
HAL Id: hal-03776205
https://enac.hal.science/hal-03776205

Submitted on 13 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Antenna Radiation Patterns by Means of
Spherical Wavelets

Alice Quennelle, Alexandre Chabory, Philippe Pouliguen, Romain Contreres,
Gwenn Le Fur

To cite this version:
Alice Quennelle, Alexandre Chabory, Philippe Pouliguen, Romain Contreres, Gwenn Le Fur. Analysis
of Antenna Radiation Patterns by Means of Spherical Wavelets. European Conference on Antennas
and Propagation, Mar 2022, Madrid, Spain. �hal-03776205�

https://enac.hal.science/hal-03776205
https://hal.archives-ouvertes.fr


Analysis of Antenna Radiation Patterns by Means
of Spherical Wavelets

Alice Quennelle∗†‡, Alexandre Chabory∗, Philippe Pouliguen †, Romain Contreres‡ Gwenn Le Fur‡
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Abstract—A new tool for analysing antenna radiation patterns
is proposed in this article. This tool consists in applying a
spherical wavelet transform to the radiation which is assumed
to be known on a regular spherical-coordinates grid. This is an
alternative solution to usual plane-waves or spherical harmonic
expansions. The interest of using wavelets is to obtain a better
analysis in terms of localization in position and/or direction. The
direct link between spherical wavelets and spherical harmonics
is also highlighted. The properties of this tool are illustrated
by means of numerical experiments performed on two typical
antennas, a canonical aperture and a pyramidal horn.

Index Terms—wavelets, antennas, radiation pattern, multires-
olution analysis.

I. INTRODUCTION

In the literature, expansions of antenna radiation are gen-
erally based on plane-waves or spherical harmonics. Such
solutions are notably used in the context of antennna mea-
surements for performing near-field to far-field transforms.
Nevertheless, they are not optimal in case of a radiation that
is localized in terms of position and/or direction. Indeed plane
waves and spherical harmonics do not have this characteristic
of localization in position and direction of propagation. A
more efficient solution would be to use expansions in terms
of elementary waves which possess this double localization
property. Such expansions already exist, e.g. Gabor frames
and wavelets. They come from the time-frequency analysis of
signal processing and have been applied in other domains of
electromagnetics [1], [2], [3], [4].

A very promising expansion method is the multiresolution
analysis in wavelets. The first definition of the wavelet trans-
form was achieved by Jean Morlet and Alex Grossman [5]
in the 80’s. Then, Yves Meyers [6], Ingrid Daubechies [7]
and Stéphane Mallat [8], [9] gave a good formalization of
it. Today it is quite popular and used in a lot of domains.
Wavelets are used for denoising [10] and data compression
[11], [12], [13], in signal theory and image processing. In elec-
tromagnetics, wavelets are often used as basis-tests functions
in finite elements [14], integral equations [15], [2], [16], and
in FDTD because of their compression capacity [17]. A model
of atmospheric propagation have recently been computed on
wavelets [4],[18].

Recent research works have been led to develop wavelet
expansions specifically for spherical geometry [19], [20].

These methods have notably been used to analyze the cosmic
microwave background [21] but never for antenna radiation.

A wavelet is a zero-mean oscillating function able to
dilate and multiply itself to generate a mathematical basis.
The original wavelet is called ”mother”, and the dilated and
translated ones ”daughters”. Wavelets have very interesting
properties as they are localized both in space and spectrum
allowing them to take into account both local and global
properties of the signal. Morever, by means of the wavelet
transform, any signal can be decomposed over this basis. On
a short term, the wavelet transform can be compared with the
Fourier transform. No simple analytical formulation exists for
the propagation of wavelets but this expansion is characterized
by a reduced computation time and by its ability to compress
the information.

A key-issue to apply wavelets to antenna radiation is the
consistency of the expansion with a spherical geometry, and
thus spherical coordinates. The field could be analysed by
means of 2D separable wavelets using a projection of the
sphere onto a 2D grid. However, any type of such projec-
tions inherently introduces deformations of angles or areas.
This would jeopardize the locality of the expansion. Another
method is the recently proposed spherical wavelet analysis on
the sphere [22] which results from spherical harmonics and
sphere sampling theorems. Due to its spherical definition, this
is a suitable solution to analyse spherical radiation pattern.

The objective of this paper is to introduce the spherical
wavelet multiresolution transform as a new tool to analyse
antenna radiation and to apply it to typical antennas via
numerical experiments. This transform is here applied to a
scalar pattern, such as the co and cross-components of the
radiated fields.

This paper is organised as follows. In Section II a definition
of 1D wavelets is reminded. Then in Section III the sampling
theorem over the sphere is presented. In Section IV spherical
wavelets are described and the relation between spherical har-
monics and spherical wavelets is shown. Finally in Section V
simulations are performed and far-field radiations are analysed
thanks to spherical wavelets.

II. 1D WAVELETS

In this section, basics about 1D wavelets are explained [23].
First, a mother wavelet is defined as a function ψ of zero mean,



Fig. 1. A wavelet basis.

i.e., ∫ ∞
−∞

ψ(z)dz = 0, (1)

with ‖ψ‖2 = 1. From this mother wavelet, the wavelet family
can be defined by

F = {ψl,p(z) = 2−l/2ψ(2−lz − p)}(l,p)∈N×Z′ , (2)

where p corresponds to the translations needed to cover the
domain. Besides, l corresponds to the dilation level. The
greater l, the more dilated the wavelets are. Thus slower
variations of the signal are captured by greater values of l. In
practice, the decomposition is only computed for l ∈ [1, L],
L being the maximum level of decomposition but the lowest
part of the spectrum is not covered then and the family is
not a basis anymore. In order to obtain an orthonormal basis,
the scaling function φL,p ∈ L2(R), of non-zero mean is thus
added to the family. The translated versions of the wavelets
and scaling function allow to cover the entire spatial domain.
Wavelets are also localized in the spectral domain. In Fig. 1,
a wavelet basis with a maximum level L = 3 is plotted.

To conclude, we obtain an orthonormal basis of L2(R) with
functions localized in both space and spectrum.

III. SAMPLING THEOREM ON A SPHERE

Continuous and discrete wavelet theories are well estab-
lished in cartesian coordinates in 1D and 2D spaces [24].
Over the sphere, a specific wavelet theory has recently been
developed for which the approach for the continuous case
has been combined with sampling theorems so as to obtain
spherical wavelet transforms for sampled data. There are sig-
nificant differences between classical and spherical wavelets.
For instance, translations become rotations on the sphere.

Besides, a major problem encountered when computing
spherical harmonics and spherical wavelets on a sphere is
the sampling and meshing of this sphere. Several sampling
theorems have been proposed on that purpose [25], [22]. They

define θ-φ grids associated with an exact representation of
band limited signals, i.e., signals which spherical harmonics
representation is limited to a maximal order. McEwen and
Wiaux [22] have developed such a sampling theorem on
the sphere and corresponding fast algorithms for spherical
harmonics by associating the sphere with the torus through
a periodic extension of θ to the domain [0,2π] to ease
the computation. The proposed sampling is equiangular with
sample positions given by

θ =
π(2pθ + 1)

2Nmax − 1
, for pθ ∈ {0, 1, ..., Nmax − 1},

ϕ =
2πpφ

2Nmax − 1
, for pφ ∈ {0, 1, ..., 2Nmax − 2},

(3)

where Nmax is the maximal spherical harmonic order, i.e., the
band limit of the signal. Spherical wavelets used in this article
are based on this sampling. Besides, in this article, for a band
limited signal, the indices associated with spherical harmonics
coefficients are denoted (n,m) with n ∈ {0, · · · , Nmax} and
m ∈ {−n, · · · ,+n}.

IV. SPHERICAL WAVELETS

This section presents the theoretical basis of spherical
wavelets as developed in [20]. Furthermore, in this article,
we use scale-discretised axisymmetric wavelets. Axisymmetric
means that wavelets are azimuthally symmetric when centred
on the poles.

As for the 1D wavelet transform, the basic elements of
a spherical wavelet transform are a scaling function Φ and
wavelets functions at various scales Ψj for j ∈ [J0, Jmax], as
shown in Fig. 2. The wavelets and scaling functions are well-
localised both spatially on the sphere and also in harmonic
space. We can see the contrast with spherical harmonics in
Fig. 3 that are way less localised on the sphere. Consequently,
wavelets on the sphere can be used to extract spatially lo-
calised, scale-dependent features in signals of interest.

Each of these functions is associated with a part of the
spherical harmonic spectrum in n. As illustrated in Fig. 4 the
scaling function corresponds to the lowest components of the
spectrum and the wavelets to higher components. The greatest
the scale index j, the fastest the variations of the signal.

Here are few details to perform a multiresolution spherical
wavelet analysis from these functions. The first step is to
compute the spherical harmonic transform of the signal, in
our case, the radiation. Then this spectrum is multiplied by
the spectrum of the scaling function and of each wavelet
function, which are known beforehand. Doing so, we obtain
spherical harmonic coefficients associated with the scaling
function WΦ

nm and with each scale of wavelets WΨj

nm. To
obtain the multiresolution wavelets analysis over the sphere,
inverse spherical harmonic transforms of these coefficients
are performed. Since WΦ

nm and WΨj

nm have a smaller band
limit than the initial signal, this inverse transform can be
realized at a lower resolution, without introducing any error
because of the sampling theorem. For example, from Fig.
4, scaling coefficients have the smallest band limit, so that



they can be represented by the lowest resolution. Then comes
WΨ1

nm,W
Ψ2

nm, · · · .
Finally, as with 1D wavelets, the multiresolution analysis

should yield a sparse representation of the signal. Thresholding
can thus be used to produce data compression.

Fig. 2. Axisymmetric scale discretised spherical scaling and wavelet functions
for scales j ∈ {2, 3}. This plot comes from [20] and was produced with a
Matlab demo included in the s2let package [26].

Fig. 3. Spherical harmonics for n = 1 and m = 0, 1, 2.

Fig. 4. Spectral partitioning in n for different types of wavelets [26].

V. MULTIRESOLUTION ANALYSIS OF USUAL ANTENNA
RADIATION PATTERN

In this section, the multiresolution spherical wavelets anal-
ysis is applied on two antenna radiations. All the simulations
of this section make use of the freely available package s2let
for spherical wavelets [26].

A. Uniform aperture

The first radiation analysis is a scalar far-field from a
0.4 m × 0.6 m uniform aperture at 10 GHz. As a reminder

the far field radiation of a uniform aperture of dimension [a, b]
is expressed by

E(r, θ, φ) =A cos θ
e−jkr

kr
sinc

(
k sin θ cosφdx

2

)
sinc

(
k sin θ sinφdy

2

)
,

(4)

where k is the wavenumber, dx, dy the transverse size of the
aperture and A a constant. The McEven and Wiaux sampling
(3) is used with Nmax = 256. This far-field on the sphere for
this uniform aperture is displayed in Fig. 5.

Fig. 5. Initial far-field of the uniform aperture on the sphere.

Then the wavelet coefficients associated with the scaling
function and the different wavelet levels are computed. Ax-
isymmetric scale discretized wavelets are used with j ∈
{1, · · · , 6}. Besides, a compression is applied by thresholding
coefficients that are -40 dB below the maximal value. In Fig. 6
we observe the results of the spherical wavelet transform, i.e.,
patterns at various resolution levels. As expected the different
levels in the spherical wavelet analysis corresponds to the
different scales of variations of the signal. The main lobe
is represented in scales j = 4, 5, 6 while secondary lobes
corresponds to scales 5 and 6. In this case, the compression
rate is about 98%.

B. Horn antenna

In this section, the radiation pattern of a pyramidal horn
is studied: this horn is excited by a TE10 mode rectangu-
lar guide, at 1.645 GHz. The dimension of the aperture is
0.55 m × 0.428 m. The radiation pattern is simulated with
Altair Feko, using the method of moments and calculated on
a sphere of 180 × 359 points, consistently located according
to the sampling theorem of McEwen and Wiaux [19], which
means that Nmax is set at 180. In Fig. 7 the radiation pattern
is represented using the third Ludwig definition for co and
cross-polarisations.

From the simulated field, we can obtain the wavelets co-
efficients, see Fig. 8, in co and cross-polarisations. As in the
previous section, axisymmetric scale discretized wavelets are
used with j ∈ {1, · · · , 8}. Here as well, we can notice that the
higher the order of the wavelet, the smaller are the variations.



Fig. 6. Wavelet coefficients associated with the scaling function and the
different wavelet levels for the uniform aperture (dB).

(a) E and H planes (b) 3D

Fig. 7. Radiation pattern (dB) of the horn antenna.

Compression rate has been computed and is of 98% , about
as in previous section.

VI. CONCLUSION

In this paper, the objective was to introduce spherical
wavelet transform as a new tool to analyse antenna radiation
and to apply it to typical antennas via numerical experiments.
In Section II a review about 1D wavelets has been done. Then,
in Section III this work has been placed in the framework
of the sampling theorem related to the exact representation
of band-limited signals in terms of spherical harmonics. In
Section IV spherical wavelets and their relation with spherical
harmonics have been presented. Finally in Section V, the
multiresolution analysis using spherical wavelets has been
aplied to two types of simulated scalar radiations. This analysis
has shown that using wavelets may be suitable to describe
scalar radiations and has good location and scaling properties.
Furthermore, since wavelets are deconvolution and denoising
tools that are used in numerous domains of engineering and
physics [24], [9], this type of analysis might be particularly
useful for removing spurious reflections and noise in the

(a) Co-polarisation

(b) Cross-polarisation

Fig. 8. Wavelet coefficients associated with the scaling function and the
different wavelet levels for the horn antenna (dB).

context of post-processing of antenna measurements. Further
works will be led to compare compression rates with the
analysis in terms of usual spherical harmonics. Besides, only
scalar radiations have been considered here. For electromag-
netic fields, vector spherical wavelets should be developed.
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