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On local-global hysteresis-based hovering stabilization
of the DarkO convertible UAV

Florian Sansou1 and Luca Zaccarian2

Abstract— We characterize an input-affine model of the UAV
DarkO: a convertible drone designed and developed at the Ecole
Nationale de L’Aviation Civile (ENAC) in Toulouse (France).
Starting from a nonlinear model available in the literature, we
present an approximate input-affine nonlinear model, whose
dynamics simplifies the control design task. For this simplified
model, we characterize the hovering equilibria in the absence
of wind, and we derive the corresponding linearized dynamics.
Then present a hysteresis-based switching mechanism combin-
ing a nonlinear feedback (providing a large basin of attraction)
with a linearized feedback (providing improved performance
but a smaller basin of attraction). Simulation results, using
the original nonlinear model, confirm the effectiveness of the
proposed feedback design.

I. INTRODUCTION

Convertible drones, within the class of hybrid Unmanned
Air Vehicles (UAVs) are a compromise between two archi-
tectures : fixed wing and rotorcraft. Being equipped with a
fixed wing, they have the ability to fly like an aircraft, with
energy efficiency, but also to hover to maintain a position
and perform vertical take-off and landing (see the compre-
hensive survey [1]). In recent years, due to their relevance
to applications, different convertible UAV architectures have
been proposed, which can arguably be classified in tilt-
rotors, tilt-wings, quadruplanes and tilt-body (or tailsitter)
configurations [2], [3]. These drones, like any other, share
the important challenges of a cascaded attitude/displacement
architecture, as well discussed, e.g., in [4]. In particular,
the DarkO UAV recently developed at the Ecole Nationale
de L’Aviation Civile (ENAC) in Toulouse (France) is an
example of tailsitter comprising two propellers and two
elevons with a bat-like architecture [5], [2], [6].

While convertible drones present several important advan-
tages in terms of energy and maneuvrability, their control
remains an active research field, due to the different flight
conditions that should be considered in the control design.
In particular, a large amount of works (see, e.g., [7], [3], [8],
[9] and references therein) address the so-called transition
control, wherein different flight modes are stabilized by
known approaches (typically linearization-based solutions)
and the transition among the different flight modes is the
design goal. This control strategy is especially suited for tilt-
wing configurations.
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With tailsitter UAVs, there is the possibility of developing
a single feedback controller covering the whole operating
range of the drone. This could be done using linear PID-
based strategies [10], [11], even though limited effectiveness
in terms of accuracy and disturbance rejection stems for
the limited range of validity of the linearized models. For
the DarkO drone, a model-free control technique has been
used in [2], which allows avoiding the cumbersome modeling
effort, but is clearly prone to the well-known improvements
stemming from a careful model-aware solution. When the
model is taken into account, one may rely on nonlinear
dynamic inversion and incremental nonlinear dynamic in-
version techniques (see, e.g., [12], [13], [14]). A further
computationally expensive solution is that of nonlinear model
predictive control (see, e.g., [15]) with its well-known
computational related issues. Additional approaches include
different linearization-based techniques, including LPV and
gain scheduling control, as well as adaptive control strategies,
to be designed by addressing the dynamics of the specific
UAV model under consideration [14], [16], [3], [17], [16].

The work presented here is part of the approach initiated
in [5], [2], [6] and related to the modeling of the DarkO
drone and proposing a unified nonlinear, possibly hybrid,
control scheme. The contribution of this paper is multi-
fold. First, in Section II, we present an input-affine DarkO
model, stemming from the results in the references above.
Our model is suitable for control design. To this end, we
characterize the equilibria and the linearized dynamics for
hovering flight. Then in Section III, we present two feedback
control laws, each one with advantages and drawbacks, and
illustrate their blending through a hybrid hysteresis switching
scheme. Our results are validated by high fidelity simulations
on the identified model given in [5], [2].
Notation. Given two vectors x1 and x2, we often denote
their juxtaposition as (x1,x2) := [x1

⊤ x2
⊤]⊤. Given any

vectors u,v ∈ R3, the skew-symmetric matrix [u]× satisfies
[u]× v = u × v. Symbol I denotes the identity matrix of
appropriate dimensions.

II. MODEL OF THE DARKO UAV

The DarkO UAV, designed and developed at the Ecole
Nationale de l’Aviation Civile (ENAC) in Toulouse (France),
is a clear example of convertible UAV with a so-called
tail-sitter architecture. DarkO is assembled from multiple
3D printed Onyx parts (a highly robust material comprising
omnidirectional carbon fibers). Its actuators consist in two
propellers symmetrically placed at the front of the wing and



two elevons, placed at the back of the wing and acting as
redundant control surfaces.

We may model the position and attitude of the DarkO by
using an inertial reference frame “[I]” linked to the earth’s
surface, and a body reference frame “[B]” attached to the
drone, with x[B] corresponding to the roll axis (the propellers
axes), y[B] being the pitch axis (the direction of the wings)
and z[B] being the yaw axis. According to the notation in
[5] the left and right propeller/elevon are denoted by using
subscripts i = 1 (left) and i = 2 (right), respectively.

Remark 1: (Plant input saturation) The DarkO actua-
tors have dynamics that limit their actions both in terms
of amplitude and rate. For the electric motors generat-
ing traction through the propellers, the maximum voltage
that can be delivered to the motor and a reasonable low-
speed saturation, which is necessary for the plant input
transformation introduced in the following (in addition to
ensuring a realistic finite energy model), corresponds to
constraining ωi ∈ [200 ; 2000] rad s−1, i = 1, 2. In
terms of maximal rate, a reasonable rate saturation level
representing the motor actuation chain (consisting of the
ESC, the motor and the propeller) corresponds to imposing
ω̇i ∈ [−3000 ; 3000] rad s−2, i = 1, 2, which provides
a fairly aggressive actuation system. The saturation levels
characterizing the elevons stem from the servo motors type
of actuation. The elevons input is limited in displacement
by the shape of the UAV and the physical limits of the
servo motors, which translates into a saturation of the control
surface deflection δi ∈ [−30 ; 30]°, i = 1, 2. Perhaps
the most relevant saturation here is the rate phenomenon
(due to the servo-motor actuation), which corresponds to
δ̇ ∈ {−5.24, 5.24} rad s−2, i = 1, 2 (stemming from a
movement of 60° in 0.2 seconds). These saturation levels
are only indirectly taken into account in the control design
of this paper, but are explicitly considered in our simulation
results. ◦

A. Input-affine nonlinear model of DarkO

Since we focus in this paper on the hovering phase,
where the speed is small, we may simplify the full nonlinear
model (available and described in [18, eqn (2.10), p. 25]) by
neglecting the aerodynamic effects, namely all the terms that
are quadratic in the speed vb and ωb and the wind effects
w. Accounting for the wind effects would allow for useful
derivations of the linearized dynamics under the wind action,
which we regard as future work. Neglecting these terms and
performing the following nonlinear input transformation:

u :=
[
τ1 τ2 δ1τ1 δ2τ2

]⊤
= kf

[
ω2
1 ω2

2 δ1ω
2
1 δ2ω

2
2

]⊤
, (1)

allows us to derive the following input-affine simplified
approximate low-speed model

ṗ = v, mv̇ = −mg +R(q)Fu, (2a)

q̇ =
1

2
q ⊗ ωb, Jω̇b = − [ωb]× Jωb +Mu, (2b)

where p ∈ R3 is the position of the center of mass (CoM)
expressed in the inertial frame and v ∈ R3 denotes its

velocity. g = [0 0 g]⊤ is the (constant) gravity vector, q
is a unit quaternion charactering the attitude and ωb is the
rotational speed expressed in the body frame. Finally m is
the mass and J is the inertia. The constant matrices F and
M can be computed by performing some manipulations of
the dynamics, details are available in [18, eqn (2.21), p. 28].

F :=

af af 0 0
0 0 0 0
0 0 bf bf

, M :=

am −am bm −bm
0 0 cm cm
dm −dm 0 0

, (3)

with the following coefficients af bf

am bm

cm dm

=

 1− S
4Sp

Cd0 − S
4Sp

(2π + Cd0)ξf
km
kf

S
4Sp

ay(2π + Cd0)ξf
S
4Sp

∆r(2π + Cd0)ξm py +
S
4Sp

ayCd0

 ,

where the numerical values can be found in [18, table 1, p.
61]. Model (2) provides a desirable input-affine description
of the DarkO dynamics. Among other things, the simplified
nonlinear dynamics (2) allow us to characterize all the
possible equilibria induced by input u. The corresponding
result is formalized next.

Proposition 1: For model (2), all the possible
input-state equilibrium pairs (u,x) = (ueq,xeq) =
(ueq,peq,veq, qeq,ωb,eq) are parametrized by an arbitrary
position pe ∈ R3, and an arbitrary roll orientation
β ∈

[
−
√

1
2 ,
√

1
2

]
as follows

ueq =
mg

(1− S
4Sp

Cd0)
[1 1 0 0]⊤ (4a)

peq = pe, veq = 0, ωb,eq = 0 (4b)

qeq = [ηeqϵ
⊤
eq]

⊤ =

√1

2
− β β

2β2 − 1

2
√

1
2 − β

β

⊤

(4c)

Proof: To define the equilibrium point, we first set all
derivatives to zero. v = ṗ = 0 and q̇ = 1

2q ⊗ ωb = 0.
Since the norm of the quaternion is unitary, it never vanishes,
therefore ωb = 0, which gives Jω̇b = Mu− [ωb]× Jωb =
0 =⇒ Mu = 0. Thus, we know that equilibrium is reached
when u ∈ kerM . The basis generating the kernel of M is of
the form [1 1 0 0]⊤, therefore u = λ[1 1 0 0]⊤, with λ ∈ R.
mv̇ = R(q)Fu − mg = 0 =⇒ R(q)Fu = mg.
Thus the rotation matrix R(q), must orient the longitudinal
axis of the drone towards the vertical axis to align the
forces. The set of quaternions inducing this orientation

is q =

[√
1
2 − β β 2β2−1

2
√

1
2−β

β

]⊤
, ∀β ∈

[
−
√

1
2 ,
√

1
2

]
.

Finally, the value of λ that compensates for the gravity is
λ = mg

(1− S
4Sp

Cd0)
, as to be proven.

We observe that all of the equilibrium pairs characterized
in Proposition 1 are associated with a constant control action
ū producing a positive thrust compensating for the gravity
effects. In particular, according to the expression of ueq in
(4a), the necessary thrust corresponds to mg divided by
the correction term (1 − S

4Sp
Cd0)

−1, compensating for the
aerodynamic losses.



It is interesting to note that, in addition to an arbitrary
position pe, we may define an equilibrium exploiting the
additional degree of freedom β, characterizing a rotation
about the vertical axis of the inertial frame, which is collinear
with the longitudinal axis x[B] of the UAV when it is hover-
ing. This degree of freedom is useful, e.g., when wanting to
prepare the UAV for a straight flight in a specific direction.
Nevertheless, a specific heading must be imposed by the
feedback law whenever wanting to reject a constant and
nonzero wind disturbance w affecting the dynamics. This
type of study is regarded as future work.

B. Linearized dynamics
We derive here the linearized dynamics starting from the

simplified nonlinear model (2). Inspired by [19, Proof of
Lemma 1], to deal with the dynamics of the quaternion q =[
η ϵ⊤

]⊤
evolving in S3, we replace η by its nonnegative

value induced by the unit norm of the quaternion. Thus, η =
(1− ϵ⊤ϵ)

1
2 =

√
1− ϵ21 − ϵ22 − ϵ23. The linearized equations

of motion are then characterized by the incremental state
vector:

x̃ :=
[
p̃ ṽ ϵ̃ ω̃b

]⊤
ũ := u− ueq (5)

:=
[
p− peq v ϵ− ϵeq ωb

]⊤
,

where the constants peq ∈ R3, ueq ∈ R4 and ϵeq ∈ R3

come from any of the equilibrium pairs characterized in
Proposition 1.

We may then characterize the linearized dynamics about
any such equilibrium pair as follows

˙̃x = Ax̃+Gũ (6)

where the expression of A, can be determined, after some
manipulations, as

A=


03 I3 03 03

03 03 Av̇,ϵ 03

03 03 03 Aq̇,ωb

03 03 03 03

Aq̇,ωb =
√
2
4

1 0 −1
0 1 0
1 0 1


Av̇,ϵ=

√
2

 0 2g 0
−g 0 g
0 −g 0

 (7)

In matrix A, we thus obtain a pure integrator on the first
three rows of the matrix of the equation (7), which represents
the link between the velocity and the linear acceleration.
We observe that the linear acceleration depends only on the
orientation of the UAV. This orientation is only dependent
on the angular velocity, while the angular velocities are not
affected by the state vector, as one may expect.

The expression of G can be determined following similar
derivations, and corresponds to

G =



03×1 03×1 03×1 03×1

0 0 ag ag
0 0 0 0
bg bg 0 0

03×1 03×1 03×1 03×1

cg −cg dg −dg
0 0 eg eg
fg −fg 0 0


,

with ag bg

cg dg

eg fg

=


S

4mSp
(2π + Cd0)ξf

1
m (1− S

4Sp
Cd0)

J1km
kf

ay

J1
(2π + Cd0)ξm

S∆r
4J2Sp

(2π + Cd0)ξm
1
J3
(py+

S
4Sp

ayCd0)

 .

From an actuation point of view, we observe in the lin-
earized model that the input ũ only acts on the acceleration
of the UAV. Moreover, the input matrix G shows that it is not
possible to generate any acceleration along the yb axis, which
is reasonable, given the architecture of the DarkO UAV.

III. FEEDBACK CONTROL DESIGN

We derived in Section II the simplified nonlinear model
(2), which presents a convenient input-affine relation with re-
spect to u, and the linearized dynamics about the equilibria,
represented by (6).

We propose in this section two control design strategies
for stabilizing a hovering position. The first one is inspired
by the nonlinear stabilizer presented in [20] and provides a
large region of attraction, and the second one is based on the
linearized dynamics and allow for more effective gain tuning
in the final approaching phase. The two controllers are united
via a hybrid mechanism that allows retaining the steady-state
performance of the linearized design with the large region of
attraction guaranteed by the nonlinear design. Our solution
is tested by simulating the full nonlinear model.

Remark 2: We emphasize that vector u in (1) corresponds
to a non-invertible transformation of the actual DarkO actu-
ators corresponding to uact := [ω1, ω2, δ1, δ2]

⊤. Neverthe-
less, when imposing the saturation constraints discussed in
Remark 1, it is possible to uniquely determine uact from a
desired value of u in (1), because nonzero positive values of
ω1 and ω2 can be determined from the first two components
of u, and then δ1 and δ2 are easily constructed from the last
two components of u. ◦

A. Nonlinear dynamic feedback controller

We illustrate in this section a nonlinear dynamic control
law inspired by the result of [20]. For the nonlinear control
law of [20] to be applicable, matrices F and M reported in
(3) must allow defining a so-called zero moment direction
ū ∈ R4 ensuring |F ū| = 1 and M ū = 0, and a right inverse
Mr of M satisfying MMr = I and FMr = 0. In our case,
it is immediate to see that the zero-moment direction ū =√

2
2af

[ 1 1 0 0 ]
⊤ satisfies the required conditions, whereas the

fact that rank(F ) = 2 (so that kerF has dimension 2) makes
it impossible to find a right inverse Mr of M completely
contained in kerF . Due to this fact, we determine Mr

by (conservatively) parametrizing the right pseudoinverses
of M as Mr := KM⊤(MKM⊤)−1 where parameter
K ∈ R4×4 is symmetric and satisfies MKM⊤ ≥ I (to
ensure invertibility). Under this parametrization, the goal is to
minimize the norm of FMr = FKM⊤(MKM⊤)−1, which
is well achieved by minimizing the norm of FKM⊤, due to
the fact that the constraint on MKM⊤ ≥ I ensures that the
factor (MKM⊤)−1 has norm smaller than 1. Performing



a Schur complement, this minimization is well obtained by
solving the following semi-definite program:

min
K,κ

κ, subject to: MKM⊤≥I,

[
κI FKM⊤

MK⊤F⊤ κI

]
≥0,

which minimizes κ while ensuring FKM⊤MK⊤F⊤ ≤
κ2I . Solving this optimization, we obtain, for the specific
matrices under consideration,

K=

[ 0 −737 171 −171
−737 0 −171 171
171 −171 1583.5 −43.73
−171 171 −43.73 1583.5

]
, Mr=

[
0 0 −3.19
0 0 3.19

−4.51 −27.75 −1.48
4.51 −27.75 1.48

]
leading to κ = 39.7. With this optimality-based selection, the
nonlinear dynamic design of [20] can be effectively applied
by obtaining responses that are almost indistinguishable from
the fully decoupled case FMr = 0. Note that a similar
approach, essentially neglecting the extra terms acting on
the translational dynamics is also suggested in the survey
paper [4].

Based on the above-described choice of Mr and ū,
applying the feedback law in [20, eqn (19)], the input u
becomes :

u = unl := Mrτr + ūf , (8)

where τr and f are provided by the dynamic feedback
controller proposed in [20].

The optimality-based selection of Mr is prone to a
few interesting interpretations when observing the product
Mrτr = Mr [ τr,x τr,y τr,z ]

⊤. First, to produce a moment
τr,z about the z-axis we mainly use the thrust differential
action; secondly, a moment τr,y about the y-axis is generated
by an equal (additive) use of the two flaps, with great
efficiency; finally a moment τr,x about the x-axis comes from
a differential use of the flaps.

As a final remark, as compared to the solution proposed
in [20], to partially take into account the saturation effects
highlighted in Remark 1, the error feedback interconnection
of the outer loop in [20] has been augmented with a simple
error governor strategy never allowing the translational posi-
tion error ep entering [20, eqn. (22)] to exceed the maximum
value of 3 meters. The remaining tuning gains required in
the solution of [20] have been selected following an intuitive
PD tuning procedure as kpp = 0.5, kpd = 1.2, kap = 0.08,
kad = 0.1 and k∆ = 1.

Figure 1 shows the response of the system in terms of
linear and angular positions (top two rows) and actuators
efforts (bottom two rows) when the system starts from the
initial condition x(0) = [p(0) v(0) q(0) ωb(0)]

⊤ =
[0 0 0 0 0 0 0.9140 0.1134 − 0.3728 0.1134 0 0 0]⊤

with a target equilibrium position of peq = [4 5 6]⊤ and
qeq = [

√
2
2 0 −

√
2
2 0]⊤. A graceful response can be

seen, which remains quite far from the actuator saturations
(see Remark 1). Increasing the tuning gains can speed up
the response but provides undesired attitude oscillations.
Therefore it is interesting to combine this nonlinear controller
(providing a large region of attraction) with a more aggres-
sive controller, designed based on the linearized dynamics
(6) and to be used to improve the fail of the response.
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Fig. 1. Simulation with the nonlinear dynamic feedback controller.

B. Linear control design

Based on the performance-oriented observations of the
previous section, given a target position corresponding to
an equilibrium peq, qeq as characterized in Proposition 1,
we design here a local linear feedback controller capable of
inducing a more aggressive response. To this end, we focus
on the linearized dynamics (6) and recognize that we can
design a state feedback controller

ulin := ueq −Kx̃, (9)

where x̃ has been introduced in (5) and K ∈ R4×12 is a state
feedback gain that can be designed, based on the matrices A
and G appearing in (6), in such a way that the closed-loop
linear feedback Acl := A−GK be exponentially stable.

For our design, we have used an LQR selection, asso-
ciated with the simplest possible weight matrices selection
Q = I12 and R = I4, which gives desirable closed-loop
responses. The LQR design also provides a positive definite
Lyapunov certificate matrix S ∈ R12×12 (solution of the
algebraic Riccati equation) ensuring that A⊤

cl S + SAcl < 0.
In particular, it is well known from the linear approximation
theorem that function V (x̃) = x̃⊤Sx̃ is also a Lyapunov
function certifying local exponential stability of xeq for the
nonlinear dynamics. More specifically, there exits a positive
scalar v̄ ∈ R such that, along dynamics (2), we have :

V (x̃) ≤ v̄ ⇒ V̇ (x̃) := ⟨∇V (x̃), ˙̃x⟩ < 0, (10)

for all x̃ ̸= 0; in other words, the sublevel set V (x̃) ≤ v̄ is
contained in the basin of attraction of the equilibrium xeq.

Determining the largest possible scalar v̄ ensuring (10)
is a challenging problem and conservative lower bounds of
this quantity can be determined by quantifying the effect of
the nonlinearities on the dynamics. Since ˙̃x is a function
of x, then it is fairly easy to algebraically evaluate V̇ (x̃)
for a large amount of random extractions of the variable
x̃, so as to get a probabilistic estimate of the largest v̄.
Rigorous guarantees about these selections can be obtained



by applying the results in [21], which is out of the scope of
this paper, but an evaluation of 10000 samples confirmed that
the value v̄ = 400 is a good candidate selection satisfying
(10).
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Fig. 2. Simulation of the full model (solid) and (2) (dashed) with u = ulin
as in (9) from an initial condition x̃0 within the basin of attraction.

Figure 2 shows a simulation starting at the origin with
a zero orientation on the three axes (horizontal UAV) and
zero initial velocities, with a target position peq = [4, 5, 6]
with a hovering stabilization (vertical UAV) with β = 0. The
dotted line represents the target position on each axis. Note
that the initial linear and angular velocities are zero. The last
graph shows the desirable exponential decay of V . Figure 2
shows both the simulation of the full model (solid) of [18]
and of the simplified nonlinear model (2) (dashed) showing
some significant differences in the initial response. When
providing a larger target position peq = [8, 9, 10] (with the
same orientation), the initial condition is outside the basin of
attraction and diverging solutions are experienced as shown
in Figure 3.
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Fig. 3. Diverging simulation of the full model with u = ulin as in (9)
from an initial condition x̃0 outside the basin of attraction.

C. Hysteresis-based local-global control design
Inspired by the local/global strategies presented in [22,

Ex. 1.7], similar to the solution presented in [23], we use a

hybrid mechanism to switch between the high performance
local feedback (9) (as long as the state is in the basin
of attraction of the equilibrium) and the less aggressive
nonlinear controller (8), which provides a larger region of
attraction (and can be called with an abuse of notation the
“global controller”). To this end, we augment the controller
state with a logical state variable ℓ ∈ {0, 1}, governing the
choice of the control input between (8) and (9) as

u = uhyb := ℓunl + (1− ℓ)ulin, (11)

We ensure, through the hybrid dynamics, that ℓ can only take
values in {0, 1}. Its dynamics is defined by:{

ℓ̇ = 0, χ ∈ C
ℓ+ = 1− ℓ, χ ∈ D

where χ = [p, v, q, ω, l] is the complete closed loop state
and C and D are, respectively, the flow and the jump sets,
defined as

C := C0 ∪ C1, D := D0 ∪ D1,

C0 := {χ ∈ R14 : V (x̃) ≤ v and ℓ = 0}
C1 :=

{
χ ∈ R14 : V (x̃) ≥ v and ℓ = 1

}
D0 :=

{
χ ∈ R14 : V (x̃) ≥ v and ℓ = 0

}
D1 :=

{
χ ∈ R14 : V (x̃) ≤ v and ℓ = 1

}
where V (x̃) := x̃⊤Sx̃ has been defined in the previous
section, v = 400 has been determined in the previous section
to satisfy (10), and v is any positive constant satisfying v < v
(a smaller choice of v increases the hysteresis margin but
postpones the desirable high performance tail of the feedback
response). In our case we choose v = 350. The following
result is an immediate consequence of the results in [22, Ex.
1.7] and the properties of our linear and nonlinear designs.

Proposition 2: Under the action of the hybrid feedback
(11), the closed loop exhibits the same basin of attraction
as the one associated with the nonlinear controller (8), while
always using the high-performance linear feedback (9) in the
tail of the response.

We performed several simulations of the closed loop using
the Matlab toolbox [24]. The simulations are carried out
with the complete model of the UAV [18], including all
the nonlinear aerodynamic effects. A sample simulation is
reported in Figure 4, where we initialize the UAV at the
origin with zero roll and yaw orientation, and with a pitch
angle of 45 degrees. The target orientation is in the vertical
hovering configuration and the target position is assigned
to peq = [50, 25, 12.5]. We observe that in the time phase
t ∈ [0, 38], the UAV exhibits a graceful but slow convergence
to the desired target position using the global controller
(ℓ = 1). At that time, the state enters set D1 and the more
aggressive local controller is activated up to the convergence
to the desired equilibrium.

To perform realistic simulations, the measurements are
affected by sensors noise. The intrinsic robustness of the
hybrid feedback, established in [22, Chapter 7] is confirmed
by the graceful performance degradation as a function of the
amplitude of the measurement noise.
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Fig. 4. Closed-loop simulation with the hybrid controller (11).

IV. CONCLUSIONS AND FUTURE WORK

We presented two simplified models of the DarkO UAV
that are useful for hovering control design. First, an input-
affine nonlinear model allows adopting a nonlinear hierar-
chical stabilizing feedback. Then, a linearized model allows
designing a simple state-feedback solution inducing desirable
performance but a small basin of attraction. A hybrid control
solution based on a hysteresis mechanism allows combining
these two approaches. Future work will include accounting
for the effect of the wind. In particular, extending our
simplified input-affine model to consider the wind effect is
straightforward, while studying perturbed linearized motion
is currently under investigation. Future work also includes
experimental validation of our control laws in the ENAC
flight arena, in addition to generalizing the hovering stabi-
lization solutions to the more challenging trajectory tracking
problem.

REFERENCES

[1] A. Saeed, A. Younes, C. Cai, and G. Cai, “A survey of hybrid
unmanned aerial vehicles,” Progress in Aerospace Sciences, vol. 98,
pp. 91–105, 2018.

[2] J. M. Olszanecki Barth, J.-P. Condomines, M. Bronz, J.-M. Moschetta,
C. Join, and M. Fliess, “Model-free control algorithms for micro air
vehicles with transitioning flight capabilities,” International Journal
of Micro Air Vehicles, vol. 12, pp. 1–22, Apr. 2020.

[3] N. Hegde, V. George, C. Nayak, and A. Vaz, “Application of robust h-
infinity controller in transition flight modeling of autonomous VTOL
convertible quad tiltrotor UAV,” International Journal of Intelligent
Unmanned Systems, 2021.

[4] M.-D. Hua, T. Hamel, P. Morin, and C. Samson, “Introduction to
feedback control of underactuated vtol vehicles: A review of basic
control design ideas and principles,” Control Systems, IEEE, vol. 33,
pp. 61–75, 02 2013.
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