)− γ2w(t)Tw(t)

)
+

λ(t)T (Ax(t) +B1w(t) +B2u(t)) (7.13)

The best control signal u(t) that minimizes JH∞ is then obtained as the

solution of ∂H(u,w,x)
∂uT = 0:

∂H(u,w,x)
∂uT = 0 ⇔ DT

12D12u(t) +BT
2 λ(t) = 0

⇔ u(t) = −
(
DT

12D12

)−1
BT

2 λ(t)
(7.14)

Similarly the worth disturbance signal w(t) that maximizes JH∞ is obtained

as the solution of ∂H(u,w,x)
∂wT = 0:

∂H(u,w,x)
∂wT = 0 ⇔ −γ2w(t) +BT

1 λ(t) = 0

⇔ w(t) = γ−2BT
1 λ(t)

(7.15)

Furthermore the Lagrange multipliers λ(t) satisfy the following equation:

∂H(u,w, x)

∂xT
= −λ̇(t) ⇔ CT

1 C1x(t) +ATλ(t) = −λ̇(t) (7.16)
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Then the key point to get the expression of the Lagrange multipliers λ(t) is
to set them as follows where X is a constant and symmetric matrix:{

λ(t) = Xx(t)
X = XT (7.17)

Thus using constraint (7.12) in equation (7.16) we get:

CT
1 C1x(t) +ATXx(t) = −Xẋ(t)

⇔
(
CT

1 C1 +ATX
)
x(t) = −X (Ax(t) +B1w(t) +B2u(t))

(7.18)

In a last step we use the expression of the optimal control signals u(t) and
w(t) to obtain the following equation:(
CT

1 C1 +ATX
)
x(t) = −X

(
Ax(t) +B1γ

−2BT
1 λ(t)−B2

(
DT

12D12

)−1
BT

2 λ(t)
)

⇔
(
CT

1 C1 +ATX
)
x(t) = −X

(
A+ γ−2B1B

T
1 X−B2

(
DT

12D12

)−1
BT

2 X
)
x(t)

⇔
(
ATX+XA+X

(
γ−2B1B

T
1 −B2

(
DT

12D12

)−1
BT

2

)
X+CT

1 C1

)
x(t) = 0

(7.19)

The preceding equation is veri�ed whatever the value of the state vector x(t)
as soon as symmetric matrix X is the solution of the following Algebraic Riccati
Equation (ARE):

ATX+XA+X
(
γ−2B1B

T
1 −B2

(
DT

12D12

)−1
BT

2

)
X+CT

1 C1 = 0 (7.20)

The following Hamiltonian matrix HX is associated to equation (7.20) :

HX =

[
A γ−2B1B

T
1 −B2

(
DT

12D12

)−1
BT

2

−CT
1 C1 −AT

]
(7.21)

In order to get a stabilizing solution the symmetric matrix X shall be chosen
such that it is the positive semi-de�nite (X ≥ 0) solution of the Algebraic Riccati
Equation (ARE) (7.20).

Thus the control u(t) has the following expression:

u(t) = −Kx(t) (7.22)

Where:

K =
(
DT

12D12

)−1
BT

2 X (7.23)

Furthermore the worth case disturbance w(t) is given by:

w(t) = Kwx(t) (7.24)

Where:

Kw = γ−2BT
1 X (7.25)

Example 7.1. Consider the double integrator in Figure 7.2 where the input

control u(t) is a�ected by a disturbance d(t).
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Figure 7.2: Double integrator a�ected by noise and disturbance

The state space form is the following:{
ẋ1(t) = x2(t)
ẋ2(t) = u(t) + d(t)

(7.26)

The virtual output z(t) used only for design that we wish to maintain as

small as possible is the actual position x1(t) and the control u(t) (we include

control signal u(t) in order to bound it):

z(t) =

[
x1(t)
u(t)

]
(7.27)

The exogenous input vector is:

w(t) = d(t) (7.28)

Furthermore we will assume that the state vector x(t) =

[
x1(t)
x2(t)

]
is

available for control.

Using the standard state space equations (7.6) for state feedback H∞ control

we get:  ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 0 D12

I 0 0

 x(t)
w(t)
u(t)

 (7.29)

Where: 

A =

[
0 1
0 0

]
B1 = B2 =

[
0
1

]
C1 =

[
1 0
0 0

]
D12 =

[
0
1

]
(7.30)

It is clear that the following assumptions are satis�ed:

− (A,C1) as no unobservable modes on the imaginary axis

− (A,B2) is stabilizable

− DT
12D12 > 0 (here DT

12D12 = 1)
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− DT
12C1 = 0

Let the symmetric matrix X be written as follows:

X =

[
p11 p12
p12 p22

]
(7.31)

Then expanding (7.20) leads to the following equations:

ATX+XA+X
(
γ−2B1B

T
1 −B2

(
DT

12D12

)−1
BT

2

)
X+CT

1 C1 = 0

⇔

 1 +
(

1
γ2 − 1

)
p212 p11 +

(
1
γ2 − 1

)
p12p22

p11 +
(

1
γ2 − 1

)
p12p22 2p12 +

(
1
γ2 − 1

)
p222

 =

[
0 0
0 0

]
(7.32)

From which we get:
p12 = +

√
1

1− 1
γ2

( + sign because of (p22, p11) expressions)

p22 = ±
√

2p12
1− 1

γ2

p11 = ±
√
2p12

(7.33)

Finally the positive semi-de�nite solution X of the Algebraic Riccati

Equation (ARE) is obtained by taking the positive values of pij:

X =

 √
2p12 p12

p12

√
2p12
1− 1

γ2

 where p12 =

√
1

1− 1
γ2

(7.34)

■

7.3 State estimation

7.3.1 Problem to be solved

The H∞ state estimation problem consists in asymptotically reconstruct the
system's state x(t). More precisely, the state estimation problem consists in
�nding the matrix gain L of a observer (also called estimator) which estimates
the full state of the system x̂(t) thanks to the measurement vector y(t) while
minimizing the in�uence of the exogenous disturbance w(t).

Let's consider the following state-space realization of the generalized plant:{
ẋ(t) = Ax(t) +B1w(t) +B2u(t)
y(t) = C2x(t) +D21w(t)

(7.35)

The observer for this system is de�ned as follows where gain L has to be set:{
˙̂x(t) = Ax̂(t) +B2u(t) + L

(
y(t)− ŷ(t)

)
ŷ(t) = C2x̂(t)

(7.36)

As in section 6.3.1, the H∞ state estimation problem consists in �nding the
gain L which renders A− LC2 Hurwitz while minimizing the H∞-norm of the
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State feedback State estimation

A AT

B1 CT
1

B2 CT
2

C1 BT
1

D12 DT
21

K LT

Table 7.1: Duality principle for state feedback and state estimation matrices

transfer matrix Tzw(s) from the exogenous disturbance w(t) to the estimation
error z(t) = C1 e(t) where the state error e(t) reads:

e(t) = x(t)− x̂(t) (7.37)

In addition the following assumptions are made:

− (A,B1) has no uncontrollable modes on the imaginary axis

− (A,C2) is detectable

− D21D
T
21 > 0 (thus the product is invertible)

− D21B
T
1 = 0

7.3.2 Observer design

Thanks to the duality principle shown in Table 7.1, we can reuse the results of
the section dealing with the H∞ state feedback control problem. This leads to
the following conclusion: the H∞ optimal observer (or estimator) which
estimates the full state of the system x̂(t) thanks to the measurement vector
y(t) while minimizing the in�uence of the exogenous disturbance w(t) has the
following the realization:{

˙̂x(t) = Ax̂(t) +B2u(t) + L
(
y(t)− ŷ(t)

)
ŷ(t) = C2x̂(t)

(7.38)

where gain matrix L is obtained thanks to identi�cation with the matrices
of the dual problem and depends on the symmetric positive de�nite matrix
Y = YT > 0:

K =
(
DT

12D12

)−1
BT

2 X ⇒ LT =
(
D21D

T
21

)−1
C2Y (7.39)

That is:
L = YCT

2

(
D21D

T
21

)−1
(7.40)

Again applying the identi�cation process with the matrices of the dual
problem we conclude that positive semi-de�nite matrix Y is the solution of the
following Algebraic Riccati Equation (ARE) which comes from (6.16):

AY +YAT +Y
(
γ−2CT

1 C1 −CT
2

(
D21D

T
21

)−1
C2

)
Y +B1B

T
1 = 0 (7.41)
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The Algebraic Riccati Equation (ARE) (7.41) is associated with the
following Hamiltonian matrix HY :

HY =

[
AT γ−2CT

1 C1 −CT
2

(
D21D

T
21

)−1
C2

−B1B
T
1 −A

]
(7.42)

In order to get a stabilizing solution the symmetric matrix Y which solves
the Algebraic Riccati Equation (ARE) (7.41) is chosen to be positive semi-
de�nite. Such a choice leads to a stable closed loop matrix A−LC2, i.e. all its
eigenvalues have negative real parts.

7.4 Observer-based controller

In this section, the H∞ observer-based controller is considered. We will combine
state-feedback and estimator results. The proof of the results can be found in
the lecture of Professor Hannu T. Toivonen 1.

We recall the general form of the realization of the Linear Time Invariant
(LTI) plant:  ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (7.43)

Assume that:

− (A,B1) has no uncontrollable modes on the imaginary axis

− (A,C1) has no unobservable modes on the imaginary axis

− (A,B2,C2) is stabilizable and detectable

− DT
12D12 > 0 and D21D

T
21 > 0 (thus the product is invertible)

− DT
12C1 ̸= 0 and D21B

T
1 ̸= 0

The realization of the controller C(s) which achieves the bound
∥Tzw(s)∥∞ ≤ γ may be split between a state estimator and a state feedback
control law of the estimated state as follows:{

˙̂x(t) = Ax̂(t) +B2u(t) +B1ŵ(t) + Z∞L
(
y(t)− ŷ(t)

)
u(t) = −Kx̂(t)

(7.44)

Where: {
ŵ(t) = γ−2BT

1 Xx̂(t)
ŷ(t) =

(
C2 + γ−2D21B

T
1 X
)
x̂(t)

(7.45)

In other words the realization of the controller C(s) is the following:{
u(s) = C(s)y(s)

C(s) = CK (sI−AK)−1BK
⇔
[

˙̂x(t)
u(t)

]
=

[
AK BK

CK 0

] [
x̂(t)
y(t)

]
(7.46)
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Where2:
AK = A−B2K− Z∞LC2 + γ−2

(
B1B

T
1 − Z∞LD21B

T
1

)
X

BK = Z∞L
CK = −K

Z∞ =
(
I− γ−2YX

)−1

(7.47)

Doyle and al.3 have proven that the gains K and L of the stabilizing
controller C(s) which guarantees ∥Tzw(s)∥∞ ≤ γ ≤ γopt have the following
expression: {

K = D̃12

(
BT

2 X+DT
12C1

)
L =

(
YCT

2 +B1D
T
21

)
D̃21

(7.48)

The symmetric and positive semi-de�nite matrices X = XT ≥ 0 and Y =
YT ≥ 0 are solutions of two Algebraic Riccati Equations (AREs) expressed
through the following Hamiltonian matrices:


HX =

 A−B2D̃12D
T
12C1 γ−2B1B

T
1 −B2D̃12B

T
2

−C̃T
1 C̃1 −

(
A−B2D̃12D

T
12C1

)T


HY =

 (A−B1D
T
21D̃21C2

)T
γ−2CT

1 C1 −CT
2 D̃21C2

−B̃1B̃
T
1 −

(
A−B1D

T
21D̃21C2

)
 (7.49)

With: {
D̃12 =

(
DT

12D12

)−1

D̃21 =
(
D21D

T
21

)−1 (7.50)

And:  B̃1 = B1

(
I−DT

21D̃21D21

)
C̃1 =

(
I−D12D̃12D

T
12

)
C1

(7.51)

Moreover the two positive semi-de�nite solutions X and Y satisfy:

ρ (XY) ≤ γ2 (7.52)

where ρ (A) := λmax (A) denotes the spectral radius of matrix A.

The case where D22 ̸= 0 does not pose any problem since it is easy to form
an equivalent problem with D22 = 0 by a linear fractional transformation on
the controller C(s) (cf. Doyle & al.4 p. 261):

CD(s) = C(s) (I+D22C(s))−1 (7.53)

2Luigi Fortuna and Mattia Frasca, Optimal and robust control: advanced topics with
Matlab, CRC Press, 2012

3Doyle J.C., Glover K., Khargonekar P.P., Francis B. A., State-space solutions to standard
H2 and H∞ control problems, IEEE Transactions on Automatic Control (Volume 34 , Issue
8), Aug 1989

4Zhou K., Doyle J., Essentials of Robust Control, Prentice Hall, 1997, ISBN 0-13-525833-2
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It is worth noticing that the optimal H∞ controller has the order of the plant
plus the orders of all the weighting �lters.

Now assume thatD11 ̸= 0, which will complicates the formulas substantially.
However Doyle & al.4 (p. 289) have shown that symmetric and positive semi-
de�nite matrix X = XT ≥ 0 is now solution of the following Algebraic Riccati
Equations (AREs) expressed through the following Hamiltonian matrix:

HX =

[
A 0

−CT
1 C1 −AT

]
−
[

B1 B2

−CT
1 D11 −CT

1 D12

]
R̃−1

X

[
DT

11C1 BT
1

DT
12C1 BT

2

]
(7.54)

where

R̃X =

[
DT

11

DT
12

] [
D11 D12

]
−
[
γ2I 0
0 0

]
(7.55)

Furthermore state feedback gain matrix K now reads as follows:

K = R̃−1
X

([
BT

1

BT
2

]
X+

[
DT

11

DT
12

]
C1

)
(7.56)

Similarly when D11 ̸= 0 Doyle & al.4 have shown that symmetric and
positive semi-de�nite matrix Y = YT ≥ 0 is now solution of the following
Algebraic Riccati Equations (AREs) expressed through the following
Hamiltonian matrix:

HY =

[
AT 0

−B1B
T
1 −A

]
−
[

CT
1 CT

2

−B1D
T
11 −B1D

T
21

]
R̃−1

Y

[
D11B

T
1 C1

D21B
T
1 C2

]
(7.57)

where

R̃Y =

[
D11

D21

] [
DT

11 DT
21

]
−
[
γ2I 0
0 0

]
(7.58)

Furthermore observer gain matrix L now reads as follows:

L =
(
Y
[
CT

1 CT
2

]
+B1

[
DT

11 DT
21

])
R̃−1

Y (7.59)

7.5 Practical considerations

7.5.1 Optimal bound approximation: γ-iteration algorithm

The optimal bound γopt can be approximated arbitrarily by a bisection method,
also call γ-iteration, which consists to iteratively �nd an upper bound γ and a
lower bound γ for γopt; at each step those bounds come closer and closer to the
optimal bound. The algorithm is the following:
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1. Set γ = 0 and γ to the value of ∥Tzw(s)∥∞ obtained with the controller
where γ = ∞ in the Algebraic Riccati Equation (this is the solution of
the so called H2 robust control problem). Alternatively, given the
generalized stable plant (A,B,C), its H∞-norm can be found by
considering the following Hamiltonian matrix:

H =

[
A 1

γ2BBT

−CTC −AT

]
(7.60)

Thus we may set a value of γ := γ and check that H has no eigenvalues
on the imaginary axis. If it does, we have to choose a larger value of γ
and run the test again.

2. Let γ =
γ+γ

2 and check whether a controller C(s) exists such that
∥Tzw(s)∥∞ < γ; if yes set γ = γ, otherwise set γ = γ

3. Repeat step 2 until γ − γ is lower than a prescribed small value ϵ

7.5.2 Procedure for solving the H∞ control problem

The procedure for solving the general H∞ control problem is the following 2:

1. Get the state-space realization of the generalized plant G(s)

2. Verify that DT
12D12 > 0 and D21D

T
21 > 0 (thus the product is invertible)

3. Set a positive value of γ large enough to solve the two Algebraic Riccati
Equations (7.49)

4. Compute the solutions X and Y of the two Algebraic Riccati Equations
(7.49)

5. Verify that the condition ρ (XY) < γ2 is met

6. If steps 4 and 5 are veri�ed, it is possible to repeat the procedure by
lowering γ at step 3 using for example the γ-iteration algorithm presented
in section 7.5.1.

It is worth noticing that when γ → ∞ we retrieve the results of the H2

control problem.

7.6 Mixed sensitivity design

7.6.1 Design speci�cations

The mixed-sensitivity control design approach was proposed by G. Zames in
19815. It is a powerful design tool for One-Degree-Of-Freedom feedback control
loop which relies on shaping the closed-loop response characteristics through
SISO weighting �lters We(s) and Wu(s).

5Zames G., Feedback and optimal sensitivity: Model reference transformations,
multiplicative seminorms, and approximate inverses, IEEE Transactions on Automatic
Control, Volume 26, Issue 2, April 1981
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Figure 7.3: One-Degree-Of-Freedom feedback control loop with weighting �lters

Figure 7.4: Rearrangement to generalized plant G(s) with controller C(s)

More speci�cally let's consider Figure 7.3 and de�ne the performance output
vector z(s) as follows:

z(s) :=

[
z1(s)
z2(s)

]
=

[
We(s)

(
r(s)− y

p
(s)
)

Wu(s)u(s)

]
(7.61)

The input vector w formed by exogenous inputs is de�ned as follows:

w := r (7.62)

Figure 7.3 can be shaped to the general framework presented in Figure 7.1
by some rearrangement as shown in Figure 7.4

Let's compute the expression of the performance error r(s) − y
p
(s). From

Figure 7.3 let's compute y
p
(s) on the nominal plant Fn(s) (that is assuming no
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uncertainty: ∆(s) = 0):

∆(s) = 0 ⇒ y
p
(s) = Fn(s)C(s)

(
r(s)− y

p
(s)
)

⇔ y
p
(s) = (I+ Fn(s)C(s))−1Fn(s)C(s)r(s)

(7.63)

We recognize in (I+ Fn(s)C(s))−1Fn(s)C(s) the complementary (output)
sensitivity matrix T(s):

T(s) = (I+ Fn(s)C(s))−1Fn(s)C(s) (7.64)

Thus:
y
p
(s) = T(s)r(s) (7.65)

Using relation S(s)+T(s) = I between the (output) sensitivity matrix S(s)
and the complementary (output) sensitivity matrix T(s) we �nally get for the
�rst component r(s)− y

p
(s) of the performance output vector z:

S(s) +T(s) = I ⇒ r(s)− y
p
(s) = (I−T(s)) r(s) = S(s)r(s) (7.66)

Finally the performance error r(s)− y
p
(s) reads:

r(s)− y
p
(s) = S(s) r(s) (7.67)

Furthermore from relations (7.65) and S(s) +T(s) = I we have:

u(s) = C(s)
(
r(s)− y

p
(s)
)

= C(s) (r(s)−T(s)r(s))
= C(s)S(s) r(s)

(7.68)

Thus relation (7.61) reads:

z(s) :=

[
z1(s)
z2(s)

]
=

[
We(s)

(
r(s)− y

p
(s)
)

Wu(s)u(s)

]
=

[
We(s)S(s)

Wu(s)C(s)S(s)

]
r(s)

(7.69)
The preceding relation is rewritten as follows where matrix Tzw(s) is the

performance transfer matrix between the performance output vector z and the
input vector w := r on the nominal plant Fn(s).

z(s) = Tzw(s) r(s) where Tzw(s) :=

[
We(s)S(s)

Wu(s)C(s)S(s)

]
(7.70)

As a conclusion design speci�cations assuming additive uncertainty imply
that the norm of matrices S(s) and C(s)S(s) (and possibly T(s)) should be
kept small. Thus the basic robust control problem assuming additive uncertainty
consists in minimizing the norm (either the H2 or the H∞-norm) of the following
performance transfer function Tzw(s):

F(s) = Fn(s) +Wu(s)∆(s) ⇒ Tzw(s) =

[
We(s)S(s)

Wu(s)C(s)S(s)

]
(7.71)

In other words to ensure a robust controller design the following statements
shall hold:
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− For the stability of the closed-loop uncertain plant, the norm of the
product Wu(s)C(s)S(s) is required to be small assuming additive

uncertainty. We have seen that this result comes from the small gain
theorem;

− For good command following and disturbance rejection, the norm of the
matrix We(s)S(s) is required to be small.

Others performance speci�cations such as disturbance rejection and sensor
noise attenuation may be added. It can be shown that to remain insensitive
to sensor noise the norm of the complementary sensitivity matrix T(s) shall be
small.

The SISO weighting �lters We(s) and Wu(s) are tuning parameters which
help to shape the closed-loop response characteristics. They are selected to
re�ect the frequency dependence of the signals and performance speci�cations.
They are de�ned as rational, stable, minimum-phase transfer functions (i.e.,
no poles or zeros in the right half plane). Usually We(s) is chosen as a low
pass �lter, enabling low frequency reference inputs to be considered for
tracking, whereas Wu(s) is chosen as a high pass �lter, enabling high
frequency unmodeled dynamics to be taken into account.

A good starting point is to choose6

{
We(s) =

s/M1+ω1

s+ϵ1ω1

Wu(s) =
1

M2
or s+ω2/M2

ϵ2s+ω2

where


M1 = M2 := M
ω1 = ω2 := ω0

ϵ1 = ϵ2 := ϵ
0 < ϵ < 1

(7.72)

Parameter ϵ is the maximum allowed steady state o�set, ω0 is the desired
bandwidth and M is the sensitivity peak.

W−1
e (s) is an upper bound of the desired sensitivity function S(s) whereas

W−1
u (s) will limit the magnitude of the control vector u.

− For the numerator-denominator perturbations problem of SISO plant that
we have studied in section 4.4.3, we have seen that a su�cient condition
for robust stability is the following (see (4.35)):∥∥∥∥∥

[
Wn(s)

Wp(s)
Dn(s)

C(s)S(s)

Wd(s)
Wp(s)
Dn(s)

S(s)

]∥∥∥∥∥
∞

< 1 (7.73)

Comparing the preceding relation with (7.71), it can be seen that this
problem turns to be equivalent to the basic mixed sensitivity robust control
problem assuming additive uncertainty through the following choices of
weighting �lters We(s) and Wu(s):{

We(s) := Wd(s)
Wp(s)
Dn(s)

Wu(s) := Wn(s)
Wp(s)
Dn(s)

(7.74)

6Bérard C., Biannic J.M., Saussié D., La commande multivariable - Application au pilotage
d'un avion, Dunod, 2012



7.6. Mixed sensitivity design 113

Note that we have the following relation:∥∥∥∥[ F1(s)
F2(s)

]∥∥∥∥
∞

< 1 ⇒
{

∥F1(s)∥∞ < 1
∥F2(s)∥∞ < 1

(7.75)

− Finally, the basic robust control problem assuming output multiplicative

uncertainty consists in minimizing the H∞-norm of the following
performance transfer function Tzw(s):

F(s) = (I+∆(s)Wu(s))Fn(s) ⇒ Tzw(s) =

[
We(s)S(s)
Wu(s)T(s)

]
(7.76)

Where T(s) is the complementary sensitivity function:

T(s) = S(s)Fn(s)C(s) (7.77)

7.6.2 Frequency response shaping

The mixed sensitivity problem may be used for performance design by shaping
the sensitivity function S(s) and the transfer function C(s)S(s).

Following Kwakernaak7, �rst it is worth noticing that the square of the
H∞-norm of transfer matrix Tzw(s) is given as follows:

∥Tzw(s)∥2∞ = supω∈R

(
|We(jω)S(jω)|2 + |Wu(jω)C(jω)S(jω)|2

)
(7.78)

The solution of the mixed sensitivity problem has the property that the
frequency dependent function |We(jω)S(jω)|2 + |Wu(jω)C(jω)S(jω)|2 is
actually a constant when optimal control is achieved7:

|We(jω)S(jω)|2 + |Wu(jω)C(jω)S(jω)|2 = γ2 ∀ω ∈ R (7.79)

This is known as the equalizing property
Thus for the optimal controller C(s) we have:{

|We(jω)S(jω)|2 ≤ γ2 ∀ω ∈ R
|Wu(jω)C(jω)S(jω)|2 ≤ γ2 ∀ω ∈ R

(7.80)

Hence: {
|S(jω)| ≤ γ

|We(jω)| ∀ω ∈ R
|C(jω)S(jω)| ≤ γ

|Wu(jω)| ∀ω ∈ R (7.81)

By choosing the weighting �lters We(s) and We(s) suitably, the sensitivity
function S(s) and the transfer function C(s)S(s) may be made small in
appropriate frequency regions.

If the weighting �lters are appropriately chosen, in particular, with We(jω)
large at low frequencies andWu(jω) large at high frequencies, often the solution

7Huibert Kwakernaak, Minimax Frequency Domain Performance and Robustness
Optimization of Linear Feedback Systems, IEEE Transactions on Automatic Control AC-
30(10), November 1985, Pages 994-1004
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of the mixed sensitivity problem has the property that the �rst term of the
criterion dominates at low frequencies and the second at high frequencies:

|We(jω)S(jω)|2︸ ︷︷ ︸
dominates at low frequencies

+ |Wu(jω)C(jω)S(jω)|2︸ ︷︷ ︸
dominates at high frequencies

= γ2 ∀ω ∈ R (7.82)

As a result: {
|S(jω)| ≈ γ

|We(jω)| for ω small

|C(jω)S(jω)| ≈ γ
|Wu(jω)| for ω large

(7.83)

This allows quite e�ective control over the shape of sensitivity function S(s)
and the transfer functionC(s)S(s) and hence over the performance of the closed-
loop.

7.6.3 Generalized plant

Let's consider the one degree of freedom control loop in Figure 7.3. We wish to
design a controller that minimizes the H∞-norm of the following transfer matrix:

Tzw(s) =

[
We(s)S(s)

Wus)C(s)S(s)

]
(7.84)

Where S(s) is the sensitivity function:

S(s) = (I+ Fn(s)C(s))−1 (7.85)

We will elaborate the state space representation of the generalized open-loop
plant G(s) in Figure 7.3 to match with the formalism of Figure 7.1:[

z(s)
y(s)

]
= G(s)

[
w(s)
u(s)

]

⇔

 z1(s)
z2(s)
y(s)

 =

 We(s) −We(s)Fn(s)
0 Wu(s)
I −Fn(s)

[ r(s)
u(s)

] (7.86)

The realization of the open-loop plant transfer functionG(s) can be obtained
as follows:

− Firstly the state space representation of the plant is the following:{
ẋp(t) = Apxp(t) +Bpu(t)

yp(t) = Cpxp(t)
(7.87)

− Secondly, using the relation y(t) = r(t) − Cpxp(t), the state space
representation of the error �lter We(s) is the following:{

ẋe(t) = Aexe(t) +Be

(
r(t)−Cpxp(t)

)
z1(t) = Cexe(t) +De

(
r(t)−Cpxp(t)

) (7.88)
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− Thirdly the state space representation of the controller �lter Wu(s) is the
following: {

ẋu(t) = Auxu(t) +Buu(t)
z2(t) = Cuxu(t) +Duu(t)

(7.89)

Thus the state vector of the generalized plant is the following:

x(t) =

 xp(t)

xe(t)
xu(t)

 (7.90)

The exogenous input vector w(t) is de�ned as follows:

w(t) := r(t) (7.91)

The vector of output y(t) available for the controller is the following:

y(t) = r(t)−Cpxp(t)

= r(t) +
[
−Cp 0 0

]  xp(t)

xe(t)
xu(t)


= w(t) +

[
−Cp 0 0

]
x(t)

(7.92)

The performance output vector z(t) is the following:

z(t) =

[
z1(t)
z2(t)

]
=

[
−DeCp Ce 0

0 0 Cu

] xp(t)

xe(t)
xu(t)

+

[
De 0
0 Du

] [
w(t)
u(t)

]
=

[
−DeCp Ce 0

0 0 Cu

]
x(t) +

[
De 0
0 Du

] [
w(t)
u(t)

] (7.93)

We �nally match with the formalism of Equation (5.2): ẋ(t)
z(t)
y(t)

 =

 A B1 B2

C1 D11 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (7.94)

Where the matrices used in the �rst row have the following expression:

A =

 Ap 0 0
−BeCp Ae 0

0 0 Au


B1 =

 0
Be

0


B2 =

 Bp

0
Bu


(7.95)
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The matrices used in the second row have the following expression:

C1 =

[
−DeCp Ce 0

0 0 Cu

]
D11 =

[
De

0

]
D12 =

[
0
Du

] (7.96)

And the matrices used in the third line have the following expression:{
C2 =

[
−Cp 0 0

]
D21 = I (7.97)

Example 7.2. Let's consider the one degree of freedom control loop in Figure

7.3. The transfer functions of the plant Fn(s) and weighting �lters We(s) and
Wu(s) are the following:

Fn(s) =
s−2

(s+5)(s+1) =
s−2

s2+6s+5

We(s) =
1

s+0.01

Wu(s) =
s+2
s+10 = 1− 8

s+10

(7.98)

We are looking for the time domain representation of the generalized open-

loop plant G(s) to match with the formalism of Equation (5.2):

− Firstly the state space representation of the plant is the following:{
ẋp(t) = Apxp(t) +Bpu(t)

yp(t) = Cpxp(t)
(7.99)

Where: 
Ap =

[
0 1
−5 −6

]
Bp =

[
0
1

]
Cp =

[
−2 1

] (7.100)

− Secondly the state space representation of the error �lter We(s) is the

following: {
ẋe(t) = Aexe(t) +Be

(
r(t)−Cpxp(t)

)
z1(t) = Cexe(t)

(7.101)

Where: 
Ae = −0.01
Be = 1
Ce = 1
De = 0

(7.102)
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Figure 7.5: One-Degree-Of-Freedom feedback control loop with weighting �lters

− Thirdly the state space representation of the controller �lter Wu(s) is the
following: {

ẋu(t) = Auxu(t) +Buu(t)
z2(t) = Cuxu(t) +Duu(t)

(7.103)

Where: 
Au = −10
Bu = 1
Cu = −8
Du = 1

(7.104)

■

7.7 Worked example

We present hereafter the illustrative example proposed by Herzog & Keller8. We
consider transfer function Fa(s) to be controlled, where uncertain parameter θ
varies between 0.02 and 0.05:

Fa(s) =
5

(s+ 1)(sθ + 1)2
where 0.02 ≤ θ ≤ 0.05 (7.105)

The robust control design problem consists in designing the controller C(s)
which achieves the following performance criteria:

− Stability of the closed-loop plant, despite the uncertainty in transfer
function (7.105) ;

− Good command following and disturbance rejection.

For this worked example, we will design the controller C(s) through the
mixed-sensitivity H∞ robust control framework. We will use the standard form
shown in Figure 7.5, including the weighting functions We(s) and Wu(s). The
observed-based controller to be designed is denoted C(s).

8Raoul Herzog, Jürg Keller, An Overview on Robust Control, MSE, 2010
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Figure 7.6: Uncertainty bounds

7.7.1 Modelling of uncertainty

This uncertain transfer function Fa(s) is split as the sum of a nominal transfer
function, Fn(s), and an additive uncertainty whose bound is denoted Wu(s):

Fa(s) = Fn(s) + ∆(s)Wu(s) where

{
Fn(s) =

5
s+1

Wu(s) =
0.0075 s (s+1000)

(s+1)(s+15)

(7.106)

For technical reason, it is worth noticing that the degree of the denominator
of Wu(s) shall be the same than the degree of its numerator.

Figure 7.6 shows the Bode magnitude plot of Fa(s) − Fn(s), for θ = 0.02
and 0.05, as well as the Bode magnitude plot of Wu(s). It appears clearly that
additive uncertainty Wu(s) is an upper bound for the uncertainty.

A state-space realization of Wu(s) is thus:

Wu(s) = 0.0075− 0.0075(984s−15)
s2+16s+15

=

 0 1 0
−15 −16 1

−0.1125 7.38 0.0075

 :=

(
Au Bu

Cu Du

)
(7.107)

7.7.2 Selection of weighting �lter We(s)

For good command following and disturbance rejection, the norm of the matrix
We(s)S(s) is required to be small. W−1

e (s) is an upper bound of the desired
sensitivity function S(s). Nevertheless the sensitivity function has to meet the
Bode integral theorem presented in section 2.3. An unsuitable selection of S(s),
and thus of We(s), may lead to an unsolvable H∞ controller design problem.
Zero steady-state error is achieved if We(s) has a pole at ω = 0. Selecting the
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bandwidth of the closed-loop to be about 1 rad/sec (which is approximatively
the bandwidth of the uncertainty �lter Wu(s)), we may choose:

We(s) =
s+ 1

s
(7.108)

Weighting �lter de�ned in (7.108) has the drawback that there is no limit
to possible resonance peaks of the sensitivity function. With an additional pole
at 0.001, this drawback is eliminated:

We(s) =
s+ 1

s+ 0.001
(7.109)

A state-space realization of We(s) is thus:

We(s) = 1 +
0.999

s+ 0.001
=

(
−0.001 1

0.999 1

)
:=

(
Ae Be

Ce De

)
(7.110)

7.7.3 Generalized plant

We will elaborate the state-space realization of the generalized open-loop plant
G(s) in Figure 7.5 (that is the plant without controller C(s)) to match with the
following formalism: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 D11 D12

C2 D21 0

 x(t)
w(t)
u(t)

 (7.111)

− Firstly the state-space realization of the plant is the following:{
ẋp(t) = Apxp(t) +Bpu(t)

yp(t) = Cpxp(t)
(7.112)

A state-space realization of Fn(s) is the following:

Fn(s) =
5

s+ 1
=

(
−1 1

5 0

)
:=

(
Ap Bp

Cp 0

)
(7.113)

− Secondly the state-space realization of the error �lter We(s) is the
following: {

ẋe(t) = Aexe(t) +Be

(
r(t)−Cpxp(t)

)
z1(t) = Cexe(t) +De

(
r(t)−Cpxp(t)

) (7.114)

− Thirdly the state-space realization of the controller �lter Wu(s) is the
following: {

ẋu(t) = Auxu(t) +Buu(t)
z2(t) = Cuxu(t) +Duu(t)

(7.115)
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As shown in section 7.6.3, and setting w := r, we �nally match with the

formalism of Equation (7.111) assuming x =
[
xTp xTe xTu

]T
by making the

following settings:

x =

 xp
xe
xu

⇒



A =

 Ap 0 0
−BeCp Ae 0

0 0 Au

 =


−1 0 0 0

−5 −0.001 0 0

0 0 0 1
0 0 −15 −16


B1 =

 0
Be

0

 =


0

1

0
0


B2 =

 Bp

0
Bu

 =


1

0

0
1


(7.116)

The matrices used in the second row have the following expression:

z =

[
z1
z2

]
⇒



C1 =

[
−DeCp Ce 0

0 0 Cu

]
=

[
−5 0.999 0 0

0 0 −0.1125 7.38

]
D11 =

[
De

0

]
=

[
1

0

]
D12 =

[
0
Du

]
=

[
0

0.0075

]
(7.117)

And the matrices used in the third line have the following expression:{
C2 =

[
−Cp 0 0

]
=
[
−5 0 0 0

]
D21 = 1

(7.118)

7.7.4 Observer-based controller

The H∞ controller C(s) can be obtained by using either the functions gamitg

and ccontrg (or hinf ) with Scilab or the function hinfsyn with Matlab or with
the Python Control Systems Library.

Using Python Control Systems Library we obtain the following results:{
γ ≈ 1

C(s) = 8.981e07s3+1.524e09s2+2.738e09s+1.304e09
s4+4.178e08s3+7.16e09s2+6.749e09s+6.742e06

(7.119)

It is worth noticing that the controller is strictly proper with the same order
than the generalized plant. Nevertheless when the two positive semi-de�nite
solutions X and Y satisfy ρ (XY) = γ2 then the order of the controller drops.
This order reduction is due to the simpli�cation of poles at in�nity9. In this
example, factorizing by the term 8.981e07s3 the numerator and the denominator

9Robustesse et commande optimale, Daniel Alazard, Pierre Apkarian, Christelle Cumer,
Gilles Ferreres, Michel Gauvrit, Cepadues, 1999, page 106
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Figure 7.7: Bode magnitude plot of sensitivity function S(s)

of C(s) and omitting the very small term in s4 in the denominator leads to the
following reduced order controller Cr(s):

Cr(s) =
s3 + 17.14s2 + 16.15s+ 0.01614

4.653s3 + 79.73s2 + 75.15s+ 0.07507
(7.120)

In Figure 7.7 it can be seen that sensitivity function S(s) andW−1
e (s) match

pretty well for all frequencies. Usually S(s) and W−1
e (s) match pretty well only

for low frequencies.
In Figure 7.8 it can be seen that ∥Wu(s)C(s)S(s)∥∞ ≈ 0.1 (−20 dB) < 1.

From the small gain theorem, we conclude that the closed-loop system remains
stable despite the uncertainty (we recall that this is a conservative stability
condition).

In Figure 7.9 the step response of the closed-loop system is shown. It can
bee seen that the settling time is approximately 3 sec, that is three times the
inverse of the bandwidth of the sensitivity function.
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Figure 7.8: Bode magnitude plot of Wu(s)C(s)S(s)

Figure 7.9: Step response of the closed-loop system



Chapter 8

Introduction to Linear Matrix
Inequalities (LMI)

8.1 De�nitions

8.1.1 Positive de�nite and positive semi-de�nite matrix

A positive de�nite matrix M is denoted M > 0 where 0 denotes here the zero
matrix. We remind that a real n × n symmetric matrix M = MT is called
positive de�nite if and only if we have either:

− xTMx > 0 for all x ̸= 0;

− All eigenvalues of M are strictly positive;

− All of the leading principal minors are strictly positive (the leading
principal minor of order k is the minor of order k obtained by deleting
the last n− k rows and columns);

− M can be written as MT
s Ms where matrix Ms is square and invertible.

Similarly a semi-de�nite positive matrix M is denoted M ≥ 0 where 0
denotes here the zero matrix. We remind that a n × n real symmetric matrix
M = MT is called positive semi-de�nite if and only if we have either:

− xTMx ≥ 0 for all x ̸= 0;

− All eigenvalues of M are non-negative;

− All of the principal (not only leading) minors are non-negative (the
principal minor of order k is the minor of order k obtained by deleting
n− k rows and the n− k columns with the same position than the rows.
For instance, in a principal minor where you have deleted rows 1 and 3,
you should also delete columns 1 and 3);

− M can be written as MT
s Ms where matrix Ms is full row rank.

Furthermore a real symmetric matrix M is called negative (semi-)de�nite if
−M is positive (semi-)de�nite.



124 Chapter 8. Introduction to Linear Matrix Inequalities (LMI)

Example 8.1. Check that M1 = MT
1 =

[
1 2
2 3

]
is not positive de�nite and that

M2 = MT
2 =

[
1 −2
−2 5

]
is positive de�nite. ■

8.1.2 Linear Matrix Inequalities (LMI)

A Linear Matrix Inequality (LMI) is a matrix inequality of the form:

M(p) = M0 +
n∑

i=1

piMi > 0 (8.1)

where Mi = MT
i , i = 1, · · · , n, are given symmetric matrices,

p =
[
p1 · · · pn

]T
is a vector of real scalar variables. Matrix inequality

M(p) > 0 means that symmetric matrix M(p) = M(p)T is positive de�nite.
It can be shown that the set of all solutions p of (8.1) is a convex set.

8.1.3 Schur complement lemma

Schur complement lemma converts convex nonlinear inequalities to an LMI1.
The convex nonlinear inequalities are the sets of the following equivalent
relations where M11 = MT

11 and M22 = MT
22:{

M11 −M12M
−1
22 M

T
12 > 0

M22 > 0
⇔
{

M22 −MT
12M

−1
11 M12 > 0

M11 > 0
(8.2)

The Schur complement lemma converts the previous sets of inequalities into
the following equivalent linear matrix inequality (LMI):[

M11 M12

MT
12 M22

]
> 0 (8.3)

The following matrix inversion lemma may also be useful:

(W +XYZ)−1 = W−1 −W−1X
(
ZW−1X+Y−1

)−1
ZW−1 (8.4)

8.2 Stability analysis

8.2.1 Lyapunov's second method

Let's consider the following homogeneous nonlinear system with state vector x:

ẋ(t) = f(x(t)) (8.5)

We said that xe is an equilibrium point if the following relation holds:

0 = f(xe) (8.6)

1VanAntwerp J., Braatz R., A tutorial on linear and bilinear matrix inequalities, Journal
of Process Control, vol. 10, pp. 363-385, 2000
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Furthermore the equilibrium point xe is said to be asymptotically stable if
the response of the system to any arbitrary initial condition x(0) tends
asymptotically towards the equilibrium point xe.

According to Lyapunov's second method for stability the equilibrium point
xe is asymptotically stable if there exists a scalar function V (x) : Rn → R such
that the three inequalities hold:

V (xe) = 0
V (x) > 0 ∀x ̸= xe
V̇ (x) < 0 ∀x ̸= xe

(8.7)

In addition if the scalar function V (x) is radially unbounded, meaning that
lim∥x∥→∞ V (x) = ∞, then the equilibrium point xe is said to be globally
asymptotically stable.

Moreover, Bath2 has shown that if there exists real numbers c > 0 and
α ∈ [0, 1[ such that:

V̇ (x) + c (V (x))α ≤ 0 ∀x ̸= xe (8.8)

then the origin is a �nite-time-stable equilibrium point and the settling time
function ts(x) is bounded as follows:

ts(x) ≤
(V (x))1−α

c (1− α)
(8.9)

Homogeneous linear systems are de�ned by the following relation where Acl

stands for the closed loop state matrix:

f(x(t)) = Aclx(t) ⇒ ẋ(t) = Aclx(t) (8.10)

For linear system there is a unique equilibrium point (assuming that state
matrix Acl is non singular) which is xe = 0. An usual choice for the Lyapunov's
function V (x) is the following whereP = PT > 0 is a symmetric positive de�nite
matrix:

V (x) = xTPx where P = PT > 0 (8.11)

It is clear that V (x) is radially unbounded and that the �rst two conditions
of (8.7) are ful�lled. If V (x) is such V̇ (x) ≤ −xTQx < 0 ∀x ̸= 0 where
Q = QT > 0, then equilibrium point xe is globally asymptotically stable (xe is
said to be globally exponentially stable) and ∥x(t)∥ satis�es:{

V (x) = xTPx where P = PT > 0

V̇ (x) ≤ −xTQx < 0 ∀x ̸= 0 where Q = QT > 0

⇒ ∥x(t)∥ ≤

√
λmax(P)

λmin(P)
exp

(
−λmin(Q)

λmax(P)
t

)
∥x(0)∥ (8.12)

2S.P. Bhat & D.S. Bernstein, Finite-time stability of continuous autonomous systems,
SIAM J. Control Optim. 38 (3) (2000) 751�766
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Indeed since P = PT > 0 we get:

0 < λmin(P)xTx ≤ V (x) = xTPx ≤ λmax(P)xTx ∀x ̸= 0

⇒ −xTx ≤ − V (x)
λmax(P)

(8.13)

Similarly, from V̇ (x) ≤ −xTQx and since Q = QT > 0 we get, using the
previous result:

V̇ (x) ≤ −xTQx ≤ −λmin(Q)xTx ≤ −λmin(Q)

λmax(P)
V (x) (8.14)

Integration of this inequality yields:

V (x(t)) ≤ exp

(
−λmin(Q)

λmax(P)
t

)
V (x(0)) (8.15)

Using this result in the inequalities (8.13) implies:{
λmin(P)x(t)Tx(t) ≤ V (x(t))
V (x(0)) ≤ λmax(P)x(0)Tx(0)

⇒ x(t)Tx(t) ≤ V (x(t))
λmin(P) ≤ 1

λmin(P) exp
(
−λmin(Q)

λmax(P) t
)
V (x(0))

≤ λmax(P)
λmin(P) exp

(
−λmin(Q)

λmax(P) t
)
x(0)Tx(0)

⇒ ∥x(t)∥ :=
√

x(t)Tx(t) ≤
√

λmax(P)
λmin(P) exp

(
−λmin(Q)

λmax(P) t
)
∥x(0)∥

(8.16)

This completes the proof. ■
Moreover the third condition of (8.7) reads:

V̇ (x) = ẋTPx+ xTPẋ = xT
(
AT

clP+PAcl

)
x < 0 ∀x ̸= 0 (8.17)

Assume that there exists α > 0 such that:

AT
clP+PAcl + 2αP < 0 (8.18)

Then:
V̇ (x) = xT

(
AT

clP+PAcl

)
x < xT (−2αP)x (8.19)

Then using similar relations than those in the previous proof, it can be shown
that:

∥x(t)∥ :=
√
x(t)Tx(t) ≤

√
λmax(P)

λmin(P)
exp (−α t) ∥x(0)∥ (8.20)

Therefore for linear system the equilibrium point xe = 0 is globally
asymptotically stable if there exits a symmetric positive de�nite matrix
P = PT satisfying the following Linear Matrix Inequalities (LMI):{

P = PT > 0
AT

clP+PAcl < 0
(8.21)

Linear Matrix Inequalities (LMI) (8.21) represents a necessary and su�cient
condition for the matrix Acl to have all its eigenvalues in the left half plane.



8.2. Stability analysis 127

De�ning by 1ij the matrix whose elements are all zero except elements at
position (i, j) and (j, i) which are equal to one, and by pi,j the elements of the
n×n symmetric positive de�nite matrix P we can write P =

∑n
i=1

∑i
j=1 pi,j1ij .

The two previous inequalities become:

M(p) =
n∑

i=1

 i∑
j=1

pi,j

[
1ij 0
0 −AT

cl1ij − 1ijAcl

] > 0 (8.22)

This yields a Linear Matrix Inequalities (LMI) in the form of (8.1) with
vector p including all the coe�cients pi,j of the symmetric positive de�nite
matrix P. Nevertheless the writing (8.21) in terms of Linear Matrix Inequalities
(LMI) in the matrix variable P is more concise. Furthermore available software
operate directly on matrix variables so that it is usually not necessary to carry
out transformation (8.22).

A result that can be used to complement Lyapunov analysis is the following
theorem, attributed to Franklin (1969):

ATB+BTA ≤ γATA+
1

γ
BTB ∀ γ > 0 (8.23)

8.2.2 Application to controller and observer design

In the state feedback case the closed loop state matrixAcl reads as follows where
K is the controller gain to be set:

Acl = A−BK (8.24)

Thus Linear Matrix Inequalities (LMI) (8.21) reads:{
P = PT > 0

(A−BK)T P+P (A−BK) < 0
(8.25)

Because P = PT > 0 we have P−1 =
(
P−1

)T
> 0. The preceding relation

can be rewritten by pre and post multiplying by P−1 and by renaming P−1 as
P: {

P = PT > 0

(A−BK)P+P (A−BK)T < 0
(8.26)

In order to exhibit Linear Matrix Inequalities (LMI) we de�ne matrix Y as
follows:

Y = −KP ⇔ K = −YP−1 (8.27)

Thus we conclude that the closed loop state matrix Acl = A − BK has
all its eigenvalues in the left half plane if and only if there exists a symmetric
positive de�nite matrix P = PT > 0 and a matrix Y such that the following
Linear Matrix Inequalities (LMI) hold:{

P = PT > 0

AP+BY + (AP+BY)T < 0
(8.28)
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Similarly in the observer design case it can be shown that the closed loop
state matrix Acl = A − LC has all its eigenvalues in the left half plane if and
only if there exists a symmetric positive de�nite matrix Q = QT > 0 and a
matrix Z such that the following Linear Matrix Inequalities (LMI) hold:{

Q = QT > 0

QA+ ZC+ (QA+ ZC)T < 0
(8.29)

where
Z = −QL ⇔ L = −Q−1Z (8.30)

8.2.3 Bounded-real lemma

We consider the following realization of a system:
ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t)
x(0) = 0

(8.31)

and the following performance index where S = ST ≥ 0:

J(w) = xT (tf )Sx(tf ) +

∫ tf

0
zT (t)z(t) dt− γ2

∫ tf

0
wT (t)w(t) dt (8.32)

The bounded-real lemma states that a necessary and su�cient condition for
J(w) < 0 for all nonzero w(t) is the existence of a solution P(t) = P(t)T ≥ 0 to
the following di�erential Riccati equation3:{

−Ṗ(t) = ATP(t) +P(t)A+ 1
γ2P(t)BBTP(t) +CTC

P(tf ) = S
(8.33)

The solution to the above di�erential Riccati equation can be obtained by
solving the following di�erential linear matrix inequality:

[
Ṗ(t) +ATP(t) +P(t)A+CTC P(t)B

BTP(t) −γ2I

]
≤ 0

P(tf ) = S

(8.34)

This result can be obtained through optimal control theory. Indeed consider
the problem of minimizing the following quadratic performance index under the
dynamical constraint (8.31):

J(w) = xT (tf )Sx(tf ) +

∫ tf

0
zT (t)z(t) + wT (t)Rw(t) dt (8.35)

where: {
S = ST ≥ 0
R = RT > 0

(8.36)

3U. Shaked and V. Suplin, A New Bounded Real Lemma Representation for the
Continuous-Time Case, IEEE Transactions On Automatic Control, Vol. 46, No. 9, September
2001
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Then the optimal control w∗(t) reads as follows:
w∗(t) = −R−1BTP(t)

−Ṗ(t) = ATP(t) +P(t)A−P(t)BR−1BTP(t) +CTC
P(tf ) = S

(8.37)

Furthermore, assuming that x(tf ) = 0, the following inequality for the
minimum performance index J∗ := J(w∗(t)), ∀ z(t), w(t) holds:

x(tf ) = 0 ⇒ J∗ = xT (0)P(0)x(0) ≤
∫ tf

0
zT (t)z(t) + wT (t)Rw(t) dt (8.38)

Now, we consider to problem of maximizing the following quadratic
performance index under the dynamical constraint (8.31):

J(w) = xT (tf )Sx(tf ) +

∫ tf

0
zT (t)z(t)− wT (t)Rw(t) dt (8.39)

Then the optimal control w∗(t) reads as follows:
w∗(t) = R−1BTP(t)

−Ṗ(t) = ATP(t) +P(t)A+P(t)BR−1BTP(t) +CTC
P(tf ) = S

(8.40)

Assuming that x(tf ) = 0, this leads to the following inequality for the
maximum performance index J∗ := J(w∗(t)) = max (J(w)) , ∀ z(t), w(t),
where we use the fact that max (J(w)) = −min (J(w)):

J∗ := J(w∗(t)) = −xT (0)P(0)x(0) ≥
∫ tf

0
zT (t)z(t)− wT (t)Rw(t) dt (8.41)

Noticing that xT (0)P(0)x(0) > 0 ∀x(0) ̸= 0 and setting R = γ2I > 0 we
get:

x(tf ) = 0 ⇒
∫ tf
0 zT (t)z(t)− γ2wT (t)w(t) dt ≤ −xT (0)P(0)x(0) < 0

⇒
∫ tf
0 zT (t)z(t) < γ2

∫ tf
0 wT (t)w(t) dt

(8.42)

Conversely, assume that w(t) is an exogenous disturbance. We are seeking
for the lowest value of γ > 0 such that the following inequality holds:∫ t

0 w(τ)
Tw(τ)dτ ≤ 1

γ2

∫ t
0 z(τ)

T z(τ)dτ ∀t ≥ 0

⇔
∫ t
0

(
z(τ)T z(τ)− γ2w(τ)Tw(τ)

)
dτ ≥ 0 ∀t ≥ 0

(8.43)

To get γ we consider the following candidate Lyapunov function where
matrix P(t) = P(t)T > 0:

V (x, z) = xTP(t)x+

∫ t

0

(
zT (τ)z(τ)− γ2wT (τ)w(τ)

)
dτ ≥ 0 (8.44)
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Evaluating the time derivative of V (x, z) yields:

V̇ (x, z) = ẋTPx+ xTPẋ+ zT z − γ2wTw

= (Ax+Bw)T Px+ xTP (Ax+Bw) + (Cx)T Cx− γ2wTw

=
[
xT wT

] [ ATP+PA+CTC PB
BTP −γ2I

] [
x
w

]
(8.45)

Thus V̇ (x, z) ≤ 0, meaning that assuming that matrixA is stable the system
remains stable despite disturbance w(t), as soon as the following LMI holds:[

ATP+PA+CTC PB
BTP −γ2I

]
≤ 0 (8.46)

The level of allowed uncertainty can be maximized by minimizing γ.

More generally let G(s) be the following transfer function:

G(s) = C (sI−A)−1B+D :=

(
A B

C D

)
(8.47)

Let Rγ = γ2I−DTD and assume thatA has no eigenvalue on the imaginary
axis. Then the following assertions are equivalent4:

− J(w) =
∫∞
0 zT (t)z(t) dt− γ2

∫∞
0 wT (t)w(t) dt ≤ 0

− ∥G(s)∥∞ ≤ γ

− σ̄(D) ≤ γ and the following Hamiltonian matrix H has no eigenvalue on
the imaginary axis:

H =

[
A+BR−1

γ DTC BR−1
γ BT

−CT
(
I+DR−1

γ DT
)
C −

(
A+BR−1

γ DTC
)T ] (8.48)

Furthermore, the assertion that A is stable and that ∥G(s)∥∞ < γ is
equivalent to the fact that there exists a matrix P = PT ≥ 0 solving the
following LMI: [

ATP+PA+CTC PB+CTD
DTC+BTP −Rγ

]
≤ 0 (8.49)

8.2.4 Inescapable set

Let's consider the following minimal realization of a system where state matrix
A is assumed to be stable:{

ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t)

(8.50)

4Uwe Mackenroth, Robust Control Systems: Theory and Case Studies, Springer-Verlag
Berlin Heidelberg 2004
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A set X is said to be inescapable if it contains the origin and if x(0) ∈ X
and ∥w(t)∥∞ ≤ 1 implies that x(t) ∈ X for all future time t > 0:{

x(0) ∈ X
∥w(t)∥∞ ≤ 1

⇒ x(t) ∈ X ∀ t ≥ 0 (8.51)

Applying Lyapunov's second method, it can be seen that the ellipsoid
xTPx ≤ 1, where x ∈ Rn and P = PT > 0, is inescapable if and only if the
following LMI holds: 

[
ATP+PA PB

BTP 0

]
≤ 0

P = PT > 0

(8.52)

Using the S-procedure5, it can be shown that the preceding LMI is equivalent
to the following one6 for some scalar α:

[
ATPα +PαA+ αPα PαB

BTPα −αI

]
≤ 0

Pα = PT
α > 0

(8.53)

Scalar α is such that:

0 < α < −2max (real (spec (A))) (8.54)

With the new matrix Qα = P−1
α > 0 the preceding LMI is equivalent to the

following one: 
[
AQα +QαA

T + αQα B
BT −αI

]
≤ 0

Qα = QT
α > 0

(8.55)

It is worth noticing that when 0 < α < −2max (real (spec (A))) the matrix
A + 1

2αI is stable. Thus there exists a unique solution Qα = QT
α > 0 to the

following Lyapunov equation.(
A+

1

2
αI
)
Qα +Qα

(
A+

1

2
αI
)T

+
1

α
BBT = 0 (8.56)

Indeed:

AQα +QαA
T + αQα + 1

αBBT = 0

⇔
(
A+ 1

2αI
)
Qα +Qα

(
A+ 1

2αI
)T

+ 1
αBBT = 0

(8.57)

Furthermore the following inequality holds6:

sup
∥w(t)∥∞≤1

z(t) = sup
xTQ−1

α x≤1

∥Cx(t)∥2 =
√
∥CQαCT ∥2 (8.58)

5Derinkuyu, K., P�nar, M.Ç. On the S-procedure and Some Variants. Math Meth Oper
Res 64, 55�77 (2006).

6Nguyen T., Jabbari F., H∞ design for systems with input saturation: an LMI approach,
Proceedings of the American Control Conference (Cat. No.97CH36041), 1997
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To obtain the smallest value of these upper bounds, that is the smallest
value of sup∥w(t)∥∞≤1 z(t), the quantity ∥CQαC

T ∥2 shall be minimized over
0 < α < −2max (real (spec (A))).

We recall that the induced matrix 2-norm ∥X∥2 of matrix X is de�ned as
the largest singular value of X, that is the root square of the largest eigenvalue
of XTX (or XXT ).

8.3 State feedback control

8.3.1 Kronecker product

Notation ⊗ will be used to denote the Kronecker product. The Kronecker
product of two matrices A and B and is a block matrix C with generic block
entry [C]ij = [A]ij B:

C = A⊗B =

 A11B · · · A1nB
...

...
An1B · · · AnnB

 (8.59)

Furthermore the Kronecker product has the following properties:
1⊗A = A⊗ 1 = A
(A+B)⊗C = A⊗C+B⊗C
(A⊗B) (C⊗D) = (AC)⊗ (BD)

(A⊗B)T = AT ⊗BT

(A⊗B)−1 = A−1 ⊗B−1

(8.60)

8.3.2 LMI regions

Following Chilali & al.7 an LMI region is any subset D of the complex plane
that can be de�ned as follows where L = LT and M are real matrices and z̄ is
the conjugate of complex number z:

D =
{
z ∈ C : L+M z + z̄MT < 0

}
(8.61)

The characteristic function of D is the matrix-valued function fD(z) de�ned
as follows:

fD(z) = L+M z + z̄MT (8.62)

Here are some examples of LMI regions7:

− Half-plane Re(z) < α:

fD(z) = −2α+ z + z̄ < 0 (8.63)

Thus: {
L = −2α
M = 1

(8.64)

7Chilali M., Gahinet P. and Apkarian P., Robust Pole Placement in LMI Regions, IEEE
Transactions on Automatic Control, vol. 44, no. 12, pp. 2257-2270, Dec 1999
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− Half-plane Re(z) > α:

fD(z) = 2α− z − z̄ < 0 (8.65)

Thus: {
L = 2α
M = −1

(8.66)

− Disk centered at (q, 0) with radius r > 0: Such a region is de�ned by:

zz̄ − q(z + z̄) + q − r2 < 0
⇔ (z − q) (z̄ − q)− r2 < 0

⇔ r
(
(z−q)(z̄−q)

r − r
)
< 0

(8.67)

As far as the radius r of the circle is positive (i.e. r > 0 ⇔ −r < 0), the
preceding inequality reduces as follows:

−r < 0 ⇒ (z − q) (z̄ − q)

r
− r < 0 (8.68)

By using Schur complement lemma (8.2) we �nally get the following LMI
region:

fD(z) =

[
−r z − q
z̄ − q −r

]
< 0 (8.69)

Thus: 
L =

[
−r −q
−q −r

]
M =

[
0 1
0 0

] (8.70)

− Conic sector with apex at the origin and inner angle 2 θ (see Figure 8.1
with α = 0). Such a region is de�ned by the intersection of two half-planes:{

j (z − z̄) cos(θ)− (z + z̄) sin(θ) > 0
j (z − z̄) cos(θ) + (z + z̄) sin(θ) < 0

(8.71)

The product of those two conditions reads:

(j (z − z̄) cos(θ)− (z + z̄) sin(θ))
× (j (z − z̄) cos(θ) + (z + z̄) sin(θ)) < 0

⇔ − (z − z̄)2 cos(θ)2 − (z + z̄)2 sin(θ)2 < 0

⇔ (− (z + z̄) sin(θ))
(
(z + z̄) sin(θ) + (z−z̄)2 cos(θ)2

(z+z̄) sin(θ)

)
< 0

(8.72)

Assuming that − (z + z̄) sin(θ) > 0, that is 0 < θ < π
2 and Re(z) < 0 (i.e.

z is located in the stability region), the use of Schur complement lemma
(8.2) leads to the following LMI region:
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fD(z) =

[
(z + z̄) sin(θ) (z − z̄) cos(θ)
−(z − z̄) cos(θ) (z + z̄) sin(θ)

]
< 0 (8.73)

Thus: 
L = 0

M =

[
sin(θ) cos(θ)

− cos(θ) sin(θ)

]
(8.74)

Chilali & al. have shown7 that a real matrix A is D-stable, i.e., has all the
eigenvalues of A are located inside the LMI region D, if and only if there exists
a symmetric matrix P > 0 such that the following relations hold:{

P⊗ L+ (PA)⊗M+
(
ATP

)
⊗MT < 0

P = PT > 0
(8.75)

Relation (8.75) can also be used to check the D-stability of polynomials.
Indeed polynomial χ(s) = a0+a1s+ · · ·+an−1s

n−1+1×sn is D-stable, i.e., has
all the roots of χ(s) are located inside the LMI region D, if and only if relation
(8.75) holds with:

A =



0 1 0 0

0 0 1
. . . 0

. . .
. . . 0

0 0 0 1
−a0 −a1 −a2 · · · −an−1

 (8.76)

Relation (8.75) can be seen as a generalization of the Lyapunov theorem
because for the usual stability region fD(z) = z + z̄ < 0 then relation (8.75)
reduces as follows:{

P⊗ 0 + (PA)⊗ 1 +
(
ATP

)
⊗ 1 < 0

P = PT > 0
⇔
{

PA+ATP < 0
P = PT > 0

(8.77)

More generally8 an LMI region is de�ned as follows where L = LT , N = NT

and M are real matrices and z̄ is the conjugate of complex number z:

D =

{
z ∈ C :

[
I z̄I

] [ L M
MT N

] [
I
zI

]
< 0

}
(8.78)

Then all eigenvalues of A ∈ Rn×n are contained in the LMI region D if and
only if there exists a symmetric matrix P > 0 such that the following relations
hold: 

[
I AT ⊗ I

] [ P⊗ L P⊗M
P⊗MT P⊗N

] [
I

A⊗ I

]
< 0

P = PT > 0
(8.79)

8Linear Matrix Inequalities in Control, Carsten Scherer and Siep Weiland, Lectures Notes
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Figure 8.1: Pole placement constraints

8.3.3 LMI regions for pole placement constraints

We consider the state-space realization (8.80) where the state vector x is of
dimension n (that is the size of state matrix A). In addition y(t) denotes the
output vector and u(t) the input vector. We will assume that the feedforward
gain matrix D is zero (D = 0):{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(8.80)

From a designer point of view system speci�cations are usually limited to
a minimum speed of response and a minimum damping ratio. Furthermore
the required control e�ort is larger when the poles of the closed loop system
are moved far away from their original locations. All those constraints can be
drawn as a region in the complex plane where the closed-loop poles should be
located. A typical convex region C(α, θ, r) in the complex plane where all the
poles of the closed loop system are constrained to be located is shown in Figure
8.1:

− The real part of all the poles shall be lower than α in order to achieve a
minimum speed of response;

− All the poles shall be located in a conic sector with inner angle 2 θ in order
to achieve a minimum damping ratio;

− All the poles shall be located inside the circle of radius r to limit the
control e�ort.

Chilali & al.7 have shown that in the state feedback case the eigenvalues
of the closed loop state matrix A − BK will be situated in the convex region
C(α, θ, r) if and only if there exists a symmetric positive de�nite matrix P =
PT > 0 and a matrix Y such that the following Linear Matrix Inequalities
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(LMI) hold:

P = PT > 0

AP+BY + (AP+BY)T − 2αP < 0

(AP+BY)⊗
[

sin(θ) cos(θ)
− cos(θ) sin(θ)

]
+(AP+BY)T ⊗

[
sin(θ) cos(θ)

− cos(θ) sin(θ)

]T
< 0[

−rP AP+BY

(AP+BY)T −rP

]
< 0

(8.81)

where
Y = −KP ⇔ K = −YP−1 (8.82)

Similarly, in the observer design case, the eigenvalues of the closed loop state
matrix A − LC will be situated in the convex region C(α, θ, r) if and only if
there exists a symmetric positive de�nite matrix P = PT > 0 and a matrix Z
such that the following Linear Matrix Inequalities (LMI) hold:

Q = QT > 0

QA+ ZC+ (QA+ ZC)T − 2αQ < 0

(QA+ ZC)⊗
[

sin(θ) cos(θ)
− cos(θ) sin(θ)

]
+(QA+ ZC)T ⊗

[
sin(θ) cos(θ)

− cos(θ) sin(θ)

]T
< 0[

−rQ QA+ ZC

(QA+ ZC)T −rQ

]
< 0

(8.83)

where
Z = −QL ⇔ L = −Q−1Z (8.84)

8.4 Observer-based feedback control

8.4.1 Linear-Quadratic-Regulator (LQR) problem

Linear-Quadratic-Regulator (LQR) tackle the problem to design a state
feedback stabilizing controller which minimizes the following criteria where
R = RT > 0 and Q = QT ≥ 0:

JLQR =
1

2

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (8.85)

under the following constraint:

ẋ(t) = Ax(t) +Bu(t) (8.86)

The solution of this problem is closely related to matrix P = PT > 0 which
solves the following Algebraic Riccati Equation (ARE):

ATP+PA−PBR−1BTP+Q = 0 (8.87)
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The closed loop state matrix Acl reads as follows where K is the controller
gain to be set: {

Acl = A−BK
K = R−1BTP

(8.88)

Thus the algebraic Riccati equation can be rewritten as follows:

ATP+PA+KTRK+Q−PBK− (PBK)T = 0

⇔ (A−BK)T P+P (A−BK) +KTRK+Q = 0

⇔ (A−BK)T P+P (A−BK) = −KTRK−Q = 0

(8.89)

From the preceding relation and the Lyapunov's second method seen in
section 8.2.1 we conclude that any LQR gain K leads to a stable closed loop.

Furthermore, according to Boyd & al. 9, algebraic Riccati equation is
equivalent to the following LMI problem: �nd W = WT , P = PT and Y
which solves the following convex problem

max xT0 Px0

s.t.

{
ATP+PA−PBR−1BTP+Q ≥ 0
P = PT ≥ 0

(8.90)

Because x0 is unknown we replace it by B. In addition from that fact that
max(J) = −min(J), and using the Schur complement lemma (8.2), the LMI
corresponding to LQR consists in �nding P which solves the following problem:

min − tr
(
BTPB

)
s.t.


[
ATP+PA+Q PB

(PB)T R

]
≥ 0

P = PT ≥ 0

(8.91)

8.4.2 Minimizing grammian through LMI

Controllability grammian

We have seen that the solution of the H2 robust control problem consists in
minimizing the H2 -norm of some transfer function Tzw(s).

Let Tzw(s) be de�ned as follows:

Tzw(s) = C (sI−A+B2K)−1B1 (8.92)

From the results of section 1.7.2, minimizing the H2 -norm of Tzw(s)
consists in solving the following semi-de�nite program where P stands for the
controllability grammian of Tzw(s):

min tr
(
CPCT

)
s.t.

{
(A−B2K)P+P (A−B2K)T +B1B

T
1 ≤ 0

P = PT > 0

(8.93)

9S. Boyd, L. El Ghaoui, E. Feron,V. Balakrishnan, Linear matrix inequalities in system
and control theory, SIAM Studies in Applied Mathematics, vol. 15, Philadelphia, PA, 1994
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Introducing W ≥ CPCT and using Y = −KP we can rewrite the preceding
semi-de�nite program as follows:

min tr (W)

s.t.

{
AP+B2Y +PAT + (B2Y)T +B1B

T
1 ≤ 0

P = PT > 0

(8.94)

Using the inequality W ≥ CPCT it is then possible to rewrite the problem
above as an LMI problem. Indeed:

CPCT = CPP−1PCT

= (CP)P−1 (CP)T

W ≥ CPCT ⇔ W − (CP)P−1 (CP)T ≥ 0

(8.95)

Using Schur's complement, the LMI problem �nally reads as follows: �nd
W = WT , P = PT and Y which solves the following problem:

min tr (W)

s.t.


AP+B2Y +PAT + (B2Y)T +B1B

T
1 ≤ 0[

P (CP)T

CP W

]
≥ 0

(8.96)

or, equivalently, when applying again the Schur's complement on the �rst
LMI:

min tr (W)

s.t.


[
AP+B2Y + (AP+B2Y)T B1

BT
1 −I

]
≤ 0[

P (CP)T

CP W

]
≥ 0

(8.97)

The required state feedback gain matrix can be computed as K = −YP−1.

Observability grammian

A similar semi-de�nite program can be obtained by using the observability
grammian.

Let Tzw(s) be de�ned as follows:

Tzw(s) = C1 (sI−A+ LC2)
−1B (8.98)

From the results of section 1.7.2, minimizing the H2 -norm of Tzw(s)
consists in solving the following semi-de�nite program where Q stands for the
observability grammian of Tzw(s):

min tr
(
BTQB

)
s.t.

{
Q (A− LC2) + (A− LC2)

T Q+CT
1 C1 ≤ 0

Q = QT > 0

(8.99)
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Introducing W ≥ BTQB and using Z = −QL we can rewrite the preceding
semi-de�nite program as follows:

min tr (W)

s.t.

{
QA+ ZC2 +ATQ+ (ZC2)

T +CT
1 C1 ≤ 0

Q = QT > 0

(8.100)

Using the inequality W ≥ BTQB, it is then possible to rewrite the problem
above as an LMI problem. Indeed:

BTQB = BTQQ−1QB

= (QB)T Q−1 (QB)

W ≥ BTQB ⇔ W − (QB)T Q−1 (QB) ≥ 0

(8.101)

Using Schur's complement, the LMI problem �nally reads as follows: �nd
W = WT , Q = QT and Z which solves the following problem:

min tr (W)

s.t.


QA+ ZC2 +ATQ+ (ZC2)

T +CT
1 C1 ≤ 0[

Q QB

(QB)T W

]
≥ 0

(8.102)

or, equivalently, when applying again the Schur's complement on the �rst
LMI:

min tr (W)

s.t.


[
QA+ ZC2 + (QA+ ZC2)

T CT
1

C1 −I

]
≤ 0[

Q QB

(QB)T W

]
≥ 0

(8.103)

The required estimator gain matrix can be computed as L = −Q−1Z.

8.4.3 H2 robust control problem

We have seen in section 6.4.1 that the H2 robust control problem can be seen
as two separate Linear-Quadratic-Regulator (LQR) design problems:

State feedback problem

The H2 state feedback problem consists �nding a gain K such that the input
u(t) = −Kx(t) stabilizes the closed loop system and minimizes the H2 norm of
transfer function Tzw(s).

For this problem we assume that state-space realization of the generalized
plant is the following: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 D12

I 0 0

 x(t)
w(t)
u(t)

 (8.104)

In addition the following assumptions are made:
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− (A,C1) has no unobservable modes on the imaginary axis

− (A,B2) is stabilizable

− DT
12D12 > 0 (thus the product is invertible)

− DT
12C1 = 0

The two last assumptions are not very restrictive and can be relaxed but
they are convenient because they lead to simpli�cations in the solution of the
problem.

We have seen in section 6.2.1 that the H2 state feedback problem consists
in �nding the gain K which stabilizes the closed loop system and minimizes the
H2 norm of the following transfer function:

Tzw(s) = (C1 −D12K) (sI−A+B2K)−1B1 (8.105)

From the results of section 8.4.2, and setting C = (C1 −D12K), it can be
seen that minimizing the H2 -norm of Tzw(s) consists in solving the following
semi-de�nite program where P stands for the controllability grammian of
Tzw(s):

min tr
(
(C1 −D12K)P (C1 −D12K)T

)
s.t.

{
(A−B2K)P+P (A−B2K)T +B1B

T
1 ≤ 0

P = PT > 0

(8.106)

Setting C = (C1 −D12K) and using the fact that Y = −KP we get:

CP = (C1 −D12K)P = C1P+D12Y (8.107)

Thus the results of section 8.4.2 now reads as follows: �nd W = WT ,
P = PT and Y which solves the following problem:

min tr (W)

s.t.


[
AP+B2Y + (AP+B2Y)T B1

BT
1 −I

]
≤ 0[

P (C1P+D12Y)T

C1P+D12Y W

]
≥ 0

(8.108)

The required state feedback gain matrix can be computed as K = −YP−1.

Now assume DT
12C1 ̸= 0. Then Doyle & al.10 have shown that matrix A

shall be replaced by matrix Ã de�ned as follows:{
Ã = A−B2D̃12D

T
12C1

D̃12 =
(
DT

12D12

)−1 (8.109)

10Doyle J.C., Glover K., Khargonekar P.P., Francis B. A., State-space solutions to standard
H2 and H∞ control problems, IEEE Transactions on Automatic Control (Volume 34 , Issue
8), Aug 1989
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State estimation problem

The H2 state estimation problem consists �nding a gain L such that the output
z of the generalized plant properly estimates the actual state vector x(t) of the
closed loop plant thanks to the measurement of output y(t) while minimizing
the H2 norm of transfer function Tzw(s).

For this problem we assume that state-space realization of the generalized
plant is the following: ẋ(t)

z(t)
y(t)

 =

 A B1 B2

C1 0 0
C2 D21 0

 x(t)
w(t)
u(t)

 (8.110)

while the state-space realization of the estimator is the following:{
˙̂x(t) = Ax̂(t) +B2u(t) + L

(
y(t)− ŷ(t)

)
ŷ(t) = C2x̂(t)

(8.111)

In addition the following assumptions are made:

− (A,B1) has no uncontrollable modes on the imaginary axis

− (A,C2) is detectable

− D21D
T
21 > 0 (thus the product is invertible)

− B1D
T
21 = 0

The two last assumptions are not very restrictive and can be relaxed but
they are convenient because they lead to simpli�cations in the solution of the
problem.

We have seen in section 6.3.1 that the H2 state feedback problem consists
in �nding the gain K which stabilizes the closed loop system and minimizes the
H2 norm of the following transfer function:

Tzw(s) = C1 (sI−A+ LC2)
−1 (B1 − LD21) (8.112)

From the results of section 8.4.2, and setting B = (B1 − LD21), it can be
seen that minimizing the H2 -norm of Tzw(s) consists in solving the following
semi-de�nite program whereQ stands for the observability grammian of Tzw(s):

min tr
(
(B1 − LD21)

T Q (B1 − LD21)
)

s.t.

{
Q (A− LC2) + (A− LC2)

T Q+CT
1 C1 ≤ 0

Q = QT > 0

(8.113)

Setting B = (B1 − LD21) and using the fact that Z = −QL we get:

QB = Q (B1 − LD21) = QB1 + ZD21 (8.114)
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Thus the results of section 8.4.2 now reads as follows: �nd W = WT ,
Q = QT and Z which solves the following problem:

min tr (W)

s.t.


[
QA+ ZC2 + (QA+ ZC2)

T CT
1

C1 −I

]
≤ 0[

Q QB1 + ZD21

(QB1 + ZD21)
T W

]
≥ 0

(8.115)

The required estimator gain matrix can be computed as L = −Q−1Z.
Now assume B1D

T
21 ̸= 0. Then Doyle & al.10 have shown that matrix A

shall be replaced by matrix Ã de�ned as follows:{
Ã = A−B1D

T
21D̃21C2

D̃21 =
(
D21D

T
21

)−1 (8.116)

8.4.4 H∞ norm minimization

Similarly Scherer & al.7 have shown that, for the state feedback problem, the
H∞ norm of the transfer function from w(t) to z(t) is less than γ∞ if and only
if there exists a symmetric positive de�nite matrix P = PT > 0 and a matrix
Y such that the following matrix inequalities hold:

∥Tzw(s)∥∞ < γ∞ ⇔


P = PT > 0 AT

KP+PAK B1 CT
1

BT
1 −γ∞I 0

C1 0 −γ∞I

 < 0
(8.117)

where:
AK = AP+B2Y (8.118)

By applying the duality principle and the Schur complement lemma, the
state estimation problem is solved if and only if there exists a symmetric positive
de�nite matrix Q = QT > 0 and a matrix Z such that the following matrix
inequalities hold:

∥Tzw(s)∥∞ < γ∞ ⇔


Q = QT > 0 ALQ+QAT

L CT
1 B1

C1 −γ∞I 0
BT

1 0 −γ∞I

 < 0
(8.119)

where:
AL = QA+ ZC2 (8.120)

8.5 Static output feedback control

8.5.1 Related LMIs

In this section we present how to design a static output feedback controller for
a continuous time system.
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Let's consider the following linear system:

ẋ(t) = Ax(t) +Bu(t) (8.121)

With the following static output feedback:{
u(t) = −Ky(t)

y(t) = Cx(t)
⇒ u(t) = −KCx(t) (8.122)

Then the dynamics of the closed loop system reads:

ẋ(t) = (A−BKC)x(t) (8.123)

We recall that the linear autonomous system ẋ(t) = Ax(t) is stable if and
only if there exists a symmetric and positive de�nite matrix P = PT > 0
satisfying the following Lyapunov inequality:

ATP+PA < 0 (8.124)

Applying the preceding inequality to the closed loop autonomous system
ẋ(t) = (A−BKC)x(t) it can be stated that the static output feedback controller
u(t) = −Ky(t) leads to a stable closed loop system if and only if there exists

a symmetric and positive de�nite matrix P = PT > 0 satisfying the following
Lyapunov inequality:

(A−BKC)TP+P(A−BKC) < 0 (8.125)

Cao & al.11 has shown that Lyapunov inequality (8.125) is equivalent to the
fact that there exists symmetric positive de�nite matrices P and a matrix K
satisfying the following matrix inequality:

ATP+PA−PBBTP+
(
BTP+KC

)T (
BTP+KC

)
< 0 (8.126)

The negative sign of the term −PBBTP in matrix inequality (8.126) renders
it di�cult to solve. Thus Cao & al.11 introduces a matrix Φ de�ned as follows
where X > 0:

Φ = XTBBTP+PBBTX−XTBBTX ≤ PBBTP (8.127)

It is worth noticing that the equal sign holds, that is Φ = PBBTP, if and
only if XTB = PTB.

Thanks to the Schur's complement (8.2), Lyapunov inequality (8.125) is
equivalent to the fact that there exists symmetric positive de�nite matrices P
and a matrix K satisfying the following linear matrix inequality:[

ATP+PA−Φ
(
BTP+KC

)T
BTP+KC −I

]
< 0 (8.128)

Thus, once X > 0 is set, matrix inequality (8.128) reduces to an LMI.

11Cao, Y.-Y., Lam, J. & Sun, Y.-X. (1998). Static Output Feedback Stabilization: An
ILMI Approach. Automatica 34, 1641- 1645.
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8.5.2 Stabilizability by a static output feedback

Following Sadabadi & al.12, Linear Time invariant (LTI) system (8.80) is
stabilizable by a static output feedback K if and only if there exist matrix Y
and symmetric matrices P, X and Z such that the following constraints hold:

P > 0
Z > 0[

I 0
A B

]T [
0 P
P 0

] [
I 0
A B

]
<

[
C 0
0 I

]T [
X Y
YT Z

] [
C 0
0 I

]
X ≤ YZ−1YT

(8.129)
The preceding relations are purely LMI except for the last constraint X ≤

YZ−1YT .

8.5.3 Changing PID controller into static output feedback

We present hereafter some results provided by Zheng & al.13 which transforms
a PID controller to static output feedback.

We consider the following linear time-invariant system:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(8.130)

And the following PID controller where matrices Kp, Ki and Kd have to be
designed:

u(t) = −
(
Kp e(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t)

)
(8.131)

where:

e(t) = y(t)− r(t) (8.132)

Let's denote xa(t) the augmented state-space vector de�ned as follows:

xa(t) =

[
x(t)∫ t

0 e(τ)dτ

]
(8.133)

Thus:

ẋa(t) = Aaxa(t) +Bau(t) +

[
0
−I

]
r(t) (8.134)

where: 
Aa =

[
A 0
C 0

]
Ba =

[
B
0

] (8.135)

12Mahdieh Sadabadi, Dimitri Peaucelle. From Static Output Feedback to Structured
Robust Static Output Feedback: A Survey. Annual Reviews in Control, Elsevier, 2016, 42
(11-26), 10.1016/j.arcontrol.2016.09.014.

13Zheng, F., Wang, Q.-G. & Lee, T. H. (2002). On the design of multivariable PID
controllers via LMI approach. Automatica 38, 517-526
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Furthermore, assuming that ṙ(t) = 0, we have:

ṙ(t) = 0 ⇒ d

dt
e(t) = Cẋ(t) = CAx(t) +CBu(t) (8.136)

Using the de�nition of xa(t), the PID controller reads:

u(t) = −
(
Kp e(t) +Ki

∫ t
0 e(τ)dτ +Kd

d
dte(t)

)
= −KpCx(t) +KpCr(t)−Ki

d
dte(t)−Kd (CAx(t) +CBu(t))

= −Kp

[
C 0

]
xa(t)−Ki

[
0 I

]
xa(t)−Kd

[
CA 0

]
xa(t)

−KdCBu(t) +KpCr(t)

= −
[
Kp Ki Kd

]  C 0
0 I

CA 0

xa(t)−KdCBu(t) +KpCr(t)

(8.137)
We will assume that I+KdCB is invertible and de�ne Ca andKa as follows:

Ca =

 C 0
0 I

CA 0


Ka = (I+KdCB)−1 [ Kp Ki Kd

] (8.138)

Let K̃p, K̃i and K̃d be de�ned as follows:
K̃p = (I+KdCB)−1Kp

K̃i = (I+KdCB)−1Ki

K̃d = (I+KdCB)−1Kd

(8.139)

Assuming that K̃p, K̃i and K̃d are known, gainsKp,Ki andKd are obtained

as follows where it can be shown13 that matrix I−CBK̃d is always invertible:
Kd = K̃d

(
I−CBK̃d

)−1

Kp = (I+KdCB) K̃p

Ki = (I+KdCB) K̃i

(8.140)

Thus the problem of PID controller design is changed into the following
static output feedback problem:

ẋa(t) = Aaxa(t) +Bau(t)
y
a
(t) = Caxa(t)

u(t) = −Kaya(t) + (I+KdCB)−1KpCr(t)

(8.141)

It is worth noticing that the same results are obtained, but without the
assumption that ṙ(t) = 0, when a PI-D controller is used; for such a controller
the term multiplied by Kd is y(t) rather than e(t):

u(t) = −
(
Kp e(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
y(t)

)
(8.142)
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8.5.4 Optimal control

Vesely 14 has shown that Lyapunov inequality (8.125) is equivalent to the fact
that there exists symmetric positive de�nite matrices P and R and a matrix K
satisfying the following matrix inequality:[

R BTP−RKC(
BTP−RKC

)T
Φ

]
> 0 (8.143)

Where Φ = ΦT is a symmetric matrix de�ned as follows:

Φ = −
(
ATP+PA−PBR−1BTP−CTKTRKC

)
(8.144)

Using the Schur's complement (8.2) matrix inequality (8.143) reads:{
R > 0

Φ−
(
BTP−RKC

)T
R−1

(
BTP−RKC

)
> 0

(8.145)

To get Vesely's result 14 let's develop the following relation:(
BTP−RKC

)T
R−1

(
BTP−RKC

)
= PBR−1BTP−PBKC

−CTKTBTP+CTKTRKC

⇒ Φ−
(
BTP−RKC

)T
R−1

(
BTP−RKC

)
= −ATP−PA

+(((((((
PBR−1BTP+(((((((

CTKTRKC

−(((((((
PBR−1BTP+PBKC+CTKTBTP−(((((((

CTKTRKC

⇔ Φ−
(
BTP−RKC

)T
R−1

(
BTP−RKC

)
= −ATP−PA

+PBKC+CTKTBTP
(8.146)

We �nally get:

Φ−
(
BTP−RKC

)T
R−1

(
BTP−RKC

)
=

− (A−BKC)TP−P(A−BKC) (8.147)

Consequently as soon as (8.143) holds the Lyapunov inequality (8.125) also
holds.

Using the Schur's complement (8.2) matrix inequality (8.143) can also be
written as follows:{

Φ > 0
R− (BTP−RKC)Φ−1(BTP−RKC)T > 0

(8.148)

From this basis Vesely14 has demonstrated that the following statements are
equivalent:

14Vojtech Vesely, Static Output Feedback Controller Design, Kybernetika, Volume 37
(2001), Number 2, Pages 205-221
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− The system 
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

x(0) = x0

(8.149)

is static output feedback stabilizable with the following guaranteed cost
J∗: ∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt < xT0 Px0 = J∗ (8.150)

Where: 
P = PT > 0
R = RT > 0
Q = QT > 0

(8.151)

− There exists symmetric positive de�nite matrices P,Q,R and a matrix K
such that the following inequality holds:

(A−BKC)TP+P(A−BKC) +Q+CTKTRKC < 0 (8.152)

Compared with Lyapunov inequality (8.125), the preceding inequality may
be obtained by introducing matrix Q de�ned as follows:

Q ≥ −CTKTRKC (8.153)

− There exists symmetric positive de�nite matrices P,Q,R and a matrix K
such that the following inequality holds:{

Φ > 0
R− (BTP−RKC)Φ−1(BTP−RKC)T > 0

(8.154)

Where Φ = ΦT is a symmetric matrix de�ned as follows:

Φ = −
(
ATP+PA−PBR−1BTP+Q

)
(8.155)

De�ning S = ST = P−1 > γI where γ ≥ 0 is some non-negative constant
and using Schur's complement the inequalityΦ > 0 is equivalent to the following
Linear Matrix Inequality (LMI ) in S:

Φ = −
(
ATP+PA−PBR−1BTP+Q

)
> 0

⇔
[
−SAT −AS+BR−1BT −S

√
Q

−
√
QS I

]
> 0

(8.156)

Similarly when one knows P = S−1 inequality
R − (BTP − RKC)Φ−1(BTP − RKC)T > 0 turns to be a Linear Matrix
Inequality (LMI ) in K thanks to the Schur's complement:

R− (BTP−RKC)Φ−1(BTP−RKC)T > 0

⇔
[

R BTP−RKC
(BTP−RKC)T Φ

]
> 0

(8.157)

This leads to the Vesely's14 algorithm for static output feedback stabilization
of system (8.149) with guaranteed cost (8.150):
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− Choose two symmetric de�nite positive matrices Q and R:{
Q = QT > 0
R = RT > 0

(8.158)

− Solve Linear Matrix Inequality (LMI) (8.156) in S = ST > γI where γ ≥ 0
and set:

P = S−1 (8.159)

− Solve Linear Matrix Inequality (LMI) (8.157) in K and set:

u(t) = −Ky(t) (8.160)

− If the solutions of (8.156) and (8.157) are not feasible then system (8.149)
is not stabilizable with the prede�ned values of matrices Q and R; then
change Q (you may try to decrease Q) or/and R (you may try to increase
R).


