Marco Baldi

Jean-Christophe Deneuville
email: jean-christophe.deneuville@enac.fr

Edoardo Persichetti
email: epersichetti@fau.edu

Paolo Santini
email: p.santini@univpm.it

Cryptanalysis

Cryptanalysis of a code-based signature scheme without trapdoors

Keywords: Code-based cryptography, cryptanalysis, digital signature, zero-knowledge identification scheme

Introduction

encryption schemes are varied, well-represented and made it to the third (and likely final) round with three promising candidates [START_REF] Albrecht | Classic McEliece: conservative code-based cryptography[END_REF][START_REF] Aragon | BIKE: Bit Flipping Key Encapsulation[END_REF][START_REF] Aguilar Melchor | HQC (Hamming Quasi-Cyclic[END_REF], only three candidates for code-based signature schemes were presented to the first round to begin with, and they have all since been either broken, or withdrawn.

The difficulty of producing secure and efficient code-based signatures is, in a sense, inherent to the setting. In fact, "hash-and-sign" schemes à la CFS [START_REF] Courtois | How to achieve a McEliece-based digital signature scheme[END_REF] have to somehow deal with the fact that it is not straightforward to find a preimage (decode) with the required characteristics (low Hamming weight), given a random input; this results in very slow signing times, besides the large public keys which are typical of code-based cryptography in general. A new approach, that uses rejection sampling and ternary vectors of very high weight [START_REF] Debris-Alazard | Wave: A new family of trapdoor one-way preimage sampleable functions based on codes[END_REF], still presents very large keys, despite the improvement in signing time and the very short signature size. Another approach to the design of code-based digital signature schemes is that of deriving them from zeroknowledge code-based identification schemes [START_REF] Stern | A new identification scheme based on syndrome decoding[END_REF][START_REF] Véron | Improved identification schemes based on error-correcting codes[END_REF][START_REF] Cayrel | A zero-knowledge identification scheme based on the q-ary syndrome decoding problem[END_REF][START_REF] Biasse | LESS is more: Code-based signatures without syndromes[END_REF] through the well-known Fiat-Shamir transformation. This generally results in a quite large signature size, which is a consequence of the multiple repetitions necessary to reach the desired (negligible) soundness error. In this scenario, it would be a boon to be able to devise a scheme following the Schnorr-Lyubashevsky approach [START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF], which has been extremely successful for the lattice case [13]; unfortunately, despite the similarities between the two settings, this has been an insurmountable task so far, at least for the Hamming metric. A first attempt was given in [START_REF] Persichetti | Improving the Efficiency of Code-Based Cryptography[END_REF], where a negative result is presented, concluding that a straightforward adaptation (including a rank-metric version) was unlikely to succeed. A subsequent work [START_REF] Persichetti | Efficient one-time signatures from quasi-cyclic codes: A full treatment[END_REF], that used quasi-cyclic codes, was cryptanalyzed in [START_REF] Deneuville | Cryptanalysis of a code-based one-time signature[END_REF][START_REF] Santini | Cryptanalysis of a one-time code-based digital signature scheme[END_REF], despite offering only a one-time solution. New adaptations were proposed again [START_REF] Song | A new code-based signature scheme with shorter public key[END_REF] and again [START_REF] Song | A code-based signature scheme from the Lyubashevsky framework[END_REF], always with the same negative outcome [START_REF] Aragon | Cryptanalysis of a rank-based signature with short public keys[END_REF][START_REF] Aragon | Cryptanalysis of a code-based full-time signature[END_REF].

In this work, we cryptanalyze the latest installment in this long series of unsuccessful attempts [START_REF] Li | A new code based signature scheme without trapdoors[END_REF]. This new scheme, which we shorten to LXY (using the authors initials), incorporates a rejection sampling component, as in the original work of Lyubashevsky [START_REF] Lyubashevsky | Lattice signatures without trapdoors[END_REF]. Furthermore, as another difference with its ancestors, the authors propose to use a denser noise vector to hide the secret key structure into a produced signature. In order to accommodate such choices, the parameters grow considerably, and the rejection rate is quite high, resulting in a scheme with very slow signing times and very long signatures. Unfortunately, it appears not even these extreme measures are enough to guarantee the security of the scheme. Indeed, we show that the considered rejection sampling does not guarantee indistinguishability of the signatures, since it only takes into account their weight and not their supports. Starting from this observation, we first describe why the signatures are correlated with the secret key, and then how the secret key can be fully recovered after a very limited number of observations. As a result, the scheme can be considered, at best, as one-time secure, and therefore, considering the performance aspects mentioned above, not interesting in practice.

The paper is organized as follows. In Section 2 we introduce the notation we use throughout the paper, and remind the LXY scheme. In Section 3 we explain why produced signatures leak information on the secret key, and in Section 4 we exploit this leakage to mount a successful key recovery attack.

Notation and background

In the rest of the paper, we denote with F 2 the finite field with two elements. Vectors will be denoted with bold small letters, while capital bold letters will be used for matrices. For a vector a, we indicate the Hamming weight as wt(a), and the support (i.e. the set of indices of non-null entries) as Supp(a).

Given two integers a, b, we denote with [a; b] the range of integers from a to b. If a and b are, in general, reals, we use [[a; b]] to denote the set of integers from a to b . For n ∈ N, we denote as R = F 2 [x]/(x n + 1) the ring of binary polynomials modulo x n + 1, and represent each element of R as the corresponding vector of coefficients with entries over F 2 and length n. We use Rot j to denote the operator that applies a cyclic-shift of j positions; in other words, for a = (a 0 , a 1 , • • • , a n-1), we have

Rot j (a) = (a j , a j+1 , • • • , a n-1 , a 0 , a 1 , • • • , a j-1).
Finally, we use L to denote the lifting of a vector from F 2 to {0, 1} ⊆ Z.

We will use B m τ to denote the distribution of length-m vectors where each entry follows a Bernoulli distribution with parameter τ (i.e. is set with probability τ and is null with probability 1 -τ). The Probability Distribution Function (PDF) of the weight of such vectors is as follows

f m τ (x) = 0 if x ∈ [0; m], m x τ x (1 -τ) m-x otherwise.
Furthermore, we denote with B m ξ,τ the distribution of vectors sampled from B m τ and whose weight is in [[mτ -ξ; mτ + ξ]]. The PDF of the weight of such vectors follows the so-called truncated binomial distribution, given by

f m ξ,τ (x) =    0 if x ∈ [[mτ -ξ, mτ + ξ]], f m τ (x) mτ +ξ i= mτ -ξ f m τ (i)
otherwise.

The LXY scheme

In [14, Section 4], the authors describe a general setting for their signature scheme, which already incorporates the rejection sampling in the signature generation. Such a construction is then specialized in [14, Section 6], using quasi-cyclicity and codes with rate 1/d, where d ≥ 2. Note that parameters are provided only for the case of d = 2 (i.e. code with rate 1/2). Hence, we mainly focus on such a variant, and will refer to it as the LXY scheme; in Section 4.1 we will briefly comment on the security of the more general setting. Algorithms 1, 2 and 3 recall the functioning of the LXY scheme. We have used H to denote a so-called Weight Restricted Hash Function, i.e. a hash function that outputs digests of length n and weight w. The rejection sampling in the signing algorithm is performed through the instructions in lines 6-9. The function ϕ(ω) is such that the PDF of the signature weight ω is tuned to be indistinguishable from the truncated binomial distribution f 2n ξ,τ . For details about how ϕ(ω) is computed, we refer the interested reader to [14, Section 3].

Algorithm 1 KeyGen

Input: Public parameters n, u ∈ N. Output: h ∈ R 1: Choose s1, s2 ∈ R with weight u 2: h ← s2s -1 1 3: sk ← (s1, s2), pk ← h 4: return pk, sk

Algorithm 2 Sign

Input: pk = h, sk = (s1, s2), message m, WRHF H, rejection function ϕ and parameters n, ξ ∈ N, τ ∈ R.

Output: Signature (z1, z2, c) ∈ R 3 on message m.

1: Sample e1, e2 from B n τ 2: y ← he1 + e2 3: c ← H (y, m) 4: z1 ← cs1 + e1, z2 ← cs2 + e2 5: ω ← wt(z1) + wt(z2) 6: if ω ∈ [[2nτ -ξ, 2nτ + ξ]] then 7:
Output z1, z2, c with probability ϕ(ω), else restart 8: else

9: Restart

Algorithm 3 Verify

Input: pk = h, message m, signature (z1, z2, c), WRHF H and parameters n, ξ ∈ N, τ ∈ R.

Output: Accept if (z1, z2, c) is valid, Reject otherwise 1: w ← wt(z1) + wt(z2) 2: if w ∈ [[2nτ -ξ, 2nτ + ξ]
] and H (hz1 + z2, m) == c then return Accept

3: else return Reject

It is easy to see that an honest signature always gets accepted. Indeed, rejection sampling guarantees that the weight of a signature is in the range [[2nτ -ξ; 2nτ + ξ]] and, for a valid signature (z 1 , z 2 , c), the following holds

hz 1 + z 2 = c(hs 1 + s 2) + he 1 + e 2 = he 1 + e 2 = y, since hs 1 = s 2 s -1 1 s 1 = s 2 .
So, the digest of hz 1 + z 2 is identical to c. The parameter sets recommended in [START_REF] Li | A new code based signature scheme without trapdoors[END_REF] are reported in Table 1, where λ denotes the claimed security level in bits. The public key size corresponds to n bits, while the signature size is given by 2n+w log 2 (n) bits (2n bits for z, and additional w log 2 (n) bits to represent the support of c). Hence, the resulting public key and signature sizes are 8.31 kB and 16.63 kB, respectively, for the instance with 80-bit security, while they are 31.07 kB and 62.16 kB, respectively, for the instance with 128-bit security.

Information leakage

Signatures produced by the LXY scheme have essentially the same structure as those of Persichetti's one-time scheme [START_REF] Persichetti | Efficient one-time signatures from quasi-cyclic codes: A full treatment[END_REF]. Indeed, for both schemes, the signature is z 1 , z 2 , c , where z i = cs i + e i and c, s i and e i are somehow sparse. The vector e i acts as a noise term, and its role is that of hiding cs i into z i . Note that the support of each z i is contained in

Supp(e i) ∪ {j + mod n | j ∈ Supp(c), ∈ Supp(s i)}.
In Persichetti's scheme, s i and e i are very sparse and their weights are close, so that most of the set entries in a signature come from the product cs i . This gives the possibility of mounting attacks based on the correlation due to quasi-cyclicity. More precisely, an adversary can compute all vectors Rot j (z i), for j ∈ Supp(c), and consider the positions of the entries that are set in a large number of such vectors: these positions belong to the support of s i with high probability.

As shown in [START_REF] Santini | Cryptanalysis of a one-time code-based digital signature scheme[END_REF], this procedure allows retrieving a significant amount of information about the secret key (the remaining portion can be recovered via Information Set Decoding).

The LXY scheme differs from Persichetti's scheme in two major aspects:

i. the weight of each e i is much larger than that of both s i and cs i . Then, an overwhelming majority of the set entries in each z i corresponds to those of e i ; ii. with the rejection sampling in the signing algorithm, the PDF of the weight of the signatures is tuned to the truncated binomial distribution f 2n ξ,τ (i.e. that of vectors sampled from B 2n ξ,τ). Because of these two features, in [14, Section 7.2], the authors claim immunity against known attacks such as [START_REF] Deneuville | Cryptanalysis of a code-based one-time signature[END_REF][START_REF] Santini | Cryptanalysis of a one-time code-based digital signature scheme[END_REF]; technically, they affirm that, as an effect of rejection sampling, the produced signatures are indistinguishable from vectors that are randomly sampled according to B 2n ξ,τ . The security proof follows from this statement. We are able to refute this claim and prove that the signatures in the LXY scheme leak information about the secret key. We show that e i cancels a non trivial, but still not large enough, portion of cs i : this opens up for the possibility of statistical attacks as in [START_REF] Santini | Cryptanalysis of a one-time code-based digital signature scheme[END_REF]. The reason lies in the fact that rejection sampling in the LXY scheme only takes into account the weights of z 1 and z 2 , but not their supports. As a result, the support of each z i contains a moderately large portion of the support of cs i , in which the positions of set entries are correlated due to quasi-cyclicity. As in Persichetti's scheme, this bias allows to gather information about the secret key.

Measuring the information leakage

To keep the computation as simple as possible, we introduce some elementary and plausible simplifications:

A) we assume that the weight of each z i , which we denote with ω i , follows a truncated binomial distribution B n ξ/2,τ ; B) we assume that the product cs i always has maximum weight uw.

Note that, in principles, both z 1 and z 2 can have any weight in [[0; 2nτ + ξ]]. However, we expect their weight distribution to be rather concentrated around the average value (which is nτ), so that very low or high weights appear with negligible probability. Hence, it seems natural to use the distribution B n ξ/2,τ for both ω 1 and ω 2 . This guarantees that ω = ω 1 + ω 2 is not outside the range [[2nτ -ξ; 2nτ + ξ]] and follows a binomial distribution with average value 2nτ . Assumption B comes from the fact that both c and s i are extremely sparse: one expects that cancellations are very rare, and that their product has maximum weight with very high probability.

Let us now consider a signature (z 1 , z 2 , c), and define -ω i as the number of elements that are contained in both Supp(cs i) and Supp(e i); -ω i as the number of elements that are in Supp(e i) but not in Supp(cs i).

Note that ω i corresponds to the number of set entries of cs i that are cancelled by e i , while ω i corresponds to the amount of set entries in z i which are due to e i . Furthermore, we have wt(z i) = wt(cs i) -ω i + ω i . Because of assumption B, we have wt(cs i) = uw, so that

ω i = uw -ω i + ω i .
When ω i = a ∈ [[nτ -ξ/2; nτ + ξ/2]], the probability that ω i has value x ∈ [0; uw] is given by

Pr[ω i = x | ω i = a] = f uw τ (x)f n-uw τ (a + x -uw) uw b=0 f uw τ (b)f n-uw τ (a + b -uw) .
Hence, summing over all possible ω i , we obtain the expression of the PDF of ω i , that is

Pr[ω i = x] = nτ +ξ/2 a= nτ -ξ/2 Pr[ω i = a]Pr[ω i = x | ω i = a] = nτ +ξ/2 a= nτ -ξ/2 f n ξ/2,τ (a)Pr[ω i = x | ω i = a]. (1)
A validation of the above formula is shown in Figure 1, where we compare the theoretical PDF of ω i with the one we have obtained empirically, by measuring the number of cancellations on a large number of produced signatures. As we see, the experimental PDF closely matches the theoretical one; this also provides evidence that assumptions A and B introduced earlier have no practical impact on our analysis. Let be the ratio between the average value of ω i and the weight of cs i , that is

= uw j=0 j • Pr [ω = j] uw .
Note that corresponds to the fraction of entries of cs i that are canceled by e i and, by definition, ∈ [[0; 1]]: thus, we can use it as the probability that a set entry in cs i will not be set in the final z i . For j ∈ Supp(c), let z (j) i = Rot j (z i); we have the following two situations: -if ∈ Supp(s i), then the -th entry of z (j) i is set with probability ρ = 1 -.

In fact, it will be set unless e i cancels it (i.e. e i has a one in the same position); -if ∈ Supp(s i), then the -th entry of z

(j) i is set with probability ρ = τ n -uw n + (1 -) uw n = τ (1 -uw/n) + (1 -)uw/n.
Since uw n, we have ρ ≈ τ .

For the proposed parameters for the LXY scheme, the values of ρ and ρ are significantly different:

-for the 80-bits parameters set, we have = 0.23831, so that ρ = 0.7617 and ρ = 0.24156; -for the 128-bits parameters set, we have = 0.24252, so that ρ = 0.75748 and ρ = 0.24769.

The gap between ρ and ρ allows to distinguish whether a position is in Supp(cs i) or not.

Starting from this observation, in the next section we present a full key-recovery attack (in a fashion similar to that proposed in [START_REF] Santini | Cryptanalysis of a one-time code-based digital signature scheme[END_REF]).

Fig. 1. Validation of (1) through numerical simulations. To empirically estimate the PDF, we have used approximately 10,000 signatures for the 80-bit parameters set, and 2,000 signatures for the 128-bit one.

Cryptanalysis results

Our key-recovery attack on the LXY scheme is reported in Algorithm 4. Basically, the procedure consists in collecting signatures and exploiting the aforementioned bias in the signature support to retrieve the secret s 1 and s 2 . For each new collected signature, we produce a candidate for the secret key as (s 1 , s2). To test it, we compute h = s1 s-1 2 and check if it is equal to the public key pk = h.

Algorithm 4 Key-recovery attack

Input: u ∈ N, public key pk = h Output: s1, s2 ∈ R with weight u, such that s2 s-1 1 = h 1: Set h ∈ R as the null element 2: Set a1, a2 ∈ Z n as null vectors 3: while h = h do 4:

Collect a new signature (z1, z2, c) 5:

for i ∈ {1, 2} do 6:

for j ∈ Supp(c) do 7:

ai ← ai + L Rotj(zi)

8:

Si ← u positions with largest values in ai 9:

si ← vector with support Si 10: h = s1 s-1 It is clear that Algorithm 4 runs in polynomial time, and a rough estimate of its complexity is as follows

N 2wn + 2u + n 2 + n 3 ,
where N is the number of required signatures. Indeed, for each new collected signature, we update a 1 and a 2 with a cost of 2wn operations and create s1 and s2 with approximately 2u operations (we assume the cost is equal to the number of entries we set). Finally, to compute h, we use n 3 operations to invert s-1 2 and n 2 operations to multiply it by s1 . We note that, in principle, the algorithm may return a pair (s 1 , s2) which is different from the actual secret key sk. This may happen only when equivalent keys exist, i.e., pairs (s 1 , s1) = sk, with s1 and s2 having weight u and such that h = s1 s-1

2 . Yet, any of such pairs can be used to construct signatures that will get accepted by the verification algorithm. Indeed, it is enough to run Algorithm 2, using s1 and s1 instead of s 1 and s 2 to obtain a valid signature.

We have implemented our algorithm 4 , building upon the authors' implementation5 of their signature scheme. Experimentally, the number N of signatures necessary to successfully perform a key recovery ranges from 4 to 9, for both parameter sets given in Table 1. Other results are reported in Table 2. The results were obtain on Intel R Xeon R Gold 6230 @ 2.10GHz running SageMath version 9.0. It is worth noting that once the signature scheme is set and enough signatures have been collected, the cryptanalysis in itself is quite efficient.

Comments on possible variants

In [START_REF] Li | A new code based signature scheme without trapdoors[END_REF], the authors also consider some possible variants for the scheme, although they do not recommend concrete parameters or provide any implementation. Yet, we are able to briefly comment about these possible generalizations.

Changing the code rate The LXY scheme may be instantiated with QC codes of rate 1/d, with d being an integer ≥ 2 (see [START_REF] Li | A new code based signature scheme without trapdoors[END_REF]Algorithms 5,[START_REF] Barg | Some new NP-complete coding problems[END_REF][START_REF] Berlekamp | On the inherent intractability of certain coding problems (corresp.)[END_REF]); in such a case, the signature z is made of d polynomials. For d = 2 (the only case for which parameters are recommended), the scheme corresponds to the one we have analyzed in this paper. Notice that, for d > 2, signatures are constructed in exactly the same way (i.e. they are of the form cs i + e i and are the output of a rejection sampling involving analogous distributions): hence, we believe that the same security issues will arise.

Using unstructured codes In [14, Algorithms 1,2,3] the authors describe a general version of the scheme, based on unstructured codes. Again, they neither propose concrete parameters nor provide an implementation for this variant. Yet, we believe that also this version can be attacked with techniques similar to that in [START_REF] Aragon | Cryptanalysis of a code-based full-time signature[END_REF]. Indeed, in this case the signature is in the form cS + e, where S is a very sparse matrix, c is the very sparse public digest and e is a moderately sparse random vector. Basically, if we consider two signatures with digests sharing a common set entry (say, the one in position j), then the corresponding signatures will be both obtained by summing the j-th row of S to other sparse terms. The rejection sampling will not guarantee a sufficient number of cancellations in the term cS, so that a large portion of its support will still appear in the output signature. Hence, there will still be correlation in the produced signatures, and collecting a sufficiently large number of signatures will still allow mounting a statistical attack to each row of S. Thus, we argue that also this variant should be considered secure, at best, only for the one-time use.

Conclusion

In this paper we have cryptanalyzed a code-based signature scheme constructed upon the Schnorr-Lyubashevsky framework. This scheme, which has a construction that is very similar to that of Persichetti's one-time scheme, comes with a different parameter choice and an ad-hoc rejection sampling step in the signing algorithm. However, it suffers from analogous weaknesses of other broken schemes, and its secret key can be successfully recovered upon collection of a relatively small number of output signatures. Hence, according to our results, the scheme can be deemed secure only for the one-time usage case.

2 11 :

 11 return (s1, s2)

Table 1 .

 1 LXY instances proposed in[START_REF] Li | A new code based signature scheme without trapdoors[END_REF]

	λ	n	u	w	τ	ξ
	80	66,467	49	6	0.23925	70
	128	248,579	75	8	0.24305	135

Table 2 .

 2 Cryptanalysis results, sampling, keygen, signature and cryptanalysis timings in seconds, along with the average number Nmean of necessary signatures λ t samp t keygen t sign t cryptanalysis N mean

	80 82.47 1.34 108.48	17.07	6.76
	128 626.38 5.77 1425.56	63.75	5.96

Available at https://github.com/deneuville/cryptanalysis_LXY

Available at https://github.com/zhli271828/rand_code_sign

The work of Edoardo Persichetti has been partially supported by NSF Grant CNS 1906360.