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Abstract—Improving short-term air traffic flow prediction
can help forecast demand and maximize existing capacity by
tactical air traffic flow management. Most existing studies in
flow prediction lacks consideration of the dynamic, structural,
and interrelated nature of air traffic flows in the airspace.
Therefore, this paper proposes to predict sector entry flows based
on graph convolutional networks, which consider the dynamic
spatial-temporal features of air traffic from a graph perspective.
First, we specify a sector entry flow based on its upstream and
downstream sectors. Then, each entry flow is denoted as a node
in a graph. The weighted edges between the nodes are learned
from a Word2vec model based on air traffic flows among the
nodes. With the weighted graph constructed and the temporal
flows on the nodes extracted from the flight trajectories, an
Attention-based Spatial-Temporal Graph Convolutional Network
(ASTGCN) module is adopted to capture spatial-temporal fea-
tures of recent, daily-periodic, and weekly-periodic flows in the
graph. Finally, The outputs from the ASTGCN module based
on the three features are fused to generate the final prediction
results. The proposed method is applied on 164 sectors of French
airspace for one-month ADS-B data )from Dec 1, 2019, to Dec
31, 2019) which includes 158,856 flights. Results show that, the
proposed method outperforms the well established Long short-
term memory (LSTM) model, and demonstrates better capability
in predicting rapid changes in traffic flow and has relatively
smaller decrease in prediction accuracy as the prediction time-
window increases.

Index Terms—air traffic, flow prediction, graph convolutional
network, spatial-temporal.

I. INTRODUCTION

Controlled airspace around the world is reaching its oper-
ational capacity as air transportation grows both physically
and operationally [1]. One of the key challenge confronted
by air navigation service providers (ANSPs) is the imbalance
between the limited airspace capacity and the increasing traffic
demand, which is the major source of air traffic congestion that
leads to traffic delays, economic losses, and potential safety
issues [2]. Although passenger demand during the outbreak
of the COVID-19 pandemic almost came to a standstill, with
traveling restrictions are being lifted gradually, air traffic
demand is now on its way to ramping up [3]. This brief pause
for the air transportation industry could also be an opportunity
to develop and adopt new approaches to accommodate future
air traffic growth.

In the presence of limited capacity, an accurate short-term
air traffic flow prediction, i.e., 0-2 hour look ahead time [4],
in the airspace can be vital for Air Traffic Controllers (ATCs)
about managing the forthcoming traffic flow situation and eval-
uating of control strategies [5]. In this way, tactical Air Traffic
Flow Management (ATFM) [6] measures can be planned and
executed in advance in a more efficient manner to maximize
the use of the existing airspace capacity [7]. For instance,
ATCs can execute the agreed tactical measures, such as traffic
re-routing and flight level allocation, in advance, to provide a
smooth and efficient flow of traffic where demand is foreseen
to exceed capacity or disruptions such as convective weather
appears, to utilize the available capacity to the maximum
extent [8].

II. RELATED LITERATURE

In current literature, there are mainly two types of short-
term air traffic flow modelling and prediction methods, i.e.,
trajectory-based method and aggregate method. Trajectory-
based air traffic flow prediction is based on propagating the
flight trajectories over time and using the predicted trajectories
to count the future number of flights in the airspace [9].
However, research shows that the prediction error of the
trajectory-based method increases exponentially as the forecast
time horizon increases beyond 20 minutes, which may be
caused by its sensitivity to various influencing factors, such
as weather conditions, airspace restrictions, and human fac-
tors [10]. Furthermore, the dimension of the trajectory-based
method depends on the number of flights under consideration,
which can requires huge computational costs and make such
methods untenable in real world context.

Efficient ATFM demands prediction of the overall traffic
flow situations in the specified airspace, instead of the temporal
trajectory of individual aircraft. Thus, the aggregate air traffic
flow models focus on predicting the overall distributions of
the air traffic flow in the airspace [11]. Since flights in the
airspace are spatially aggregated, the computational cost can
be reduced significantly comparing to the trajectory prediction
based approaches. Moreover, without considering the individ-
ual behaviours of flights, the aggregated prediction methods
are less sensitive to the uncertainty factors related to individual
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flights and a longer forecast time horizon with less prediction
errors can be achieved.

Recently, the aggregated approach is widely discussed in
the literature, which mainly predict air traffic flow based on
probabilistic analysis or machine learning techniques. Based
on the flights transition probability between adjacent air traffic
control centers, a stochastic framework with Linear Dynamic
System Model (LDSM) was developed by Sridhar et al [8].
The traffic flow is predicted as the flights count in each
control center during a short term, e.g., a few hours, using the
flights transition probability between adjacent centers extracted
from historical data, the number of departure/arrival flights in
the control center and the departure uncertainties. The major
shortcoming of the stochastic framework is that it adopts
Poisson distributions to model the departures at each time
step, ignoring the fact that the departure traffic flow varies
significantly during days, weeks and seasons under different
traffic conditions. Gilbo et al. further explored the stochastic
LDSM to predict the air traffic flow at the sector levels
using a linear regression model [12]. However, their research
mainly focused on improving the flow prediction results of
the Enhanced Traffic Management System, without deeper
investigation of the prediction mechanism of air traffic flow
prediction.

Probabilistic based models for flight or airspace were also
studied to illustrate stochastic features, such as flight speed and
traffic density, of the air traffic and further used to predict the
traffic flow [13]. However, the performances of probabilistic
methods are affected by handcraft models or analyses, which
makes it difficult to fully depict the real traffic situation and
capture the sharp changes in the highly dynamic traffic flow.

In recent years, machine learning algorithms are started to
be implemented in aggregated air traffic flow prediction [14].
In [4], the authors discretized the airspace into small cubes
and predicted the flight count in each cube. The prediction
was achieved by a convolutional neural network and recurrent
neural network to model the spatial and temporal correlations
of air traffic flow. The main shortcoming of this model is that
the disintegration of airspace into cubes ignores the structural
features of the airspace, such as airway network structure
and sectorisation schemes. This may limit the practical im-
plementation of the prediction results in ATFM. In [15],
the authors adopted a Phase-Space Reconstruction Extreme
Learning Machine (PSR-ELM) model to learn and predict
the time series of traffic demand passing given waypoints in
the airspace. In [16], by exploring ADS-B data, the authors
adopted long Short-Term Memory (LSTM) and Support Vector
Machine (SVM) to predict the air traffic demand between two
airports. The limitation of such time-series models is that they
fail to consider the effects that the air traffic network has on
time-series flow at a single waypoint or airport pair, which
may restrain the prediction accuracy of the models [17].

Note that most of the current literature in air traffic flow
prediction lacks considerations of the highly dynamic, struc-
tural and interrelated nature of air traffic flows in the airspace,
such as considering the air traffic flow at different positions in

the airspace as different time-series isolated from each other.
This paper proposes to predict sector entry flows based on a
graph-represented structure of air traffic, which intrinsically
considers the dynamic spatial-temporal evolution of air traffic
from a graph perspective. First, the sector entry flow prediction
is formulated as a three-stage-flow prediction problem, which
considers three stages of an entry flow: the upstream sector,
the entry sector, and the downstream sector. Each sector entry
flow is then represented by a node in the graph. Further, the
interactions among the entry flow in the airspace are described
by the weighted edges between nodes, which is modelled by
a Word2vec neural network [18] using the sequences of traffic
flow transitions among the nodes. With the weighted graph
constructed and the temporal flows on the nodes extracted from
the flight trajectories, an Attention-based Spatial-Temporal
Graph Convolutional Network (ASTGCN) module is adopted
to capture spatial-temporal features of recent, daily-periodic,
and weekly-periodic air traffic flows in the airspace.The out-
puts from the ASTGCN module based on the recent, daily,
and weekly historical data are fused to predict the traffic flow
on the nodes (sector-entry).

III. PROBLEM DESCRIPTION

A sector’s capability in handling air traffic is not only
determined by the number of the flights that can be served,
but also influenced by the traffic complexity inside the sector,
such as flight distributions and flight speeds [19], [20]. Thus,
besides predicting the number of future flights entering a
sector, it is also essential for air traffic flow predictions to
provide the distribution of the upcoming traffic flow of the
sector, such as the number of flights crossing the entry/exit
points of the sector, the number of flights transiting through
the air routes in the sector, or the number of flight passing
certain waypoints in the sector.

Fig. 1: Visualization of one-day flight trajectories in French
airspace.

In recent years, the gradual implementation of Free Route
Airspace (FRA) gives flights some freedom to plan their routes
between an entry point and an exit point without referring
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to the ATS routes [21]. Fig. 1 shows the one-day flight
trajectories (red lines) in French airspace (sector boundaries
shown as black lines), where the FRA has been implemented
in nearly 50% of the airspace above flight level 195 [22]. It can
be observed from Fig. 1 that the majority of flight trajectories
follows straight path and do not follow specific air routes in
the airspace. The entry/exit points of flights into a sector are no
longer fixed at certain positions at the sector boundary. Under
this context, it is however impractical to predict air traffic flow
on airways, fixed entry/exit points on sector boundaries, or
waypoints.

Note that in the FRA, flights will remain subject to control
from the sector ATCs. We can notice from Fig. 1 that most of
the flows entering a sector are aggregated by their upstream
and downstream sectors. Therefore, predicting the number of
flights in the entry flow along with downstream and upstream
information, i.e., where the flow is from and where it is going
to, can provide ATCs an understanding of the emerging flow
in a sector to develop flow control strategies.

Given the above analysis, this paper aims to predict the
number of flights in the sector entry flows. An entry flow of
a sector is defined as the flow entering the sector in which
the flights have the same upstream and downstream sector.
The prediction outcome will be the number of flights in each
sector entry flow during a look-ahead time. For instance, flow
“S1S2S3” represents one entry flow to Sector “S1”, which is
from Sector “S2” and going to Sector “S3”. And this paper
proposes to predict the number of flights in flow “S1S2S3”
during a given look-ahead time.

IV. METHODOLOGY

A. Methodology Overview

The proposed method to predict the sector entry flows
comprises seven steps. The first step denoises the raw ADS-B
data. The second to fourth steps organize the denoised ADS-B
data and airspace structure data into a spatial-temporal graph.
The rest three steps build the machine learning framework to
learn from the spatial-temporal traffic information and make
predictions about future traffic flow.

The flight information used in the paper is extracted from
ADS-B data. It faces plenty of noises in measuring barometric
altitudes, which is susceptible to variations in atmospheric
conditions [23]. Therefore the first step is to remove the noises
from the barometric altitude data. From the denoised ADS-B
data, 4D trajectories of the flights is obtained i.e., time series
data with geographic information. Therefore, in the second
step, by referring to the airspace structure data, i.e., sector
boundaries, we can map each 4D trajectory into a sequence of
nodes at sectors boundaries and determine the corresponding
times when the flight passes the nodes. In the third step, the
nodes sequences are fed to a Word2vec model, which extracts
the notion of relatedness across nodes and encodes each node
into a numerical vector. By calculating the similarity between
the vectors, we can quantify the relatedness between nodes,
i.e., weights on the edges connecting the node pairs. In the
fourth step, a spatial-temporal graph is built to describe the

flow of air traffic in the airspace by combining the times series
of flights on each node with the weights on the edges between
nodes.

Based on the spatial-temporal graph established in the
previous four steps, the last three steps adopt a graph-based
neural network to achieve the prediction of the sector entry
flow. Step five organizes the spatial-temporal graph obtained
in step 4 into a time series sliding over different time slices,
from which the weekly, daily, and recent flow features can be
extracted. Step six adopts an ASTGCN module to capture the
dynamic spatial and temporal patterns from the weekly, daily,
and recent data. And in the seventh step, the outputs from the
ASTGCN module of the three features are fused to obtain the
air traffic flow prediction for the future time slices.

Following subsections details about data denoising, spatial-
temporal graph construction, and the graph-based neural net-
work to learn and predict air traffic flow.

B. Data Denoising

ADS-B data for aircraft surveillance can give highly ac-
curate aircraft position and velocity information, providing a
useful source for analytical solutions to effective and efficient
airspace usage [24]. However, ADS-B data still includes some
noise in flights’ geographic information, especially barometric
altitude [25]. The black line in Fig. 3 shows a flight trajectory
extracted from the ADS-B data. Many spikes are observed in
different phases of the flight, especially in take-off, cruise, and
landing. This section will describe removing these spikes from
the flight trajectory.

To remove the spikes from the cruise phase data, we adopt
a median filter [26] that moves through the trajectory data one
by one; and replaces each value with the median value of its
neighboring data. The green line in Fig. 3 shows the denoised
flight trajectory, in which the spikes in the cruise phase are
smoothed after applying the median filter.

However, We cannot wholly flatten the noise in the altitude
data by using a median filter, as a spike can still be observed
at the initial part of the green curve. The cause of the altitude
data busts during the take-off/landing phase may be the failure
to change the necessary QNH [27] setting during the take-
off/landing phase to the correct altimeter setting [28]. Thus,
during the take-off/landing phase, the outlier data constantly
show up over a relatively long time window, compared to the
cruise phase during which the outlier data appear individually
and are easy to be removed through a median filter. Given the
constant occurrence of inaccurate barometric altitude data dur-
ing take-off/landing, it is better to remove the trajectory data
during these phases, i.e., below a certain flight level threshold,
to avoid influencing the reliability of the research results.
Therefore, we apply Robust Locally Weighted Scatterplot
Smoothing (RLOWESS) [29], which uses locally weighted
linear regression to smooth data, onto the filtered data (green
line) to fit a smooth curve from which we can identify the
overall trend of the trajectory. The blue line in Fig. 3 shows
the smoothed curve after applying RLOWESS. By removing
the corresponding data in the green line below a certain flight
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Fig. 2: Conceptual diagram of the proposed method for short-term sector entry flow prediction based on graph convolutional
networks.

level (above which the flight altitude measurement is stable)
indicated by the blue line, we can get the final denoised flight
trajectory, shown by the red curve in Fig. 3.

Fig. 3: Illustration of the proposed ADS-B data denoising
approach.

C. Spatial-temporal Graph Construction

This section organizes the denoised flight trajectories and
the airspace structure information into a spatial-temporal graph
representation G = (V,E), where V is the set of nodes in the
graph, and E is the set of edges indicating the connectivity
between the nodes. This section consists of nodes extraction,
edges generation, and graph construction.

1) Nodes Extraction: From the ADS-B data, 4D flight
trajectories, containing the geographic information of flights
over time, can be obtained. By intersecting the 4D flight
trajectories with sector boundaries, it can be determined where
and when a flight enters into each sector. An entry point of a
flight into a sector can be described as a node defined by the
entry sector, the upstream sector, and the downstream sector.
More specifically, when a flight fk enters sector Si from sector
Si−1 then goes to sector Si+1, it belongs to the entry flow of
sector Si described by the node SiSi−1Si+1.

Fig. 4 presents an example of nodes extraction from the
trajectory of three flights. Flight f1 and f2 enter sector S1

from sector S2, then go to sector S3. Therefore, according to
the definition of entry flow in the Problem Description section,
the two flights belong to the entry flow of sector S1 represented
by the node S1S2S3. Similarly, upon entering sector S3, the
two flights are classified to the entry flow of S3 represented by
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Fig. 4: An example of nodes extraction from the trajectory of
three flights.

the node S3S1S..., while S... represents the subsequent sector
after exiting S3. In the same way, the nodes passed by flight
f3 are S1S2S4, S4S1S3, and S3S4S..., when entering sector
S1, S4, and S3, respectively. By identifying the nodes from
each flight trajectory in the ADS-B data, we can determine all
the nodes in the traffic graph.

2) Edges Generation: After determining the nodes, the next
step is to construct the edges between the nodes. In this study,
if two nodes are passed by a flight consecutively, they will
be considered connected, and there will be an edge between
them. Most current research in graph convolutional networks
for traffic flow prediction either adopts a binary graph [30]
or set the edge weights according to the geometric distance
between the nodes [31]. However, these simple representations
of the weights may fail to capture many complex features in
the graph, e.g., some edges are frequently traveled while some
are seldom used, which may limit the ability of graph convolu-
tional networks to learn from the features of neighboring nodes
[32]. Therefore, instead of adopting a simple representation
of the weights, this paper proposes to learn the edge weights
through the traffic data, i.e., the sequences of nodes generated
from each flight trajectory.

Word2vec is a technique for natural language processing
published in 2013 [18]. It uses a neural network to model word
associations by training from a text corpus. In this process,
Word2Vec can build a vocabulary from the training text corpus
and learn the vector representations of each word. The cosine
similarity between the vectors can indicate semantic similarity
between the words represented by those vectors [33].

Making an analogy between a node sequence and a text
sentence with the nodes being the words in the sentence,
the set of node sequences generated from the flight data can
be regarded as the text corpus. Thus, by feeding the node

sequences to a Word2vec model, we can obtain the vector
representation for each node. Subsequently, the edge weights
between nodes can be described by the cosine similarity
between the corresponding vectors. In this way, the weighted
edges between the nodes in the graph are determined.

3) Graph Construction: We have determined the nodes and
edges for a graph in the previous two steps. For each node,
based on the time of each flight passing it, we associate it
with a time-varying traffic flow described by a sequence of
flights on the temporal dimension. More specifically, if flights
f1, f2, ..., fk pass the node SiSi−1Si+1 at an increasing
sequence of time t1, t2, ..., tk, the temporal flow on node
SiSi−1Si+1 can be represented by a sequence {(f1, t1), (f2,
t2), ..., (fk, tk)}. The nodes with dynamically changing flow
and the weighted edges between nodes constitute the spatial-
temporal graph structure.

D. Sector Entry Flow Prediction

Given the spatial-temporal graph constructed in the last step,
this section predicts the flows, i.e., the number of flights,
passing the nodes in the graph during a future time slice.

With the temporal flight sequence recorded on each node in
the graph G, we can determine a traffic flow time series for
each node over different time slices. We use xi

t ∈ R to denote
the traffic flow of node i at time t. Xt = (x1

t , x
2
t , ..., x

N
t )T ∈

RN denotes the traffic flow values of all nodes at time t. N is
the number of nodes in the graph. χ = (X1,X2, ...,Xτ )

T ∈
RN×τ denotes the traffic flow values of all nodes over τ time
slices. Therefore, the air traffic flow prediction problem can
be specified as: given χ, traffic flow values at all the nodes
on the graph over past τ time slices, predict future traffic flow
sequences Y = (y1,y2, ...,yN )T ∈ RN×Tp of all the nodes
on the whole traffic graph over the next Tp time slices, where
yi = (xi

τ+1, x
i
τ+2, ..., x

i
τ+Tp

) ∈ RTp denotes the future traffic
flow of node i from τ + 1 to τ + Tp.

As shown in Fig. 2, this paper incorporate three time
series features, i.e., recent flow series, daily flow series, and
weekly flow series, to predict the future traffic flow. The three
features are designed to respectively model the recent, daily-
periodic and weekly-periodic dependencies of the historical
data. Assume the sampling frequency is q times per hour, the
current time is t0 , and the prediction window size is Tp. We
extract three time series segments during the last Th hours,
Td days and Tw weeks as the input of the recent, daily-period
and weekly-period feature respectively. Details about the three
time series segments are illustrated below.

The recent segment is a segment of historical data adja-
cent to the predicting period, which is designed to capture
the influence of the recent traffic evolution on the future
traffic flows. This recent flow segment can be specified as:
χh = (Xt0−Th×q+1,Xt0−Th×q+2, ...,Xt0) ∈ RN×Sh , while
Sh = q × Th.

The daily-periodic segment is a time series of traffic
flow over the past few days during the same time
period as the predicting period, which is designed
to capture the daily repeated patterns of air traffic
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flow. The daily segment can be specified as: χd =
(Xt0−Td×24q+1, ...,Xt0−Td×24q+Tp ,Xt0−(Td−1)×24q+1, ...,
Xt0−(Td−1)×24q+Tp

, ...,Xt0−24q+1, ...,Xt0−24q+Tp) ∈ RN×Sd ,
while Sd = Tp × Td.

The weekly-periodic segment is composed of the flow
series on last few weeks, which have the same week at-
tributes and time intervals as the forecasting period. It is
designed to capture the weekly repeated patterns of air traf-
fic flow. The weekly segment can be specified as: χw =
(Xt0−7Tw×24q+1, ...,Xt0−7Tw×24q+Tp

,Xt0−7(Tw−1)×24q+1,
...,Xt0−7(Tw−1)×24q+Tp

, ...,Xt0−7×24q+1, ...,Xt0−7×24q+Tp
)

∈ RN×Sw , while Sw = Tp × Tw.
Each of the three time series feature will be fed to the

ASTGCN module, shown in Fig. 2, respectively to model three
temporal properties of air traffic flows. The ASTGCN module
consists of a number of spatial-temporal blocks as well as a
fully connected layer in the end to keep the output dimension
the same as the forecasting target. A spatial-temporal block
mainly consists of two mechanisms. First is the spatial-
temporal attention mechanism which is employed to capture
the dynamic spatial-temporal correlations in the traffic data.
The second mechanism is the spatial-temporal convolution
which uses graph convolutions and common standard convo-
lutions to respectively capture the spatial dependencies from
the neighborhood and the temporal dependencies from the
time series. The spatial-temporal attention combined with the
spatial-temporal convolution forms a spatial-temporal block.
Multiple spatial-temporal blocks can be further stacked to
capture larger range of dynamic spatial-temporal correlations.

Eventually, the outputs from the ASTGCN module based on
each of the three features are weighted fused to generate the
final prediction results of traffic flow on the nodes, depending
on the significance of the influence of the three features. The
final prediction result after the fusion can be described as:

Ŷ = Wh ◦ Ŷh +Wd ◦ Ŷd +Ww ◦ Ŷw (1)

where ◦ represents the Hadamard product. Wh, Wd and Ww

are the learned parameters to quantify the influence of the
three features on the forecasting target.

V. EXPERIMENTAL STUDY

With the proposed method, we have carried out an exper-
imental study on the French airspace using one-month ADS-
B data from December 1, 2019 to December 31, 2019. A
number of 158856 flights and 164 sectors in French airspace
are included in the study. The prediction target is the hourly
sector entry flows. The look ahead time investigated in this
experiment ranges from 1 hour to 2 hours. The following
sections presents the result of the experimental study.

A. Graph Construction

By intersecting the flight trajectories with the sector bound-
aries in the French airspace, we have extracted 6028 nodes
for the traffic graph to represent different entry flows of
the 164 airspace sectors. From the sequence of nodes on a
flight trajectory, we have determined the edges in the graph.

The sequences of nodes are further fed to the Word2vec
neural network to model the edge weights. Fig. 5 shows the
constructed graph for the French airspace. Each red node in
the graph denotes a sector entry flow, and the node’s size is
proportional to the size of the traffic flow passing through it.
Each blue line represents an edge in the graph, while the line
thickness is proportional to the edge weight.

Fig. 5: The constructed graph for the French airspace. Each
red node denotes a sector entry flow and each blue line denotes
an edge in the graph.

B. Sector Entry Flow Prediction

The last three hours, six days, one week flow features, i.e.,
Th = 3, Td = 6 days and Tw = 1, of all nodes in the graph are
extracted from the time series data and fed to the ASTGCN
module to predict the next one hour to two hours traffic flows
on the nodes. The ASTGCN module in this study adopts a
widely used structure that stacks two spatial-temporal blocks.
The mean square error (MSE) between the predicted and true
values is used to compute the loss function of the model. The
sampling frequency of the hourly flow on the nodes is set as
12 times per hour, i.e., q = 12. The batch size is five during
the training phase, and the learning rate is 0.0003. The training
data, validation data, and test data consists of 60%, 20% and
20% of the whole data set respectively. Concretely, 18 days
data are used for model training, the following 6 days data
for model validation, and the last 6 days data for testing the
model.

C. Result Analysis and Comparison

We have compared the node flow prediction results of the
proposed method with the state of art time series prediction
model LSTM. Given there are over 6000 nodes in the graph,
here we use a busy node in French airspace, node “LFBBP2-
LFBBP1-LFBBP3”, as an example to present the prediction
result on the test dataset. According the node definition,
node “LFBBP2-LFBBP1-LFBBP3” represents an entry flow
of sector “LFBBP2”, which is from sector “LFBBP1” and
heading to sector “LFBBP3”.
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Fig. 6: Flow prediction result on node “LFBBP2-LFBBP1-
LFBBP3” from 00:00 to 23:59 on Dec 30, 2019 (UTC). The
upper panel plots the 0-1 hour prediction results, while the
lower panel plots the 1-2 hours prediction results. The red
solid shows the true flow values, the green dash shows the
predicted values using the proposed GCN-based method, and
the black dash shows the predicted value using LSTM.

TABLE I: Performance comparison between the proposed
GCN-based method and the LSTM model using three metrics:
MAE, MSE and RMSE.

Look ahead Metric GCN LSTM

0-1 hr
MAE 0.864 0.887
MSE 1.587 1.984

RMSE 1.260 1.409

0.5-1.5 hr
MAE 1.402 2.016
MSE 3.384 7.956

RMSE 1.839 2.821

1-2 hr
MAE 1.784 2.535
MSE 5.792 12.477

RMSE 2.406 3.532

Fig. 6 presents the traffic flow prediction result from 00:00
to 23:59 on Dec 30, 2019. The upper panel plots the prediction
results for the next 1 hour (0-1 hour), while the lower panel
plots the prediction for the next 1-2 hours. The red solid
shows the true number of flights passing node “LFBBP2-
LFBBP1-LFBBP3”, the green dash shows the predicted value
using the proposed method based on Graph Convolutional
Networks (GCN), and the black dash shows the predicted
value using LSTM. We can observe from Fig. 6 that both
the proposed method and the LSTM model give forecasts that
are close to the actual flow value in the coming 1 hour, while
the proposed method can better capture the sharp increases
in traffic flow. When the prediction window increases to 2
hours, the performance of the two models decreases. The

Fig. 7: Prediction performance (MAE, MSE and RMSE)
changes of the proposed GCN-based method and the LSTM
model as the prediction window increases.

performance of the LSTM model reduces sharply while the
proposed method can still capture the trends of the traffic flow.

Table I shows the average performance comparison between
the proposed method and the LSTM model, including three
metrics: Mean Absolute Error (MAE), Mean Squared Error
(MSE) and Root Mean Squared Error(RMSE). It can be
seen from Table I that the proposed method achieves better
performance in terms of all evaluation metrics. Fig. 7 shows
the changes of prediction performance of the two models as the
prediction window increases. Generally, when the prediction
window is longer, the challenge of prediction becomes greater,
consequently the prediction errors will increase. As can be
seen from Fig. 7, LSTM can achieve good results in the short-
term prediction. However, with the increase in the prediction
window size, the prediction accuracy drops dramatically.

Fig. 8: Cross-correlation between the true values and the
lagged (shifted) copies of predicted values. The horizontal axis
shows the value of the time lag. The vertical axis shows the
normalized value of the cross-correlation.
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The reason of the sharp decrease in the performance of
LSTM model may be that the LSTM model learns the corre-
lations in the flow times series on the target node instead of
the causal relationship between flows. Therefore its predictive
power reduces sharply when trying to estimate the target at
a later stage. As shown in Fig. 8, the predicted values using
LSTM are highly correlated to the latest true value available in
the input data. When the prediction window is 1 to 2 hours, we
can observe a one-hour lag between the truth and the predic-
tion of LSTM, while a zero-lag of the proposed method. The
proposed method considers the spatial-temporal correlations
which are more important in the long-term prediction. It has
the potential to learn the causal relationship between flows
from a graph perspective and produce good prediction results
even when the prediction window is larger.

VI. CONCLUSION AND DISCUSSION

This paper proposed a method for short-term sector entry
flow prediction based on graph convolutional networks. Each
entry flow of a sector was defined as a three-stage flow based
on the entry, upstream, and downstream sectors. The prediction
of each sector entry flow in the airspace was modelled as the
prediction of temporal features on each node in a graph. We
adopted a Word2vec neural network to model the interactions
among the sector entry flows in the airspace, i.e., the weighted
edges between nodes, based on the transition of air traffic
in the graph. The weighted graph and the temporal flow
series (hourly, daily, and weekly flows) on the nodes were
input to an ASTGCN module to capture spatial-temporal
dependencies from historical data and produce the final flow
prediction results. We carried out an experimental study using
the proposed method in the 164 sectors of French airspace
using the flight data from Dec 1, 2019, to Dec 31, 2019,
including 158856 flights. Results showed that, compared with
the LSTM model, the proposed method could better capture
sharp increases in traffic flow. And as the prediction window
increased, the proposed method had shown a slower drop in
prediction accuracy, while the accuracy of the LSTM model
decreased drastically.

This flow prediction method can provide the number of
flights in a sector entry flow that comes from a particular
upstream sector and goes to a certain downstream sector
during a given future time slice. The prediction result can
help ATCs better aware of the distribution of anticipated air
traffic flows in the sector and develop control strategies, such
as traffic re-routing and flight level allocation, in advance so
that the air traffic flows can be handled in a more organized
manner.

The prediction of air traffic flow in this paper only incorpo-
rates the feature of flight number in each entry flow. Various
other factors can also influence airspace traffic situations, such
as convective weather, airspace congestion, and operational
restrictions. In the future, this traffic flow prediction method
can be improved by taking more influencing factors into
consideration to deliver a better prediction accuracy.
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