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A Hybrid Polynomial Stall Model for the Longitudinal Dynamics of a
UAV

Vincent Guibert1, Jean-Philippe Condomines1, Mathieu Brunot2, Jean-Marc Biannic2 and Murat Bronz1

Abstract— Modeling the longitudinal dynamics of a fixed-
wing unmanned aerial vehicle (UAV) at high angles of attack
is not an easy task. Indeed, when the airplane approaches
stall, non-linear effects appear, including transient behaviors
and an aerodynamic hysteresis. Although some models are
present in the literature to address these aspects, they are
usually aerodynamics-based and often too complex for analysis
and control applications. Therefore, this paper presents a
new hybrid polynomial formulation for the modeling of the
aerodynamic coefficients. In addition, a Linearly Constrained
Least Squares (LCLS) process guaranteeing continuity at the
mode transitions is proposed for the identification of the model.
The Hybrid Polynomial Stall Model (HPSM) is finally identified
on experimental wind tunnel data, showcasing its ability to
accurately predict a UAV’s dynamics.

I. INTRODUCTION

Modeling the dynamics of an airplane is not a simple
and straightforward task, as it behaves in an unsteady and
non-linear way. In particular, above a so-called “stall angle
of attack” the air flow above the wings detaches, which
in turn impacts the airplane’s behavior [1]. Moreover, this
aerodynamic phenomenon presents a hysteresis, as the lift
does not vary with the angle of attack in the same fashion for
positive and negative angle of attack rates [2]. This hysteresis
has already been studied in several works for full-scale
airplanes [3] or a single wing [4]. However, no analytical
solution is known and Computational Fluid Dynamics (CFD)
calculations are extremely resource-heavy both in term of
computation power and user knowledge [5]. In addition, in-
flight measurements are rare due to the risks involved with
flying an aircraft outside of its designated flight envelope.

Fixed-wing Unmanned Aerial Vehicles (UAVs) suffer from
this same issue as their design is extremely close to that
of full-scale airplanes. They however typically have lower
Reynolds numbers in the 1e5–1e6 range compared to air-
planes which have Reynolds number in the 1e7–1e8 range.
Their dynamic response might hence be different as the air
flow around them is expected to behave differently. A model
able to accurately predict their dynamics on a wide flight
envelope could therefore prove valuable for the ongoing
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certification and integration into urban and civil airspace
of UAVs, as is for instance the case for the European
Union [6]. Possible applications include the certification of a
UAV’s control law and providing with an accurate prediction
tool including at-stall and post-stall dynamics for advanced
control. In particular, it could pave the way for robust stall
recovery controllers, lowering the risks for UAVs, the other
users of the airspace, ground infrastructures, and people.

Modeling the dynamics of a UAV is an ongoing subject
of research. Even though the community mostly agrees on a
“linear” representation for low angles of attack, no consensus
exists for high angles of attack modeling. In fact, many
authors have presented many models, originating from very
different solutions. For instance, [7] proposed to solve nu-
merically the Navier-Stokes equations, while [4] uses semi-
empirical models. Others have proposed fully data-driven
models such as locally weighted projection regression [8]
or splines [9]. However, while splines present today a pow-
erful tool for accurate and smooth interpolation [10], their
complexity make them difficult to use for functional analysis
of trim conditions and stable sets. All those models have
however already been compared to one another by various
authors in the literature (e.g. [1], [11]) and it would be both
redundant and impractical to list them all here. Moreover,
high-fidelity models often require hard to obtain data, such
as the flow separation point, which is usually not available
in flight.

On the other hand, piecewise polynomials have been
used for various applications due to their simple nature.
Examples are numerous and include various fields such
as healthcare [12] or biology [13]. They have also been
used for the modeling of dynamical systems, including
airborne object [14]. Reference [15], for instance, proposed
a formulation dependent on the Mach number of projectiles.
More notably, [16] proposed a two-pieced polynomial for the
aerodynamic coefficients dependent on the angle of attack.
The authors however chose to focus on the location of
stable sets and the control of the airplane in deep stall,
putting aside preceding stall effects like the aerodynamic
hysteresis. Finally, previous work obtained results with a
four-pieced polynomial for the modeling of the lift coefficient
of a single wing, with a special focus on the aerodynamic
hysteresis [17]. With the exception of [16], however, all
results above are restricted to one-dimensional polynomials.
In addition, the joints are often supposed known beforehand,
although some authors proposed optimization methods for
their estimation [12], [17].

Following this review, this paper presents an extension of



the PwPM method from [17] from the lift coefficient of a
single wing to the longitudinal dynamics of a more realistic
model of a UAV. This new model is hybrid polynomial
and defined for the three degrees of freedom longitudinal
dynamics of a fixed-wing UAV. It showcases an emphasis on
the dynamic component of stall and in particular the aerody-
namic hysteresis while retaining the simple formulation best
suited for control and analysis applications. In addition, a
Linearly Constrained Least Squares (LCLS) process guaran-
teeing continuity at the mode transitions is proposed for the
identification of the model.

After introducing in Section II the piecewise polynomial
modeling of an airplane’s dynamics and hybrid modeling,
this paper presents the proposed Hybrid Polynomial Stall
Model (HPSM) in Section III, including its Finite State
Machine (FSM) and the polynomials themselves. Section
IV presents the identification process in the Linearly Con-
strained Least Squares (LCLS) sense and is followed by the
application of this model to experimental data in Section V.

II. HIGH ANGLES OF ATTACK POLYNOMIAL MODELING

A. Longitudinal dynamics modeling

The longitudinal behavior of an airplane is modeled in its
wind axis by the following set of four equations:

V̇ =
1

m
(T cosα− q̄SCD)− g sin γ

α̇ = q +
1

mV
(−T sinα− q̄SCL) +

g

V
cos γ

q̇ =
1

Iyy
(q̄SlCm)

γ̇ = q − α̇

(1)

where the aircraft’s state is given by its airspeed V , its angle
of attack α, its pitch rate q and its flight path angle γ. The
commands are the thrust force T , supposed applied at the
airplane’s center of mass and in direction of the forward axis
in its body frame, and the elevator deflection angle δ. This
last command does not appear directly in (1) but it acts on the
three aerodynamic coefficients CL, CD and Cm respectively
for the lift force, drag force, and pitch moment. In addition,
the airplane has a mass m, a moment of inertia about its
pitch axis Iyy, a reference area S and a reference length l.
Finally, q̄ = 1

2ρV
2 is the dynamic pressure, ρ the surrounding

air density and g the local gravitation field acceleration.
In this formulation, the three aerodynamic coefficients CL,

CD and Cm are of prime importance because they house all
the different effects that can act on the airplane, including
non-linear ones. Being able to model these coefficients is
therefore akin to modeling the whole of the dynamics of
the airplane. In addition to the elevator deflection angle,
as already stated, they are function of a wide range of pa-
rameters, including the airplane’s flight configuration (gears
and flaps position, etc.) and its aerodynamic one (angle of
attack, its rate, etc.). For low angles of attack, the usual
flight configuration of airplanes, these coefficients can be
reasonably approximated by linear relations and this strategy
is the one used with great success on most UAVs [18].

However, when the angle of attack becomes too high this
assumption is no longer valid, and not taking into account
this change can pose a threat to the controllability of the
airplane. A better model for high angles of attack is therefore
paramount both for performance and security.

B. Piecewise polynomial modeling

As was presented in the introduction, the literature is
abundant on the subject of high angles of attack dynamics
modeling. Most models are however too complex for the easy
analysis of the airplane’s stability or on-board predictions,
preventing their use in model-based control laws. In addition,
they can be hard to identify although recent advances (in
particular in Machine Learning) have opened new ways
to do so [19]. That is why some authors have proposed
specific tools to approximate these phenomena with more
standard polynomial or rational expressions which can be
easily converted into a Linear Fractional Transformation
(LFT) format, this last format being well suited to analysis
and control design applications [20].

In addition, polynomials have several more advantages
which make them well-suited for these tasks. Firstly, they
are easy and quick to evaluate. Secondly, they are easily
differentiated and their derivatives remain polynomials, pro-
viding with fast access to the Jacobian, which is a useful
property, in particular for analysis applications. Lastly, their
formulation can be rewritten as the scalar product of a vector
of monomials µ(x) ∈ Rδ and the vector of their coefficients
θ ∈ Rδ:

f̂(x) = ⟨µ(x),θ⟩ = µ(x)⊺θ (2)

This last property is particularly interesting in the case of
the Least Squares (LS) identification of such a model, as
it allows an analytical solution as was shown in previous
work [17].

A monobloc polynomial function can however be unable
to accurately approximate some systems. A wide range
of variations in the system state function would require
prohibitively high polynomial degrees, impairing the iden-
tification process. In addition, some systems present with
vastly different behaviors, sometimes even for seemingly
identical situations as is the case during hysteresis phenom-
ena. Hence, authors have proposed piecewise polynomial
formulations [16]. In this formulation, the state space X ⊂
Rn is partitioned into subspaces and for each, the model is
expressed independently:

f̂(x) =


f̂1(x) = µ1(x)

⊺θ1 if x ∈ X1

f̂2(x) = µ2(x)
⊺θ2 if x ∈ X2

...
f̂N (x) = µN (x)⊺θN if x ∈ XN

(3)

where the different state subspaces are denoted Xi. They
must form a partition of the state space and as such respect
the following two relations:⋃

i

Xi = X and ∀i ̸= j, Xi ∩ Xj = ∅ (4)



This form trades the complexity of a high-degree
monobloc polynomial for the added overhead of having to
distribute the abscissae into the different subspaces. However,
each polynomial is expected to be a lot simpler for the same
precision, provided the subspaces Xi were chosen adequately.
Unfortunately, some properties of the monobloc polynomial
are lost, most notably the continuity at the intersection of
each two subspaces. If this is required of the model, this
condition has to be specified as a constraint during the
identification process, which can complexify this process.
Once again, however, previous works have shown that in the
case where these constraints are linear in the polynomial
coefficients (which is the case in most usual constraints
thanks to the polynomial formulation) an analytical solution
can still be found [17].

C. Hybrid polynomial modeling

Hybrid models are the combination of a continuous state
model and a discrete state controlled by a Finite State
Machine (FSM) [21]. This configuration allows the definition
of a distinct model for each discrete state, which therefore
acts as the mode of the system. Their formal definition is
given as:

f̂(x) =


f̂1(x) if i = s1

f̂2(x) if i = s2
...

f̂N (x) if i = sN

(5)

where i ∈ {s1, s2, · · · , sN} = S is the mode.
The changes in mode are handled by the FSM using

transition conditions. Without loss of generality, we will take
here conditions of the shape

gj→k(x) = 0 (6)

where gj→k : Rn → R is a transition helper function used
in the transition from mode j to mode k. In addition, these
transition helper functions will be taken as positive before
the transition and therefore negative after.

Following from the definition above, piecewise polynomial
systems are in fact a special case of hybrid polynomial ones,
where the mode i(t) is given as the index of the sole subspace
Xi | x(t) ∈ Xi.

Relaxing the previous model to a hybrid one therefore
allows a greater flexibility, once again at some added com-
plexity. Mostly, improvements will be made for systems pre-
senting with a hysteresis, where for the same abscissa, there
can be two different behaviors depending on the trajectory
history.

III. HYBRID POLYNOMIAL STALL MODEL

Following from the definitions above, we propose to model
the relation between the aerodynamic coefficients and their
abscissae using such a hybrid polynomial model.

attached
i = 1

stalling
i = 2

detached
i = 3

reattaching
i = 4

α = αs t = Ts

α = αrt = Tr

Fig. 1. The mode’s Finite State Machine for the proposed model.

A. Modes

The first thing to do is therefore to select the different
modes. Based on a priori knowledge from the literature and
experimental data (e.g. [17]), four distinct behaviors were
extracted:

• Two regular modes, respectively for when the air flow
is attached to the wings and when it is detached.

• Two transient modes, which are limited in time and
represent the morphing from one of the regular mode to
the other. They correspond to the airplane’s dynamics
when the flow separation point moves along the wing
chord.

The choice of the two regular modes is pretty straight-
forward, as we expect the UAV’s dynamic to be different
below and above stall due to the difference in air flow
behavior, giving rise to this study. The choice of two transient
modes however is less common. Several authors have indeed
ignored this aspect, choosing to consider them instantaneous
(e.g. [2]). In the case of dynamic stall however, they hold
an important part of the airplane’s behavior. In addition,
although they only take a few tenth of seconds, this time
is sufficient for a UAV to span a distance of several times
its own length.

Finally, not all modes are reachable from all others. In
fact, all modes have a single incoming neighbor and another
single outgoing one. This defines the mandatory cycle an
airplane has to follow if it were to come back to an attached
air flow after stalling: attached air flow → stalling air flow
→ detached air flow → reattaching air flow → attached air
flow. This behavior of the mode’s FSM is represented as the
multidigraph in Fig. 1.

B. Transitions

The transitions from one mode to another are defined
depending on the initial mode:

• A time-insensitive (regular) mode (attached or detached)
is left when the airplane crosses a specific angle of
attack: αs for stall and αr for flow reattachment.

• Time-sensitive modes are left after a given duration,
when the transient effects due to the air flow’s detach-
ment or reattachment have subsided. The duration of the
stalling mode is Ts and that of the reattachment one is
Tr.



In the first case, the two transition angles of attack can be
quite hard to define. The value of the stall angle of attack
αs, for instance, is not fixed as several authors have noted
that stall appears to be delayed for higher angle of attack
rates [3], [4]. This phenomenon is known as dynamic stall.
There however isn’t an agreed-upon formulation for this
value. Based on the experimental data presented below, it
however appeared that it could be approximated by a linear
function in the angle of attack rate α̇, hence the selected
value:

αs = α◦
s + ks · α̇, α̇ ∈ [0,+∞) (7)

where α◦
s is the steady case stall angle of attack and ks the

rate proportionality coefficient. Stall is however not possible
for negative angle of attack rates, as the angle of attack
is decreasing. Hence the positivity condition on α̇. The
opposite reasoning holds for the reattachment angle of attack.
Therefore, we introduce the reattachment angle of attack αr

for negative angle of attack rates:

αr = α◦
r + kr · α̇, α̇ ∈ (−∞, 0[ (8)

Finally, the transition helper functions can be easily de-
fined following all those definitions as:

g1→2(α, α̇) = α◦
s + ks · α̇− α

g2→3(t) = Ts − t

g3→4(α, α̇) = α− α◦
r − kr · α̇

g4→1(t) = Tr − t

(9)

where the time t is the time since the entrance into the
corresponding mode. It can be seen that the α̇ positivity
(resp. negativity) condition for g1→2 (resp. g3→4) has been
dropped, slightly changing the definitions from above. It is
however not an issue since the case where the angle of attack
reaches the stall angle of attack αs with a negative rate is not
expected to occur in-flight. The same is true with a positive
rate and the reattachment angle of attack αr.

C. Polynomials

Finally, the polynomials themselves must be defined. This
is done by choosing the abscissae and the monomials to be
used in each mode.

At this point, some assumptions must be made and we will
consider the airplane to be in a clean configuration (no flaps,
gears up, etc.). The aerodynamic coefficients will henceforth
be considered dependent only on the three aerodynamic
abscissae: the angle of attack α, its rate α̇ and the elevator
deflection angle δ. In addition, the time spent since the
entrance into the current mode, t, will be appended for the
two transient modes.

x =
[
α α̇ δ t

]⊺
(10)

Considering the monomials, we choose to use for all
modes all available combinations of single-variable mono-
mials up to a given degree:

µi(x) =
[
1 α α̇ αα̇ · · · ανi

α α̇νi
α̇δν

i
δ tν

i
t

]⊺
(11)

where the different natural integers νixj
are the maximum

degrees respective to each of the abscissae. This formulation
gives a total number of monomials for each mode as

νi =
∏
j

(
νixj

+ 1
)

(12)

and a total number of regressors for each aerodynamic
coefficients

ν =

N∑
i=1

νi =

N∑
i=1

∏
j

(
νixj

+ 1
) (13)

These maximum degrees were chosen by iterating over the
model, starting from an initial guess for all modes νiα = νiα̇ =
νiδ = 1 and νit = 0 for the time-insensitive modes and νit = 3
for the transient ones. At each step, the Akaike Information
Criterion (AIC) [22] was computed and compared to those
of the same model with a single maximal degree modified
to be one greater or one lesser. In the Least Squares (LS)
sense, the AIC value is given as:

AIC = 2ν +Nmeas ln (RSS) (14)

where Nmeas is the number of measurements and RSS =∑Nmeas

k=1

(
yk − f̂(xk)

)2

the residual sum of squares on the
measurements. The best trade off between model complexity
and precision as given by the minimum of AIC was then
selected as the new model. The final values are given in
Table I.

It is noted that the identical degrees on each modes are
not a design requirement but rather the result of the AIC
minimization method used.

In the end, the lift coefficient is modeled using νL = 320
polynomial coefficients, the drag one using νD = 240
coefficients and the pitch moment coefficient using νm =
240 regressors.

D. Complete model

Finally, the complete Hybrid Polynomial Stall Model
(HPSM) is given as the combination of the FSM described
by both the multidigraph from Fig. 1 and the transition helper
functions from (9) ; and the polynomial degrees from Table I.

IV. IDENTIFICATION

Before moving on to the experimental results, we must
ensure that the identification process from [17] can be used
despite the update of the model.

The difference between the model PwPM model from [17]
and the new HPSM is the way in which abscissae are linked
to their corresponding polynomials. However, once that is
done, the same variables can be introduced. Namely, the
vector of regressors

ϕ(x) =


τ(i = 1) · µ1(x)
τ(i = 2) · µ2(x)

...
τ(i = N) · µN (x)

 (15)



TABLE I
MAXIMUM DEGREE OF EACH OF THE AERODYNAMIC COEFFICIENT POLYNOMIALS WITH RESPECT TO EACH OF THE ABSCISSAE.

CL CD Cm

i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 4

α 3 2 3 2 3 2 3 2 3 2 3 2
α̇ 3 3 3 3 3 2 3 2 3 2 3 2
δ 1 1 1 1 1 1 1 1 1 1 1 1
t 0 3 0 3 0 3 0 3 0 3 0 3

where the activation function τ equals one when its condition
is true and zero otherwise:

τ(condition) =

{
1 if the condition holds
0 otherwise

(16)

and the corresponding vector of model coefficients

θ =
[
θ1

⊺ θ2
⊺ · · · θN

⊺]⊺ (17)

The model output is then rewritten in the very same way
using the scalar product

f̂(x) = ⟨ϕ(x),θ⟩ = ϕ(x)⊺θ (18)

A. Constraints

Recall however that the hybrid formalism used in the new
HPSM does not guarantee the continuity when changing
mode. Yet, the aerodynamic coefficients are expected to
be continuous over the whole domain, including at stall
and reattachment. A constraint must therefore be added as
previously stated to the identification process to ensure this
property of the identified model.

Such conditions are quite complex to express mathemati-
cally on the different transitions. Fortunately, there is no need
to do so thanks to the polynomial formulation of the model.
In order to show this, let us consider the continuity between
two modes j and k. This constraint can be written as:

∀x | gj→k(x) = 0, ϕi=j(x)
⊺θ = ϕi=k(x)

⊺θ (19)

where the vectors of regressors, taken from (18), are evalu-
ated assuming the mode is respectively j and k.

For conciseness, let us introduce a new regressors vector
ϕj−k(x) = ϕi=j(x)− ϕi=k(x) such that (19) becomes

∀x ∈ ker gj→k, ϕj−k(x)
⊺θ = 0 (20)

This new vector ϕj−k(x) controls which and how the
model coefficients will be impacted by the constraint. How-
ever, not all its regressors are linearly independent, either
because of the monomials for modes j and k themselves
(for instance if both have the same monomial, these rows will
be opposite to one another and therefore not independent) or
because of implicit relationships inherited from the subspace
ker gj→k (in the case of stall, for instance, the regressor α
is a linear combination of the regressors 1 and α̇), leading
to information being repeated. Therefore, if we have a set
of mj→k points {xj→k

1 ,xj→k
2 , · · · ,xj→k

mj→k
} in ker gj→k

spanning all possible linearly independent regressors, the

constraint from (19) on the subspace ker gj→k can be ex-
pressed as the following system of point equations:

ϕj−k(x
j→k
1 )⊺θ = 0

ϕj−k(x
j→k
2 )⊺θ = 0

...
ϕj−k(x

j→k
mj→k

)⊺θ = 0

(21)

Moreover, if there are exactly as many such points as
there are linearly independent regressors in ϕj−k, there is
no redundant information.

The value of mj→k satisfying both conditions does not
have a simple definition without an extensive knowledge
of the regressors in ϕj−k and the transition function gj→k

kernel space. However, it is always bounded (worst case
scenario, there is as many linearly independent regressors as
there are non-null ones mj→k = νj +νk, with νj and νk the
number of regressors for polynomials j and k respectively).
It is therefore possible to draw randomly generated points in
the subspace ker gj→k and remove all points which do not
add information1.

Concatenating system (21) into matrical form yields the
matrix

Cj→k =


ϕj−k(x

j→k
1 )⊺

ϕj−k(x
j→k
2 )⊺

...
ϕj−k(x

j→k
mj→k

)⊺

 (22)

which enables us to rewrite the constraint into the matrical
form:

Cj→kθ = 0 = dj→k (23)

where the constraint vector dj→k was introduced in order
to generalize the results below.

As in [17], the same property holds for all usual con-
straints, including as continuity, tangency and specific value
on any subspace. Hence, all the constraints can be once again
written as linear combinations of the model coefficients:

Cθ = d (24)

where the matrix C collects all constraint matrices Cj→k

and the vector d all constraint vectors dj→k.

1One has to be very careful however that all aspects of the kernel subspace
are sufficiently represented by the randomly generated points in order not to
miss any aspect. In particular, only points with positive (resp. negative) angle
of attack rates must be selected for the stall (resp. reattachment) transition.



B. Linearly Constrained Least Squares

Finally, the identification problem is once again expressed
as the Linearly Constrained Least Squares (LCLS) problem

Find θ∗ = argmin
θ

1

2
[z −Φθ]

⊺
Γ [z −Φθ]

s.t. Cθ∗ = d
(25)

where z is the vector of ordinate measurements, Φ the matrix
of regressors where each row is the vector of regressors for a
new measurement, extrapolated from (18), and Γ a diagonal
positive semi-definite matrix of measurement weights. As
was the case for the constraint vector d, this last variable
was added in order to generalize the problem and in the
application below, it was simply taken as the identity matrix
Γ = I .

The solution to the LCLS problem is given using
the Lagrange multipliers method as the solution of the
Karush–Kuhn–Tucker (KKT) equation:[

Φ⊺ΓΦ C⊺

C 0

] [
θ∗

λ∗

]
=

[
Φ⊺Γz

d

]
(26)

where the λ∗ are the optimal Lagrange multipliers. They are
not required to be computed apart for verification purposes.

C. Optimization

The constraint matrix C can however only be built if
the transition functions are exactly known. This is usually
not the case in practice as they depend on a set of hyper-
parameters which are not known beforehand. They must also
be identified.

One of the strengths of the hybrid polynomial formulation
is the analytical solution as was shown in the previous
subsection. Another is that the optimal cost

J∗ =
1

2
[z −Φθ∗]

⊺
Γ [z −Φθ∗] (27)

is continuous if continuity constraints have been appended
for all neighboring polynomials. Under these conditions, a
higher-level iterative optimization algorithm on the optimal
cost J∗ can be devised in order to find the best constraint
hyper-parameters.

V. EXPERIMENTAL RESULTS

The HPS model was applied to experimental data.

A. Data Acquisition

A scale model representing the left half of a fixed-wing
UAV was built as the combination of a main wing with pro-
file NACA 0012, half wing span 500mm and chord 150mm ;
and a monobloc elevator also with profile NACA 0012, with
span 150mm and chord 60mm. This elevator was controllable
and could take deflection angles in the [0◦,+20◦] range.
The model was able to rotate freely around its pitch axis
at a point representing its center of mass arbitrarily set at
25% of its wing chord. It was installed left wing up so as
to get no interaction with gravity into a WindShaper open
wind tunnel capable of generating constant winds of up to
10m/s. The model was instrumented in order to provide with

measurements for the aerodynamic force it experienced as
well as its angle of attack, measured at its pivot.

During each experiment, the elevator deflection was set to
0◦ for a few seconds in order to ensure an initial null angle
of attack. It was then maintained at a constant positive value
δc for the remainder of the experiment (about 20s). Two
different wind velocities V were tested: 7.5m/s and 10m/s,
and four elevator deflection angles δc: 5◦, 10◦, 15◦ and 20◦.

All signals were sampled at approximately 100Hz in a
non-uniform way due to inconsistent delays in the acquisition
brought on by the hardware and softwares used. They were
therefore re-sampled at exactly 100Hz using the Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP) interpola-
tion method.

The campaign generated a set of 17,248 data points in
the shape (αk, δk, Lk, Dk), where the subscripts k denote
the measurement index and L and D are the lift force and
the drag force respectively. The angle of attack measure-
ments were then filtered twice using a second-order low-pass
Butterworth filter (once forward and once backward) with
a cutoff frequency of 5Hz. The resulting signal was then
differentiated using a first order centered finite difference
with an accuracy of 4 in order to numerically compute the
angle of attack rate α̇k. The pitch moment Mk was derived
from the angle of attack acceleration, itself obtained similarly
using a second order centered finite difference, also with an
accuracy of 4.

Finally, the aerodynamic coefficients CL,k, CD,k and Cm,k

were computed from the well-known equations

CL,k =
1

q̄S
Lk CD,k =

1

q̄S
Dk Cm,k =

Iyy
q̄Sl

α̈k

(28)
to provide measurements for the model’s desired output.

It is worth noting that the more noisy the angle of attack
measurements are, the more important a proper setup of the
Butterworth filters will be in order to provide accurate values
for the numerically-derived variables α̇ and α̈.

Before the fitting however, the three abscissae α, α̇ and δ
were normalized linearly such that their means were 0 and
their standard deviations 1.0.

x̃j,k =
xj,k −mean(xj)

std(xj)
(29)

This was done in order to achieve a better condition number
for the KKT matrix before its inversion.

In addition, 20% of measurements were chosen at random
to serve as a validation dataset, while the remaining 80%
were used for the fitting. These points were chosen at random
because of the small number of experiments (8) where each
was susceptible to hold unique information.

B. Optimization

After finding the model’s maximum degrees using the
methodology from Section III-C using an initial guess for
the constraint hyper-parameters, these values were optimized
based on our data.



TABLE II
GOODNESS OF FIT FOR EACH COEFFICIENT ON THE VALIDATION

DATASET USING THE NRMSE METRIC.

Coefficient CL CD Cm

Validation GoF 84.9% 78.1% 75.4%

To do so, we chose to apply a Random Optimization (RO)
process [23]. This family of optimizers searches for a local
minimum by nudging the previously-found best solution in
a random direction in the hope that the new cost function
evaluates to a lower value. Although this process is erratic,
it has the advantage of not requiring the computation of a
gradient vector. This is important in our case as this gradient
is expensive to compute. In addition, numerical imprecisions
could render gradient descent algorithms unstable.

The final parameters were found as follows: α◦
s = 15.8◦,

ks = 54.6ms, α◦
r = 13.0◦ and kr = −8.00ms.

C. Results

The fitted polynomials are too complex to be given here,
each having several hundred coefficients. The precision of
their fitting can however be evaluated through the Goodness
of Fit (GoF) of their predictions respective to the validation
dataset. In this paper, we used the Normalized Root Mean
Square Error (NRMSE) cost function in an effort to put into
relation the error on the prediction and the measurement’s
own noise level. These results are given Table II.

These GoFs are firmly in the high seventies, with the lift
one above eighty, showcasing the precision of the model’s
predictions.

To further reinforce this result, the model’s predictions for
two different experiments are given Fig. 2.

As can be seen, the model was able to predict the
coefficients quite accurately on all aspects of the system’s
response.

In the first experiment (V = 10m/s and δc = 10◦) the
scale model found an equilibrium after one second and two
oscillations. During this experiment, the air flow remained
attached to the wing until the initial stall, which occurred at
approximately α = 17.0◦ and α̇ = 13.2◦/s. From this point,
the model cycled through all the modes in 1.0s. The model
was able to match this behavior, with the following GoFs:
GoFCL

= 92.7%, GoFCD
= 60.2%, GoFCm

= 57.0%.
In the second experiment (V = 10m/s and δc = 20◦), three

distinct behaviors can be seen. Firstly, the system followed
the same behavior as in the previous experiment, with an
attached airflow until an initial stall was encountered. In this
experiment, stall occurred at α = 21.0◦ and α̇ = 112◦/s.
After this initial stall, the system entered an oscillatory
behavior, where it cycled through the modes seven times
during 2.9s, at a frequency of about 2.5Hz. Finally, an
equilibrium was found with the air flow detached. Once
again, the model matched the experimental results, with
the following GoFs: GoFCL

= 84.8%, GoFCD
= 74.1%,

GoFCm
= 75.0%.

VI. CONCLUSION

In this paper, a new Hybrid Polynomial Stall Model
(HPSM) was proposed for the modeling of the aerodynamic
coefficients of a fixed-wing UAV including high angles of
attack. In order to best model the aerodynamic hysteresis
loop, it leveraged the capabilities of hybrid models to predict
different values for the same abscissae depending on their
mode. The HPSM features four such modes, two for attached
and detached air flows respectively and two for the morphing
from one to the other.

In addition, a method for the definition of identification
constraints guaranteeing the continuity of the learned model
was presented. Combined with the HPSM polynomial shape,
it enabled the use of the Linearly Constrained Least Squares
(LCLS) formulation for its identification, to which an ana-
lytical solution is known. This allows both for a quick and
effortless offline identification and the possibility to optimize
hyper-parameters, such as the constraint ones.

This solution was used in order to confront the model’s
prediction with experimental data from wind tunnel exper-
iments. This comparison showcased Goodnesses of Fit as
high as 80% using the NRMSE cost function, showing the
model’s precision.

Finally, this model requires only minimal knowledge of the
specific aerodynamics of the airplane, enabling a widespread
use. Moreover, its piecewise polynomial shape allows for the
use of existing analysis and control tools, such as Sum of
Squares (SoS) or Linear Fractional Transformation (LFT),
which will be explored in future works.
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(a) Lift coefficient for V = 10m/s and δc = 10◦.
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(b) Lift coefficient for V = 10m/s and δc = 20◦.
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(c) Drag coefficient for V = 10m/s and δc = 10◦.
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(d) Drag coefficient for V = 10m/s and δc = 20◦.
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(e) Pitch moment coefficient for V = 10m/s and δc = 10◦.
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(f) Pitch moment coefficient for V = 10m/s and δc = 20◦.

Fig. 2. Measurements and predictions on each aerodynamic coefficient for two experiments.
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