
HAL Id: hal-03701660
https://enac.hal.science/hal-03701660

Submitted on 22 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CONFLICT RESOLUTION WITH TIME
CONSTRAINTS IN THE TERMINAL

MANEUVERING AREA USING A DISTRIBUTED
Q-LEARNING ALGORITHM

Antoine Henry, Daniel Delahaye, Alfonso Valenzuela

To cite this version:
Antoine Henry, Daniel Delahaye, Alfonso Valenzuela. CONFLICT RESOLUTION WITH TIME
CONSTRAINTS IN THE TERMINAL MANEUVERING AREA USING A DISTRIBUTED Q-
LEARNING ALGORITHM. International Conference on Research in Air Transportation (ICRAT
2022), Jun 2022, Tampa, United States. �hal-03701660�

https://enac.hal.science/hal-03701660
https://hal.archives-ouvertes.fr

ICRAT 2022
University of South Florida, Tampa, FL, USA

CONFLICT RESOLUTION WITH TIME
CONSTRAINTS IN THE TERMINAL

MANEUVERING AREA USING A
DISTRIBUTED Q-LEARNING ALGORITHM

Antoine HENRY
ENAC

7 avenue Edouard Belin
31400 Toulouse, France

Email : antoine.henry@alumni.enac.fr

Daniel Delahaye
ENAC

7 avenue Edouard Belin
31400 Toulouse, France

Email : delahaye@recherche.enac.fr

Alfonso Valenzuela
ETSI, Universidad de Sevilla

Camino de los Descubrimientos s/n
41092 Sevilla, Spain

Email : avalenzuela@us.es

Abstract—With the growing number of flights, more and more
conflicts have to be solved in Terminal Manoeuvring Areas
(TMAs). In order to keep a fluid flow of aircraft arriving on an
airport, air traffic controllers use softwares to help them to solve
conflicts and sequence aircraft on runways. This paper faces the
sequencing and merging problem using a reinforcement learning
algorithm (Q-Learning) in order to measure its performance.
This algorithm has been run on a scenario representing a
regular day at Paris Charles de Gaulle airport (CDG), and gives
satisfying results. Then, it has been benchmarked on heavily-
loaded scenarios, with more aircraft than the previous ones in
order to see the limits of reinforcement learning efficiency. The
Q-Learning algorithm can not only solve conflicts on this heavily-
loaded scenario but it also has a reasonable computational time.
By using a Q-learning algorithm in a distributed way, we aim to
find an optimized solution on heavily-loaded scenarios without
compromising the computational time.

I. INTRODUCTION

Air traffic keeps increasing each year since the mid -
twentieth century. This increasing number of flights forces air
traffic controllers to be more efficient. The capacity has to
be improved in the TMA without impacting the safety. This
means that controllers will have to resolve more and more
potential conflicts between aircraft. In order to decrease the
workload, most of international airports are equipped with
softwares to assist them to manage traffic. These softwares,
called arrival managers (AMANs), not only sequence aircraft
on runways but also ensure a minimum separation between
aircraft in the TMA. In summary, such tools organize the traffic
in order to maximize the runway throughput by computing de-
cisions for each aircraft which are delivered by the controllers.

The aircraft separation problem is complex since there are
many decision variables inducing a large space state. By
considering only speed and flight level as decision variables,
a pre-sequence can be computed in the En-route airspace [1].
The generated flight instructions could be directly used by the
controller, shaping a pre-sequence without any conflict when
aircraft enter the TMA. Using this pre-sequence composed by
aircraft entering at a certain time in the TMA, the algorithm

should be able to solve conflicts in a heavy-loaded scenario. In
the TMA, aircraft are usually controlled by speed regulation.
When such decision are not enough, as when there are too
much uncertainties, tactical vectorings are also assigned to
some aircraft in order to solve the remaining conflicts. Such
vectorings induce extra workload for the controller.

In order to reach the same objective, the Point Merge
System (PMS) has been developed in the 90s. Such PMS
consists in a circular leg in the TMA where aircraft are
assigned to follow for a given amount of distance (2,3,4,..NM)
in order to create efficient separations between aircraft. It is an
efficient way to solve conflict problem when several Standard
Arrival Routes (STARs) converge towards the same runway.
This technique allows aircraft to add delay between each other
by flying different paths. Some previous related works [2], [3]
have used optimization algorithms for computing efficiently
the amount of time aircraft have to stay in the PMS leg for
building an optimal sequence at the runway.

The aim of this paper is to figure the best performance
of a machine learning algorithm on sequencing and merging
problem. Since this problem could be modelized as a Marko-
vian Decision Process (MDP), the Q-Learning algorithm (QL)
has been chosen for its simplicity and performance on these
problems. It is a model-free reinforcement learning algorithm
which finds the optimal policy corresponding to the maximum
reward that an agent can get. This problem can be addressed
in a centralized way by using global optimization approach [1]
but the associated computation time may be too high. In
order to reduce this computation time, a selective simulated
annealing algorithm has been proposed in [4] for which the
computation can be divided by 20 compared with [1]. This
approach still need some centralized communication between
aircraft in order to be efficient.

In the current work, we propose a fully decentralized
sequencing and merging algorithm based on a distributed Q-
learning methodology, meaning every aircraft is considered as
a learning agent. A difficult point is that every agent learns

1

ICRAT 2022
University of South Florida, Tampa, FL, USA

without being aware of the state or actions of others. This is
why the QL used in this paper is not only distributed but also
selected: all agents are not learning at the same time. Agents
with the worst reward are considered critical, they learn before
others. Furthermore, this problem is simplified by using a time
decomposition approach [5] [6]. Instead of solving the problem
for a whole day, the algorithm is applied to a set of time
windows sliding along the day. This approach presents two
main advantages. First, it considers aircraft in the near future
for which uncertainty is reduced, thus increasing the validity
of the decisions taken by the algorithm (as a matter of fact, it
is irrelevant to take decisions in the morning for aircraft that
will land in the evening). Second, taking into account aircraft
in the next time window will reduce the size of the problems
the algorithm will have to address. Therefore, the QL is run
only on flights in a certain time window, which slides during
the whole day.

This algorithm has been tested over 24-hour scenarios.
These scenarios represent either a normal day at Paris Charles
de Gaulle airport or heavily-loaded scenarios - with up to 50%
more traffic. The results of the algorithm will be considered
as satisfying when every conflict in a scenario will be solved,
with a minimized average delay on aircraft.

The structure of the paper is summarised as follows. The
next section presents mathematical modeling of this problem.
The third section describes the Q-learning algorithm used to
solve this problem. The fourth section presents benchmarks
on Paris Charles de Gaulle airport.

II. MATHEMATICAL MODEL

This section describes the mathematical model of aircraft,
network and decision variables.

A. Network

Based on the model developed in [7], STARs are represented
with a graph G(N ,L) where N is the set of nodes and L
the set of links. Among the set of nodes one can identify
two subsets: Ne ⊂ N is the subset of entry points of the
TMA and Nr ⊂ N is the subset of runways. The final links
connecting the runways are also grouped in a link subset:
Lr ⊂ L . The CDG current network is represented in figure 1.
We propose in this study to feed both runways, 27R and
26L, by a double point merge system which will merge on
initial fix of each runway (IF 27R - RWY 27R and IF 26L -
RWY 26L, respectively).

For each aircraft, the procedure is flown at constant speed.
This speed is the landing speed which, in this work, we as-
sume, for simplicity, that depends on its wake vortex category.

The PMS structure is represented on figure 2. For each
aircraft, the length of PMS arc will be considered as a decision
variable for the algorithm.

B. Aircraft data

A flight f is characterized with the following information:
• V0,f : the initial true air speed of the aircraft
• tTMA

0,f : the initial entry time in the TMA

Fig. 1. Simplified STAR model at CDG: aircraft enter at LORNI or OKIPA.
Merge points are located on both IF 27R and IF 26L

Fig. 2. Merge Point Topology : for each aircraft, the length of the flown
sequencing arc is a decision variable

• r0,f ∈ Nr the runway on which the aircraft is planned
to land

• tRTA
f the time at which the aircraft is required to land

• Cf : the wake vortex category

C. Decision Variables

For each flight f , the following decision variables are
considered :

• the speed of the aircraft, Vf

• the entry time in the TMA, tTMA
f

• the runway assigned for landing, rf
• the length of the merge point arc, lMP

f

Such decision variable have to meet some constraints which
are now introduced.

Speed: The speed of the aircraft has to stay in a given range
of the initial speed:

Vf ∈ V0,f + p∆V

2

ICRAT 2022
University of South Florida, Tampa, FL, USA

with p the number of increments and ∆V the speed increment:

p ∈ Z and p∆V ∈
[
∆V min,∆V max

]
and:

• ∆V max the maximum speed increase from V0,f that can
be assigned to an aircraft;

• ∆V min the minimum speed decrease V0,f that can be
assigned to an aircraft which depends on the wake vortex
category.

Entry time in TMA: The entry time decision corresponds to
a delay which can be absorbed in the En-Route airspace before
the aircraft enters the TMA. In this airspace, the aircraft can
be slowed down or accelerated in a given range. As a result,
the entry time in TMA of the aircraft could also change in a
given range:

tTMA
f ∈ tTMA

0,f + p∆T

with p the number of increments and ∆T the time increment:

p ∈ Z and p∆T ∈
[
∆Tmin,∆Tmax

]
and:

• ∆Tmax, ∆Tmin the maximum and minimum time incre-
ments from tTMA

0,f that can be assigned to an aircraft.
Runway: To keep a balanced flow between runways, it could

be sometimes more appropriate to change the landing runway
of an aircraft (rf ∈ Nr).

Length of merge point arc: As the network contains merge
points, one of the decision variable, lMP

f , is the length of the
arc that an aircraft will fly in one of the merge point.

lMP
f ∈ p∆L

with p the number of increments and ∆L the length
increment:

p ∈ N and p∆L ≤ LMP
max

and Lmax
MP the maximum arc length that a merge point could

have.

III. OPTIMIZATION ALGORITHM

A. Markovian Decision Process

In this problem, each flight is a Markovian Decision
process MDP{S,A, Pa, Ra}. All decision variables represent
the state space S. It means that, for every aircraft, a state
is defined by {speed, entry time in the TMA, PMS arc
length, runway assignment}. In each state, the following
actions are considered: A = {increasing/decreasing the speed,
increasing/decreasing the entry time in the TMA, increas-
ing/decreasing the PMS arc length, changing the landing
runway, no action}. For states that are not direct neighbors
of the current state, the transition function value is 0. For
neighbor states, the transition function is an equiprobalistic
one:

Pa(s, s
′) =

{
0, if s’ is not a neighbor of s

1
Card(A) , otherwise

Fig. 3. The agent - environment interaction in a Q-Learning : the agent does
not know his environment but only the state and reward following an action

With Card(A) the number of elements in A, eight in this
case.

B. Q-learning

The Q-Learning (QL) is a model-free reinforcement learn-
ing algorithm [8]. This means that the algorithm does not
need a model of the environment, it only interacts with the
environment without knowing it, see figure 3. It is also an
off-policy algorithm: the policy only determines which state-
action pairs are explored. For a correct performance, policies
need to ensure that every state-action pairs are continuously
explored.

Every aircraft is considered as an agent, making it a multi-
agent Markovian Decision Process (MDP) problem. The QL
has been well studied on MDP [9]. The QL is used to learn the
optimal policy of a certain MDP. This is done by computing
the Q-function for each aircraft - representing the expected
reward that an agent can receive if he takes a given action in a
given state. The QL used is a distributed one, meaning that the
reward of each agent is treated individually at each iteration.
Therefore, they are considered as independent learners.

For each agent, the expected reward Q(s, a) in a given state
s, for a given action a, is updated as follows:

Q(s, a)+ = α(R+ γ maxa′Q(s′, a′)−Q(s, a)) (1)

with:
• s′ the new state when the action a is taken in the state s;
• R the reward the agent will receive by making the action

a in s;
• α the learning rate;
• γ the discount factor.
The expected reward Q(s, a) in a given state s, for a given

action a is updated at each iteration considering an estimation

3

ICRAT 2022
University of South Florida, Tampa, FL, USA

of the optimal future value maxa′Q(s′, a′). This is done
independently of the policy being followed. Precisely, this is
a one-step QL since the estimation is only done by looking
one iteration ahead.

The pseudo code of the Q-Learning is given in Section III-B.

Algorithm 1 Q-Learning
Initialisation for each agent Q(·, ·) = Q0

Require: T0, β, Tf , iterations
while T ≥ Tf do

for i ≥ iterations do
for agent ∈ critical flight set do

Choose action a from s using the Boltzmann
strategy;

Take the action a, observe R and s′;
Update Q(s, a) for this agent according to (1);
s← s′

end for
i← i+ 1

end for
T ← β × T

end while

In order to balance the ratio between exploration and
exploitation, a softmax exploration (or Boltzmann exploration)
has been used. For a state s ∈ S, an action a ∈ A and the
temperature T , the probability π(s, a) to choose a in s is given
by:

π(s, a) =
eQ(s,a)/T∑

a′∈A

eQ(s,a′)/T

The temperature at the iteration number k, is given by a
geometric law of parameter β, i.e. Tk = T0β

k, with T0 the
initial temperature. This temperature set the trade-off between
exploration and exploitation : a relatively high temperature
will promote the exploration of the Q table, contrary to a low
temperature which is in favor of the exploitation of the Q table.

In this distributed Q-Learning, every aircraft is considered
as a learning agent and consequently has a Q-table. All the
Q-tables are initialized at a Q0 value chosen relatively low to
enforce the state exploration. It is done on purpose since the
reward - and the Q-table - of an aircraft depends on agents
close to it (meaning which could be in conflict). Every agent
is seen as an independent learner. Then, for a given agent, the
choice of an action does not consider the chosen action of
other agents but only their actual states. Therefore, between
two decision makings of an agent, its environment could have
been changed. In order to reduce this possibility, an agent
could choose the specific action of doing nothing, since then,
its state will not change.

C. Reward function

For each aircraft, a reward function is computed to be used
by the reinforcement learning algorithm. The reward given
at each state and action depends on other aircraft’s state and

is computed as the weighted sum of rewards described below.
All rewards presented here are negative, therefore the function
reward has to be maximized.

R =wrta(Rrta + 5Rrunway)+

wconflict(
∑

Rlink +
∑

Rnode)

If an aircraft f does not land on r0,f , its preferred runway,
the reward added is 5 times the Rrunway weighed by wrta.
This is equivalent to a 5 minutes penalty. wrta and wconflict

will be established in section IV.
Next, the different terms of the reward function are de-

scribed.
Required Time of Arrival: All airlines have a schedule for

each aircraft and on-time aircraft should have a better reward.
Then, a reward corresponding to the absolute difference be-
tween the RTA and the real arrival time is added to every
aircraft.

Rrta = −|tRTA
f − tarrival|

Runway Number: This model considers airport with two
runways used for landing. Such as before, airlines have
dedicate terminals, therefore their aircraft prefer to land on
a runway close to the gate in order to reduce taxi time.

Rrunway =

{
0, landing on the required runway, r0,f
−1, otherwise

Conflicts: When an aircraft is flying on a network, loss of
separation may only appears on nodes or on links. Then, our
model considers two kinds of conflicts: link conflict when two
aircraft do not respect the wake vortex category separation and
node conflict when aircraft do not respect the 3 NM horizontal
separation at merge points [7].

Links Conflicts: For each link, at the entrance and the exit,
the minimum separation between two aircraft f and g has to
correspond to the table I.

TABLE I
SEPARATION MINIMA FOR LINK CONFLICT IN NM

Assuming that sf,g is the separation minimum and df,g
is the actual distance between the leading aircraft f and
the trailing g, see figure 4, the criticality of a potential
conflict, Clink, is proportional to the distance between aircraft.
Overtakings are also computed, if this occurs, then df,g < 0
and the criticality of the conflict is set to −1.

Clink =

−1, if df,g < 0

− |sf,g−df,g|
sf,g

, if df,g < sf,g

0, otherwise

4

ICRAT 2022
University of South Florida, Tampa, FL, USA

Fig. 4. Link conflict detection based on the comparison of distance between
aircraft at the beginning or the end of a link with the separation minima

Clink is a piecewise linear and continuous function which
is necessary for the learning algorithm: between two decision
makings, the algorithm needs to know if the conflict is getting
better or worst. Since Clink could be close to 0 such as
Rrta, the learning algorithm could improve the Rrta instead of
resolving the conflict. In order to prioritize the conflict solving
objective, the reward function for the link conflict is artificially
set between −0.3 and −1 while preserving the linear variation
using the formula:

Rlink = −0.3 + (Clink ∗ (1− 0.3))

Node Conflicts: Even if there is no link conflict between
two aircraft f and g, there still could be conflicts on nodes.
In TMA, every aircraft has to be separated by 3 NM from
others in order to respect the separation distance. But as [7]
shows, in many airports, thanks to the network geometry, the
detection area could be reduced to a 2.2 NM radius circle, see
figure 5. As for the links, the criticality of a conflict on a node
is given by the formula:

Cnode =

{
− 2.2−df,g

2.2 , if df,g < 2.2

0, otherwise

As for the links, the reward function used for a node conflict
is artificially set between −0.3 and −1 while preserving the
linear variation by the formula:

Rnode = −0.3 + (Cnode ∗ (1− 0.3))

Fig. 5. Node conflict based on a circle detection area

Fig. 6. Representation of an aircraft in a Sliding Window

Sliding window length 21 min

Time shift for the sliding window 7 min

TABLE II
SLIDING WINDOW PARAMETERS

D. Sliding Window

In this problem, if an aircraft enters in the TMA many
hours before another one, their decisions can be considered
as independent. Therefore, it is not relevant to optimize the
whole problem in one attempt. This is why we introduce a
sliding window and run the optimization algorithm only on it.
It reduces the number of irrelevant decision variables and the
computational time [5] [6].

Aircraft are classified into four groups, see figure 6:

• Completed, the latest landing time is before the starting
time of the window;

• On going, the earliest entry time is before the starting
time of the window. For these, decisions have already
been made

• Active, the earliest entry time and the latest entry time is
in the time window

• Planned, the latest entry time is after the end of the
sliding window

At each iteration of the sliding window, the optimization
algorithm is run on active flights.

The difference between the earliest entry time and the latest
entry time for a given aircraft is about 7 minutes. Based on
this, the sliding window wide has been fixed at 21 minutes
(see table II). Also the time shift between two consecutive
sliding windows has also been fixed to 7 minutes.

E. Critical Flight Set

Running the algorithm on every active flight in the sliding
window is not efficient enough, some them have already a
good reward and others have multiple conflicts. In order to
speed up the optimization process, decisions are changed with
a higher priority on aircraft with the worse reward. Those
aircraft are indicated as critical flights.

Those critical flights are computed by using a threshold,
which is compared to the reward. Aircraft in this critical flight
set are these above 70% of the worst aircraft reward. Since
these aircraft are learning, their rewards decrease and more
and more aircraft are considered as ”critical” as the average
reward lowers.

5

ICRAT 2022
University of South Florida, Tampa, FL, USA

Q0 -150

α 0.1

γ 0.95

wrta 1

wconflict 100

TABLE III
THE QL PARAMETERS CHOSEN

IV. APPLICATION

A. Scenario

The benchmarks have been done on heavily-loaded sce-
narios but only considering LORNI and OKIPA entries. The
initial fight set representing a regular day at CDG on those two
entry points contains a total of 458 aircraft. However, in order
to simulate extra demand, some of them have been duplicated
and added to the initial set. In order to be coherent with the
reality, aircraft have been added in regards with the density of
aircraft in the initial set. The probability for an aircraft to be
added at a high density time is higher than to be added at a
low density time. The algorithm has been run on sets up to
50% bigger than the initial demand, i.e. 687 aircraft.

The maximum speed of aircraft in the TMA has been fixed
at 250kts since they are below flight level 100. The minimum
approach speed they can have depends on the wake vortex
category: 220kt for heavy aircraft and 190kt for medium
aircraft. This approach speed is a variable of the QL. This
scenario does not contain light aircraft. After the merge point,
in the final leg, the speed is fixed at 185kt for heavy aircraft
and 155kt for medium aircraft.

For each different decision variable, different steps as been
chosen : 10kt for the speed step, 20 seconds for the time step
and 0.5 nm for the PMS arc length step. With that, the number
of state possible is 5040 for a Medium aircraft and 2520 for
a Heavy aircraft.

B. QL Parameters Optimized by Genetic Algorithm

As [10] shows, the Boltzmann exploration strategy required
temperature parameters to be well chosen in order to perform
well. To find the best combination of parameters, a genetic al-
gorithm [11] has been used. The QL parameters optimized by
the genetic algorithm are the following: T0, Tf , β, iterations,
critical flight set threshold.

The other QL parameters is given by the table III. wrta has
been set to 1 and wconflict to 100 to ensure that the algorithm
is first focused on conflict solving then on minimizing delays.

Evaluation: In this algorithm, an individual is a combination
of Q-Learning parameters. To evaluate an individual, the QL
is run 5 times with the corresponding parameters. The fitness
associated to this individual is the average of final rewards of
the five runs minus the standard deviation of these rewards -
reminder, rewards are all negatives. This is done to not only
optimize the best result that the QL can have but also the
stability of the QL with these parameters. The pseudo-code of
such evaluation is summarized in algorithm 2.

Algorithm 2 Evaluate an individual
procedure EVALUATE(individual)

for i← 1, j do ▷ j = 5 is enough to be precise
Run the QL with the parameters given by the indi-

vidual
Observe the reward Ri

end for
return The average of all Ri minus the standard devi-

ation of all Ri

end procedure

Parameter Value
T0 100

Tf 1

β 0.99

Iterations 50

Critical flight set Threshold 0.7

TABLE IV
THE BEST QL PARAMETER COMBINATION FOUND BY THE GENETIC

ALGORITHM

Selection: Individuals used to generate a new generation are
those with the best fitness.

Crossover: A uniform crossover has been chosen, for every
child parameter, the value is randomly chosen between the two
parents.

Mutation: For every parameter of every individual, the
probability of a mutation is 0.2. The new value is chosen
randomly in the parameter set.

The overall genetic algorithm is given in algorithm 3.

Algorithm 3 Genetic Algorithm
Initialisation Choose randomly individuals in the initial pa-

rameters set
Require: n ▷ The number of generations

for i← 1, n do
for individual in population do

EVALUATE(individual)
end for
Selection
Crossover
Mutation

end for
The final parameter set is composed by the parameters
contained in the final population

At the end, the best parameter combination is represented in
table IV. With these parameters, the QL results are presented
in table V.

In order to avoid the genetic algorithm to overfit the QL
parameters, it has been run multiple times on different heavily-
loaded scenarios. On some scenarios, every conflict has been
solved and the algorithm couldn’t go further. This is showed
in figure 7, the critical flight set threshold parameter gives the
same result in the range [0.7, 0.9].

6

ICRAT 2022
University of South Florida, Tampa, FL, USA

Fig. 7. Genetic algorithm results on critical flight set threshold parameter,
150 individuals evaluated over 10 generations

Fig. 8. Q value for a given aircraft over two sliding windows (separated with
the red line).

C. Results

Figure 8 shows the value of the Q-function for an agent over
iterations. Two exponential curves can be seen, these represent
the exploitation part of the Boltzmann exploration strategy.
This occurs at every sliding window when the temperature
drops if, and only if, the aircraft has a so low reward that it is
selected. Here, the red line separate the two different sliding
windows. In this case, the Q-table was initialized to -150. This
is why many values on this graph equal -150, it is the default
value until this state and its neighbors have been more deeply
explored.

Since the optimization is run only on worst aircraft first,
the threshold drops all along the iterations. This means that
more and more aircraft are selected in the critical flight set.

Fig. 9. Evolution of the total reward (sum of all aircraft’s reward) of a given
Sliding Window, this could be seen as the learning curve of the algorithm
over a certain sliding window

Parameter Average Value
Delay 75 sec

Number of conflict 0

Runway change 5.3

Worst reward -8.7

Computational time 32 sec

TABLE V
AVERAGE RESULT (COMPUTED ON 10 DAY OPTIMIZATION) OF THE QL

WITH THE PARAMETERS FOUND IN THE PREVIOUS SUBSECTION (FOR 687
AIRCRAFT PER DAY).

Depending on the temperature at which aircraft enter in the
critical set, the Boltzmann strategy allows the exploration to go
more or less further. At the end of iterations, the temperature
is very low and the best states discovered in the exploration
part are now more likely to be reached. This bring the total
reward of the sliding window to strongly improve (see figure
9).

The figure 10 represents aircraft rewards at LORNI for the
first and the final state of a scenario. Each bar represents an
aircraft, and the length of bars are proportional to the rewards
- be aware, scales are different between the two graphs. If the
aircraft is in conflict at some point, the bar is in red, in blue
otherwise. The QL algorithm is very efficient on hot spots,
since every conflict has been solved, the delay is now shared
between all aircraft, maximizing the reward for each one.

Table V gives the average results over 10 iterations of the
QL on a heavily-loaded scenario. The process was run on a
3.1GHz core i5 CPU with Java code.

Figure 11 represents aircraft delays histogram. The time
step used is the same as the time step used in the model:
20 seconds. The average delay of aircraft in this scenario is
73 sec.

Finally, figure 12 gives the histogram of the arc length

7

ICRAT 2022
University of South Florida, Tampa, FL, USA

Fig. 10. Reward for aircraft in the flight set at LORNI; aircraft in red are in
conflict, in blue otherwise. Results are shown before optimization on the top
and after on the bottom.

Fig. 11. Histogram representing the delay of aircraft in the scenario (687
aircraft)

Fig. 12. Histogram representing the arc length that aircraft have flown in the
PMS

that aircraft have flown. The length step used is 0.5 nm. The
average arc length for an aircraft in this scenario is 4.9 nm.

V. CONCLUSION

Centralized AMAN has been extensively studied in the
literature but few initiatives have been proposed for a decen-
tralized version of such algorithm. This paper has presented
an efficient decentralized sequencing and merging algorithm.
A mathematical model, based on a network model, has been
presented for which aircraft decision variables and constraints
have been introduced. A distributed algorithm based on Q-
learning has been proposed, for which parameters have been
optimally tuned thanks to a genetic algorithm. This algorithm
has been implemented by using a sliding window mechanism.
It has been successfully applied to CDG airport for which
demand has been artificially increased with a total of 687
aircraft landings. Conflict free solution for a full day of traffic
has been computed in less than 30s which is really adapted
for real time planning.

This approach is relevant for aircraft landing but is even
more adapted for UTM, for which no centralized system is
expected to manage the landing of many UAV at the same
location.

In future work, such algorithm will be improved by taking
into account uncertainties (wind, etc..) but also by using a
more realistic aircraft model based, for instance, on BADA
model.

REFERENCES

[1] S. Abba-Rapaya, P. Notry, and D. Delahaye, “Coordinated Sequencing
of Traffic on Multiple En-route Constraint Points,” in 6th ENRI Inter-
national Workshop on ATM/CNS, ENRI, vol. 731. Springer, Oct. 2019.

[2] M. Liang, D. Delahaye, M. Sbihi, and J. Ma, “Multi-layer Point Merge
System for Dynamically Controlling Arrivals on Parallel Runways,” Sep.
2016.

[3] EUROCONTROL, “Point Merge implementation A quick guide,” May
2021.

[4] A. A. Deshmukh, Y. Huo, D. Delahaye, P. Notry, and M. Sbihi, “Al-
gorithmic Efficiency Comparison of Centralised and Distributed Arrival
Management (AMAN) Problem In Terminal Airspace,” in 10th Sesar
Innovations Days, Dec. 2020.

[5] J. Ma, D. Delahaye, M. Sbihi, and M. Mongeau, “Merging Flows in
Terminal Moneuvering Area using Time Decomposition Approach,” Jun.
2016.

[6] M. Xiangwei, Z. Ping, and L. Chunjin, “Sliding window algorithm
for aircraft landing problem,” in 2011 Chinese Control and Decision
Conference (CCDC), 2011, pp. 874–879.

[7] J. Ma, D. Delahaye, M. Sbihi, and M. Mongeau, “Integrated Opti-
mization of Terminal Manoeuvring Area and Airport,” in 6th SESAR
Innovation Days, Nov. 2016.

[8] C. Watkins, “Learning from Delayed Rewards,” Ph.D. thesis, King’s
college, London, May 1989.

[9] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction,
second edition ed., ser. Adaptive computation and machine learning.
Cambridge, Mass: MIT Press, 2014, 2015.

[10] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing explo-
ration strategies for Q-learning in random stochastic mazes,” in 2016
IEEE Symposium Series on Computational Intelligence (SSCI). Athens,
Greece: IEEE, Dec. 2016, pp. 1–8.

[11] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, ser. Adaptive computation and machine learning. Springer-
Verlag, 1996.

8

