
HAL Id: hal-03769748
https://enac.hal.science/hal-03769748v1

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EOG-Based Human–Computer Interface: 2000–2020
Review

Chama Belkhiria, Atlal Boudir, Christophe Hurter, Vsevolod Peysakhovich

To cite this version:
Chama Belkhiria, Atlal Boudir, Christophe Hurter, Vsevolod Peysakhovich. EOG-Based Human–
Computer Interface: 2000–2020 Review. Sensors, 2022, 22 (13), pp.4914. �10.3390/s22134914�. �hal-
03769748�

https://enac.hal.science/hal-03769748v1
https://hal.archives-ouvertes.fr


����������
�������

Citation: Belkhiria, C.; Boudir, A.;

Hurter, C.; Peysakhovich, V.

EOG-Based Human–Computer

Interface: 2000–2020 Review. Sensors

2022, 22, 4914. https://doi.org/

10.3390/s22134914

Academic Editor: Wataru Sato

Received: 24 May 2022

Accepted: 25 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

EOG-Based Human–Computer Interface: 2000–2020 Review
Chama Belkhiria 1, Atlal Boudir 2, Christophe Hurter 2 and Vsevolod Peysakhovich 1,*

1 ISAE-SUPAERO, Université de Toulouse, 31400 Toulouse, France; belkhiria.chama@gmail.com
2 ENAC, Université de Toulouse, 31400 Toulouse, France; atlal.boudir@gmail.com (A.B.);

christophe.hurter@enac.fr (C.H.)
* Correspondence: vsevolod.peysakhovich@isae-supaero.fr

Abstract: Electro-oculography (EOG)-based brain–computer interface (BCI) is a relevant technology
influencing physical medicine, daily life, gaming and even the aeronautics field. EOG-based BCI
systems record activity related to users’ intention, perception and motor decisions. It converts the bio-
physiological signals into commands for external hardware, and it executes the operation expected by
the user through the output device. EOG signal is used for identifying and classifying eye movements
through active or passive interaction. Both types of interaction have the potential for controlling the
output device by performing the user’s communication with the environment. In the aeronautical
field, investigations of EOG-BCI systems are being explored as a relevant tool to replace the manual
command and as a communicative tool dedicated to accelerating the user’s intention. This paper
reviews the last two decades of EOG-based BCI studies and provides a structured design space with
a large set of representative papers. Our purpose is to introduce the existing BCI systems based on
EOG signals and to inspire the design of new ones. First, we highlight the basic components of EOG-
based BCI studies, including EOG signal acquisition, EOG device particularity, extracted features,
translation algorithms, and interaction commands. Second, we provide an overview of EOG-based
BCI applications in the real and virtual environment along with the aeronautical application. We
conclude with a discussion of the actual limits of EOG devices regarding existing systems. Finally,
we provide suggestions to gain insight for future design inquiries.

Keywords: human–computer interaction; electrooculography; EOG; human–computer interface; BCI

1. Introduction

Human-computer dialogue has hinged upon input from manual devices (keyboard,
mouse, tactile display, etc.) and relies on the visual display—until today. Despite being
“ready to deliver the promises” to enhance human–computer interaction for about 20 years
now [1], eye-tracking technology use remains narrowed down to applications for disabled
users, as eye movements are sometimes their only way to communicate. The gaming indus-
try recently started to adopt eye-tracking to intensify gamers’ experience and enjoyment.
Laptops and monitors with integrated eye-tracking devices are available on the market.
However, most of these devices are based on video processing, illumination with infra-red
light and complex computer vision algorithms. This power-greedy approach is unsuited
for prolonged use (energy consumption, produced heat, etc.). Moreover, video-based
eye-tracking requires either an integration of a remote camera into an existing environment,
which may be difficult, especially in the case of retrofitting; or eyewear, which is mostly
incompatible with eyeglasses’ users and party blocks the field of view for the others.

A power-efficient alternative to eye tracking is the application of electrodes on the
scalp and face surface known as electro-oculography (EOG). The use of the EOG system
was one of the first techniques to analyze eye movements [2], and it has been thought to be
a valuable source for communications between humans and computers. One advantage of
EOG is that the electrodes avoid the obstruction of the vision. Electro-encephalography
(EEG) and electro-oculography are well-suited for brain–computer interfaces and are
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used to deduce users’ eye movements for passive and active interaction [3]. A complete
methodology of EOG based on human–computer interface research is demonstrated in
Figure 1. Recent advances in dry [4] and even wearable and flexible textile electrodes [5]
increase the comfort of use and the application ease. The recent progress in biopotential
signal monitoring lets us imagine embedded EEG and EOG sensors in everyday objects
such as a knit cap or an earring. A headset of an airline pilot decoding the fatigue state to
adapt the automation level? Or a pair of in-ear headphones changing the music track with
a blink of an eye? We propose a literature review of the last two decades’ research on the
EOG-based human–computer interaction.

Figure 1. General scheme of an EOG-based BCI. First step, EOG acquisition: EOG is recorded
using vertical and horizontal electrodes by an amplified ADC. Second step, Signal processing: after
pre-processing, computer processing extracts the most relevant features for identifying the subject’s
intentions. Third step, Application area: When the command is recognized and the intention
is classified, the instruction is sent to an external device (e.g., web browser, wheelchair, or text
display). Feedback informs the user of the results of their actions to allow them to prepare for the
next command.

This paper presents a non-exhaustive review of studies published between the years
2000 and 2020 that are based on the EOG eye movement’s interaction in human models.
This review provides a precious time- and resource-saving guidebook to exploring the
EOG interaction tendency for the last two decades, making it relevant of interest for EOG
novices as well for specialists. We included 112 English peer-reviewed journal articles
and conference papers that met the inclusion criteria and were published in PubMed, the
Institute of Electrical and Electronics Engineers (IEEE), or the Association for Computing
Machinery (ACM) digital library. Figure 2 represents the PRISMA flow diagram of the
review process. The research of three cited databases was performed in parallel. After the
exclusion of non-relevant records, the results were put together and duplicate records
removed. The records that were identified contained, in the title and/or abstract the
following keywords: (EOG OR electrooculography) AND (interaction OR interface).
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Figure 2. The PRISMA flow diagram of the review process. Please note that, given the work
organisation during the project, the review of the databases was paralleled, and, therefore, the removal
of duplicate records was done after the non-relevant records were removed from each database
list separately.

The particularity of the used devices, the extracted features, the category of the
algorithms and the nature of the interaction (passive or active) of each study have been
emphasized in the Tables 1 and 2. Figure 3 indicates the number of included publications
per 5-year periods. It shows the increasing interest in the technology. Figure 4 illustrates
the distribution of different studies characteristics per 5-year period.

Figure 3. The number of publications per 5-year period.
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Figure 4. The percentage of references per 5-year period according the (A) used device, (B) used
features, (C) used algorithms and (D) used interaction.

2. Acquiring EOG Signal

The eye is an important source of the relevant information associated with the user’s
activities and cognitive functions. It can be modeled as an electrical dipole (between the
retina and the cornea) that follows eye movements. If we place two electrodes near two
eyes’ corners and two electrodes on the top and bottom of one eye, there will be a voltage
difference between the vertical and horizontal electrodes, which is known as the EOG signal.
When the eyeball moves in the direction of the electrode, the electrical potential increases,
and if the eye moves in the other direction, the electrical potential decreases. The EOG
signal is a measure of the corneal–retinal potential difference with signal amplitude ranging
15–200 µV. Using an adequate calibration procedure, the signal can be mapped to the
eyeball angular position with a 2-degree range in the vertical direction and a 1.5-degree
range in the horizontal one [6–8].

Interestingly, EOG signals can be obtained using cheap and simple electrodes. Gen-
erally, horizontal electrodes are placed on the outer boundary of the eye, while vertical
electrodes are placed above and below the eye. The reference electrode is often positioned
on the forehead [9]. Other alternative electrode placements have been broadly described in
our former review [3]. The EOG signal is proportional to the eye gaze move and it is com-
monly distinct from other bioelectric potentials. Concerning hardware requirements, EOG
signal acquisition is based on cheap equipment with extensive eye-tracking capabilities
allowing the field of view to not be limited to cameras or sensors.

3. EOG Devices

There are different EOG devices found across our literature review and which are
summarized in the Tables 1 and 2. Four categories were distinguished: standard EOG,
alternative EOG mounting, J!NS MEME glasses and customized EOG devices.
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(i) The standard EOG consisted of the placement of two electrodes at the left and right
corners of the participant’s eyes to measure the horizontal movement. Two other
electrodes were placed up and down of one eye to obtain the vertical movement.
A ground electrode was positioned on AFz (as required by the International 10/10
System) and the reference electrode was positioned on the right or left earlobe [10].

(ii) The alternative EOG mounting represented an uncommon position of surface elec-
trodes such as around the ears. Manabe et al. [11] placed four electrodes on the head
at the locations of the common headphone cushion. Ang et al. [12] used an alternative
EOG system where activities were recorded by a single-channel commercial headset
NeuroSky MindWave Mobile Headset (NeuroSky, San Jose, CA, USA). The device
was formed by a single-channel sensor based on a dry electrode with stainless steel.
The sensor was placed on the participant’s forehead to capture electrical signals
produced by the brain and the muscles.

(iii) The J!NS MEME glasses (JINS MEME ES Digital Innovation Lab, Fujitsu, Tokyo, Japan)
employs 3-point stainless steel EOG electrodes on the nose bridge and IMU, battery,
and Bluetooth units on the eyeglasses temples. The J!NS MEME are not a common
computing interface but rather a sensing device. They stream the data from the sensor
to smartphones or laptops via Bluetooth. The sensor data corresponds to vertical and
horizontal EOG signal, accelerometer and gyroscope data. The equipment has an
operating time of 8 hours. It allows a long duration of real-time streaming of eye and
head movements. The J!NS MEME are unobtrusive and look like ordinary glasses.

(iv) The customized EOG device category presents the mounted system elaborated by
the experimental group according to their objectives. Here we introduce a brief
presentation of each customized device included in this review. Vehkaoja et al. [13]
used a prototype of a wearable and wireless device designed for EOG and also
for facial electromyography (EMG) data recorded from the participant’s forehead.
The device was based on five easy-to-proceed textile electrodes that were inserted
into a head cap. Bulling et al. [14] employed a wearable and standalone device. It was
formed by dry electrodes integrated into goggles with a small pocket-worn constituent
with a digital signal processor to explore EOG signals in real-time. Bulling et al. [15]
recorded EOG data from the commercial Mobile Brain/Body Imaging (MoBI) from
Twente Medical Systems. The device was formed by four-channel EOG that was
worn on a belt around the participant’s waist and data were transmitted via Bluetooth.
Kuo et al. [16] captured the horizontal eye-gaze direction to control wheelchair driving.
They used a pair of eyeglasses to set up left and right surface electrodes as a compact
modular. Zhang et al. [17] developed a wireless and lightweight head-mounted system
that measured both EOG and EEG for interacting in a virtual reality environment.
They positioned six horizontal and vertical electrodes symmetrically around both eyes.
This device captures azimuth, elevation and vergence of gaze. Xiao et al. [18] proposed
a single-channel EOG device that enables real-time interactions with the virtual
reality environment. They designed a graphical user interface for the EOG-based
BCI in virtual reality that contains several buttons. The user had to blink while the
algorithm identifies the eye blinks and detects the user’s target button. Vidal et al. [19]
measured eye movements’ amplitude and duration in reaction to the stimulus with
an elaborated experimental system consisting of three devices. First, they connected
EOG electrodes to the Mobile Brain/Body Imaging (MoBI) approach developed
by Scott Makeig’s group. Second, they implemented an infrared eye tracker from
Ergoneers GmbH. Third, they recorded head movements by connecting a cap with an
inertial quantification. Inaez et al. [20] integrated five EOG electrodes into a pair of
glasses. They incorporated electronic and mechanical elements including a printed
circuit board, batteries, communication module electrode holders, lenses and frame.
English et al. [21] analyzed four electrodes from the EEG Emotive EEG Headset
(San Francisco, CA, USA) to process small and large amplitude of EOG signals.
Their conceptualized EOG eyephone system was efficient during sitting, standing
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and walking. Valeriani et al. [22] recorded EOG signals utilizing two facial electrodes
placed on the forehead. The interaction was realized through eye winks by comparing
the peak amplitudes and an app installed on the smartphone. Kosmyna et al. [23]
included EEG and EOG electrodes, an amplifier, a Bluetooth module and a speaker for
bone conduction auditory feedback in a pair of glasses. The operator rather received
feedback or nudges sent by a wireless vibration brooch. Despite the varied and diverse
acquisition devices, the different investigations shared the next step which concerns
features extraction.

Figure 4A shows that the most used electrode placement is the standard scheme. It
also shows that there is a recent increasing interest in using J!NS MEME glasses. It might
show that it is a off-the-shelf product that allows the use of EOG technology without any
wire nor sticking the electrodes.

4. Extracted Features

EOG signal is commonly used as a human–computer interface tool to control sig-
nals [24] and plays a crucial role in the description and classification of eye movements.
EOG is used in a diversity of applications, such as eye writing ordering [25], electric
wheelchair control [26], cursor mouse selection [27], eye movement recognition [28] and
mobile robot direction [29]. To achieve high performance in identifying and classifying
EOG signal, several methods have been presented, including derivative technique [30],
threshold evaluation [31], slope analysis method [32] and peak detection exploration [33].

Feature extraction methods and analysis of EOG artifacts are one the most important
challenges in this field. The study of Aungsakul et al. [34] evaluated 14 EOG features
based on a class separation point of view. All the extracted features were performed on
the time domain toward the simplification of the calculations. They used both horizontal
and vertical EOG channels and they combined seven methods: maximum peak amplitude
value, maximum valley amplitude value, maximum peak amplitude position value, maxi-
mum valley amplitude position value, areas under a curve, number of threshold crossing
values, and variance of EOG signal. All of these extracted features showed a statistical
significance with p < 0.0001. To extract EOG features, Pournamdar et al. [35] explored the
extreme point strategy that considers the time of occurrence of maximum and minimum
values. The polynomial fitting method and eye movement artefacts have been extracted
and categorized.

Vidal et al. [19] developed a feature-based method that allows differentiating between
saccades, smooth pursuits and vestibulo–ocular reflex movements. They extracted features
related to range, velocity, and acceleration from raw and filtered EOG signals: mean velocity,
maximum velocity, mean acceleration, maximum acceleration, range of amplitude, mean
velocity, maximum velocity, mean acceleration, maximum acceleration, range of amplitude,
coefficients of polynome fitted to the signal and the slope of the signal. Even though they
did not include fixation and blinks in their model, they were among the first groups to
analyze eye movement features to provide a base of eye movement recognition algorithms
for exploration in mobile environments.

The number and quality of the signal extracted features are affected by the degree of
freedom of the end effector. For instance, controlling a computer mouse or robotic arm
needs 2 to 4 degrees of freedom [36], while achieving the dexterity of a single joint of the
hand may require up to 22 degrees of freedom. The advantage of the EOG system is that
is well suited for applications with limited degrees of freedom, although it is difficult to
extract a large number of control signals from the average neuron population activity and
may limit the scalability of such a technique.

Feature extraction allows obtaining an optimal subset of elements to classify a selection
of collected data according to the criterion functions. Nowadays, an important number of
robust and flexible classification algorithms have been developed to recognize and classify
the extracted features from EOG signals.
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Figure 4B shows that most studies are using blinks and saccades as features. No
particular trend can seen.

5. Classification Algorithms

To classify the EOG signal extracted from the eye movements, several algorithms are
often used to identify the eye movements classification including saccades, blinks, fixations,
smooth pursuits and artifacts removal. EOG signal data are predominantly detected in low-
frequency bands. Generally, the band-pass filter ranging from 0.1 to 30 Hz with a sampling
rate of 128 Hz is performed. After that, a moving average filter is used to eliminate the
existing noise components. The eye movements classification is based on an algorithm that
computes the derivative of the EOG signal. The EOG derivative is measured through the
amplitude value of the EOG signal. Two values are needed, one representing the previous
value of the amplitude (n samples before), e(t − n), and the other representing the current
value, e(t) [37].

An important number of algorithms were designed and employed in several studies
to classify eye movement signals. Each decoding algorithm is unique to each BCI and
needs to be adaptable to new users, and can self-calibrate. EOG mutual adaptation of
“user-to-system and system-to-user” is unique to BCI. The k-nearest neighbors’ algorithm is
particularly selected in brain–computer interface investigation for its relevant outcomes.
It is one of the simplest and most efficient algorithms for the classification of samples.
The procedure requires firstly detecting the k parameter (corresponding to the number of
neighbors). After that, the distance of the unknown sample is designed with all known
samples. When the samples are categorized according to their distance and value of
k, the class that has the majority of nearest samples is chosen as the class of unknown
samples (L. Pan 2015). One of the several versions of this algorithm is called random
sub-sampling [38].

The Time Delay Neural Network is another dynamic network that classifies EOG
signals. The input delay feedforward feedback neural network is a time-delay neural
network, and its hidden and output neurons will be copied over the entire time. The delay
is computed from top to bottom, so the network has a tapped delay line, which can connect
the current signal, the previous signal and the delayed signal to the network weight matrix
through the delay time unit (such as 0, 1 and 2). To identify the eye patterns, the Time Delay
Neural Network replicated the former activation at each step and updated the outgoing
connection with the original unit. These units are coupled to the next layer called the
receiving field. The Time Delay Neural Network uses the Levenberg backpropagation train-
ing algorithm where the samples are normalized from 0 to 1 with a binary normalization
algorithm [39].

Other algorithms contain filtering, feature extraction, training and actual event detec-
tion stages to detect eye movements. The minimum redundancy and maximum relevance
algorithm allows the number of features to be reduced by selecting the most relevant ones.
Clearness Based Feature Selection calculates the distance between the target sample and
the center of each category and then compares the class of the nearest center with the
class of the objective sample [40]. The eye movements have non-repetitive and unstable
features. The EOG signal processing is often challenging to denoise and classify. Therefore,
an algorithm-based classification that requires both structural and temporal analysis is
constantly being developed.

Figure 4C shows that most studies are using linear algorithms. It also shows that the
majority of recent studies indicate the used algorithm that was not the case in the years
2000–2005.



Sensors 2022, 22, 4914 8 of 19

Table 1. Years 2000–2015. Pair rows are highlighted in gray for the ease of the reading.
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Chen [41] 2000 • • • •
Rosander [42] 2000 • • • •

Barea [43] 2002 • • • •
Ding [44] 2005 • • •

Vehkaoja [13] 2005 • • • •
Manabe [11] 2006 • • • • • •

Ding [45] 2006 • • • • •
Trejo [46] 2006 • • • •

Yamagishi [31] 2006 • • • •
Akan [47] 2007 • • • •

Bashashati [48] 2007 • • • •
Krueger [49] 2007 • • • •

Skotte [50] 2007 • • • •
Estrany [51] 2008 • • • •
Bulling [14] 2008 • • • • •
Cheng [52] 2008 • • • •

Mühlberger [53] 2008 • • • •
Bulling [15] 2009 • • • • • •
Estrany [54] 2009 • • • •
Bulling [55] 2009 • • • • •

Kuo [16] 2009 • • • •
Zheng [56] 2009 • • • • •

Keegan [57] 2009 • • • •
Usakli [58] 2009 • • • • •

Yagi [59] 2010 • • • •
Usakli [60] 2010 • • • •
Belov [61] 2010 • • • •

Zhang [17] 2010 • • •
Punsawad [62] 2010 • • • •

Vidal [19] 2011 • • • • • •
Bulling [28] 2011 • • • • •

Li [63] 2011 • • •
Liu [64] 2011 • • • •

Banarjee [37] 2012 • • • • •
Tangsuksant [65] 2012 • • • • • •

Swami Nathan [66] 2012 • • • • •
Iáñez [20] 2013 • • • • • •

English [21] 2013 • • • • • • •
Ubeda [67] 2013 • • • • • •

Li [68] 2014 • • • • • •
Manabe [69] 2014 • • • •

Ishimaru [70] 2014 • • • •
Witkowski [71] 2014 • • • •

Ma [72] 2014 • • • • • •
Jiang [73] 2014 • • • • •

Wang [74] 2014 • • •
Aziz [75] 2014 • • • •

Hossain [76] 2014 • • • • •
D’Souza [77] 2014 • • • • •

Manmadhan [78] 2014 • • • • •
OuYang [79] 2015 • • • • • •
Manabe [80] 2015 • • • •

Ishimaru [81] 2015 • • • • • • •
Hossain [82] 2015 • • • • •
Valriani [22] 2015 • • • • •

Banik [83] 2015 • • •
Ang [12] 2015 • • • •
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Table 2. Years 2016–2020. Pair rows are highlighted in gray for the ease of the reading.
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Reference Device Extracted Features Algorithm Active Passive
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Kumar [84] 2016 • • • •
Dhuliawala [85] 2016 • • • •

Shimizu [86] 2016 • • • • •
Shimizu bis [87] 2016 • • • • •

Bissoli [88] 2016 • • • •
Wilaiprasitporn [89] 2016 • • • •

Fang [90] 2016 • • • • •
Tamura [91] 2016 • • • • • • •
Barbara [92] 2016 • • • • •
Atique [93] 2016 • • • • •
Naijian [94] 2016 • • •

Ogai [95] 2017 • • • • •
Lee [96] 2017 • • • •

Robert [97] 2017 • • • •
Ishimaru [98] 2017 • • • •

Kise [99] 2017 • • • •
Augereau [100] 2017 • • • •

Tag [101] 2017 • • • •
Thakur [102] 2017 • • • •
Chang [103] 2017 • • • •
Huang [104] 2017 • • •

López [25] 2017 • • • •
Heo [105] 2017 • • • • • • •

He [106] 2017 • • • •
Lee [107] 2017 • • • • •

Zheng [56] 2017 • • • • •
Zhang [108] 2017 • • • • •

Zhi-Hao [109] 2017 • • •
Hossain [27] 2017 • • • •

Soundariya [110] 2017 • • • •
O’Bard [111] 2017 • • • • •

Perin [112] 2017 • • • • •
Karagöz [113] 2017 • • • •

Crea [114] 2018 •
Zhang [115] 2018 • • • •

Lee [107] 2018 • • • •
Kim [116] 2018 • • • •

Fang [117] 2018 • • • • •
Bastes [118] 2018 • • • • • •

Hou [119] 2018 • • • • •
Jialu [120] 2018 • • • • •
Sun [121] 2018 • • • • •
Xiao [18] 2019 • • • • •
Lu [122] 2019 • • • •

Garrote [123] 2019 • • • • •
Tag [124] 2019 • • • •

Findling [125] 2019 • • • •
Rostaminia [126] 2019 • • • •

Kosmyna [23] 2019 • • • • •
Badesa [127] 2019 • • • •
Zhang [128] 2019 • • • •

Wu [129] 2019 • • •
Mocny-Pachońska [130] 2020 • • • • • • •

He [131] 2020 • • • •
Huang [132] 2020 • • • •
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6. EOG-Based Interaction

Figure 5 presents the percentage of each type of interaction based on our investigation
of the published EOG-based BCI works of the last 20 years. The interactions can be generally
classified into active and passive [133]. During active interactions, the EOG signal is inten-
tionally used to control the system by the user. During passive interactions, EOG signal is
used to monitor the user’s state without explicitly controlling the system. According to our
observation, active interaction contributed with 76% while passive interaction contributed
with only 24% of the total included number of EOG-based BCI applications. The active
interaction was distributed between 43% for pointer/selection, 25% for visual keyboard,
17% for web navigation and 15% for monitor visual guide. The passive interaction was
divided between 62% of activity recognition and 38% of cognitive demand. The important
involvement of the active interaction can be considered as an important indicator of EOG
signal simplicity. In contrast, passive interaction may require more complicated feature
extraction and classification approaches.

Figure 5. The percentage of each type of active and passive interaction in the included EOG-based
BCI publications during the last 20 years.

The central role of BCI systems is to transduce the neural signal from the brain
into signals understandable by an external piece of hardware. The interface implements
direct communication access between the brain and the device to be controlled. The EOG
system has the potential to create active or passive user interaction with the environment.
The interaction based on EOG is explored in an important number of applications, including
eye writing commands [25], eye movement recognition [24], wheelchair drive [26], pointer
mouse selection [27] and movable robot activity [29].

The nature of the user interaction depends on the target and the field of application
including rehabilitation (e.g., exoskeleton), virtual reality, response to physical stimuli (e.g.,
pain), or identification of brain states (e.g., fatigue or frustration). The EOG similar to other
BCI systems, allows the user to interact and control different environments and actions,
such as computer function (e.g., word writing and web browsing), mobility conduction
(e.g., wheelchair driving) and daily environmental manipulation (e.g., light, television).
Interestingly, EOG can be explored as a BCI tool for the therapeutic purpose to rehabilitate
normal visual sensory system control by generating activity-dependent neural plasticity.

Figure 4D shows the distribution of the used interactions per 5-year period. It shows
that in the years 2000–2005, the dominant interaction was passive detection of user’s activity.
Recent studies suggest a trend towards using EOG as keyboard-like input, and increasing
interest in using EOG as passive method to determine the level of fatigue. Eventually,
the most popular interaction is for actions of confirmation, selection, and pointing.
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6.1. Real Environment Interaction

Vidal et al. [134] suggested considering smooth pursuit data to analyze calibration-
free gaze interaction. Their method is not based on the gaze position, as the traditional
gaze interaction methods are, but it associates smooth pursuit with targets that move
dynamically on the interface. A hands-free and calibration-free interactive technology were
presented by Esteves et al. [135] for smartwatches. It is based on smooth pursuit targets
that rotate on the interface along a radial trajectory.

Kangas et al. [136] analyzed visual, auditory and haptic feedback methods to achieve
smooth pursuit gaze tracking. They found a significant user preference for haptic and audio
feedback. Another study was conducted by Khamis et al. [137] on spontaneous gaze-based
interaction when users are displaying pursuits. The study of Jalaliniya et al. [138] presented
a method to recognize objects of interest only by analyzing the movement of the eyes while
presenting visual stimuli that move horizontally or vertically. Schenk et al. [139] exposed a
gaze interaction method based on eye movements for static user interfaces.

6.2. Virtual Reality Interaction

EOG is being studied as BCI for virtual and augmented reality, particularly in the
case of gaming, rehabilitation, or for training and evaluation of motion, image-based
decoding [140,141]. Kumar and Sharma [84] introduced an EOG hands-free natural system
that increases the involvement in virtual games. Six EOG electrodes were used for signal
acquisition and seven directions were realized by eye movements (left, right, up, down,
gaze, wink and double-blink). One of the advantages of combining the EOG system
with a virtual environment is to enhance the opportunities for users to participate in
retraining by increasing visual feedback. Another benefit is the rapid recruitment of
cortical motor networks throughout the motion images to control the interaction. Moreover,
EOG interaction in virtual reality can help promote the participation of motor learning
mechanisms through repeated training, even if the user can control their limbs [142].

In addition, the importance of the EOG-based HCI for interaction in a virtual reality
environment concerns the following points: Firstly, the EOG-based HCI hardware system
is effortless and wearable. Then, the EOG-based HCI presents gratifying efficacy. Third,
several virtual reality applications might be applied through the EOG-based HCI. A promi-
nent method of virtual reality interaction is gesture tracking which includes two types:
optical tracking (e.g., Leap Motion or Nimble VR depth sensors) and the sensors positioned
on the hand (e.g., data gloves) [143]. Although an important number of works prove the
flexibility and attractiveness of eye movements for natural and uncalibrated interaction,
they are still video-based eye-tracking.

6.3. Aircraft Pilot Interaction

In the aviation field, it is known that errors related to sleepiness and fatigue in the
cockpit lead to fatal accidents [144]. Even in the military environment, pilot fatigue can lead
to the inability to invest in enemy targets, mistargeting, or to bombing familiar resources
in the air or on the ground. Caldwell et al. [144] showed that even professional Air Force
fighter pilots are vulnerable to the effects of fatigue during prolonged waking periods.
Wilson et al. [145] recorded electrophysiological pupil area data to evaluate fatigue during
task performance in aviation. They showed concomitant and decremented performance
changes and they emphasized the importance of brain interaction in this environment.
Increasing pupil area was associated with increased task difficulty which is consistent with
a large body of literature demonstrating the correlation between increasing pupil diameter
and cognitive task loads [146]. One obstacle with interpreting the eye data results is the
variability of the light levels from the operator interface during the flight. Low and high
luminance conditions may impact the cognitive changes in pupil diameter [147].

One advantage of EOG-based interaction is that the light conditions have only little
effect on the EOG signal, which is principally important for mobile recording such in
daily life or even in extreme environments. Contrary to video-based eye-tracking, EOG
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assessments do not require light to come into the eyes to trigger the electrical potential.
EOG measurement can be realized in obscurity or even with closed eyes. Due to this
feature, EOG is particularly used for eye movement measurements during normal [148]
and pathological sleep such detection [149] that can be applied to analyze pilots’ sleepiness.

Another potential benefit of EOG for application in aviation domain is the light-weight
computational analysis. It is not based on complex video and image processing. Therefore,
EOG-based interaction can be commonly used in a laboratory environment [150], as well as
a completely mobile system operable during simulated or real flight. EOG-based systems
offer also the possibility to perform mobile long-term recording that does not require
additional apparatus for data recording and storing allowing the live capture of pilots’ eyes
activity during real flight situations [151,152].

7. EOG Limits

Although EOG-based BCI systems have made important advances in exploring eye
movement signals for interactions, the methods show some complications with an im-
portant number of applied operations. A limitation of the conventional EOG-based BCI
paradigm is that the operators may be willing to adjust the eye movements for few seconds
by fixing the gaze at an accurate position. When compared with video-based tracking, EOG
has the limitation to be based on the around-eyes electrodes that are attached to the skin.
EOG signal generates a simple waveform, a linear correlation with eye movement and it
produces a considerable signal-to-noise ratio. Furthermore, EOG delivers worse spatial
point of gaze tracking accuracy so it is more suitable for relative eye movements’ analysis.
EOG signals are also susceptible to artifacts and drifting, mainly when recorded with a
mobile system. Similar to other physiological signals, EOG signals are often corrupted by
noise from the electrical activity of the body, electrodes, residential power lines, measuring
circuits and other interference physiological sources. In addition, similar to EEG, EOG suf-
fers from poor spatial resolution such can be obtained from other neuroimaging techniques.
Contrary to eye-tracking systems using videos based on infrared cameras, the EOG-based
BCI systems do not use complementary systems. However, the EOG requires the operator’s
voluntary movement of eyeballs. Therefore, it is complicated for participants with oculo-
motor impairments to guide their eyeballs during a basic psychological paradigm such as
the orientation of their attention in the direction of a sound source. Finally, EOG data, such
as general data processing, deserves specific care before being analysed. As an initial step,
data cleaning must be applied with a signal detrending. To do so, a bandwidth filtering
can be applied. This will remove high frequency noise but also the continuous component
of the signal. Since EOG signal have low voltage amplitude, they are very sensitive to
external electrical context. For this reason, extra filtering is usually recommenced with the
standard electrical frequency wave removal (50 or 60 Hz). Next, artefacts such as blinks,
or parts of the signal that cannot be analysed have to be removed. For instance, when the
user speaks, the activation of the jaw muscles spoils the signals and generally resulting
into altered collected data. Other data processing stages may be required depending of the
recording context and we only give here the most general ones.

8. Conclusions

The use of the EOG signal is emerging as one of the most successfully explored
bioelectric signals in the BCI domain, and this review showed an increasing interest over
the last 5 years. We included 112 relevant studies after the screening of PubMed, ACM DL
and IEEE Xplore databases. We presented the results as an overview table according to four
design space dimensions: used device, features extracted from the signal, algorithm used for
features computation and designed signal-based interaction. We also compared the trends
in studies’ distribution per 5-year period. The results showed that the most used electrode
placement is the standard scheme, but there is a recent increasing interest in using an
off-the-shelf product that allows using EOG technology without wires or sticky electrodes
setup. The majority of studies use blinks and saccades as features without any particular
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trend over the last years. The most popular detection algorithms are the linear ones due to
their ease of use for real-time applications. The results of the designed interaction show
that while early studies investigated the general passive activity recognition application,
recent studies tended to design EOG-based keyboard-like interactions. Eventually, the most
popular interaction is for actions of confirmation, selection and pointing.

We also presented the EOG based on BCI applications in the real and virtual envi-
ronments along with the aeronautical application. Finally, we exposed the limits of the
EOG devices regarding existing systems and user perspectives regarding BCI technology.
We conclude that almost all the designed EOG systems are highly promising in terms of
performance and do not require heavy signal processing and complex pattern recognition
algorithms such as those used with other systems as EEG. Nevertheless, most of the EOG-
based BCI systems are still based more on theoretical rather than practical models and are
suffering from the lack of concrete practice, particularly mobile EOG. Mobile EOG-based
BCI systems are considered a relatively new research topic. An important number of
investigations should be carried out to explore innovative protocols with mobile interaction
control. An efficient system should constantly strive to improve speed and accuracy to
eliminate the operator’s frustration and to enable a stable performance level. In addition,
the new-generation models may continually take into consideration the user experience,
which may reduce the physical and mental stress.
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